
CHAPTER 3

Derivation and some basic properties of

zonal polynomials

In this chapter we define (real) zonal polynomials and derive their basic prop-

erties. The results derived in this chapter are sufficient for usual applications

of zonal polynomials. Some remarks on notation seem appropriate here. We

define zonal polynomials as characteristic vectors of a certain linear transforma-

tion T from Vn to Vn. The normalization is rather arbitrary for a characteristic

vector and many properties of zonal polynomials are independent of particu-

lar normalization. Corresponding to different normalizations, different symbols

such as Zp,Cp have been used to denote zonal polynomials. We find it advanta-

geous to use still another normalization in addition to those corresponding to

Zp,Cp. Considering these circumstances we use yp for an unnormalized zonal

polynomial. \]Jp is used to denote a zonal polynomial normalized so that the

coefficient of Up or Mp is 1.

§ 3.1 DEFINITION OF ZONAL POLYNOMIALS

As mentioned earlier we define zonal polynomials as characteristic vectors

of a certain matrix. The matrix in question will be triangular and we begin by

a lemma concerning a triangular matrix and its characteristic vectors.

Lemma l Let T= (t{j) be annXn upper triangular matrix with distinct
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diagonal elements. Let Λ=diag(£n, ...,fΛn) Then there exists a nonsingular

upper triangular matrix B satisfying

(1) BT=ΛB.

B is uniquely determined up to a (possibly different) multiplicative constant for

each row.

Proof is straightforward and omitted. Note that ί t l , ί = l,...,w are

characteristic roots of T and t-tΛ row of B is the characteristic vector (from

the left) associated with ftt .

Remark 1. This lemma seems to be well known to people in numerical

analysis although an explicit reference is not easy to find. It is very briefly

mentioned on page 365 of Stewart (1973) in connection with the QR algorithm.

The QR algorithm is designed to transform a general matrix to a triangular

form in order to obtain the characteristic roots and vectors.

For a k X k matrix A = (αt y) we denote its (possibly complex) characteristic

roots by

aHH

.(2)

and (the determinant of) a principal minor by

For a matrix argument we define

M*) -
As is easily seen by expanding the determinant \A — λ/| the r-th elementary

symmetric function of the roots of a matrix A is equal to the sum of r X r

principal minors, namely

(4) U{
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(See Theorem 7.1.2 of Mirsky (1955) for example.) Hence

(5) Up(A)=^A*l)}Pl~P2{ Σ Aί i,t2)}Λ"Pβ .
ή

Note that (4) and (5) holds for general (not necessarily symmetric) matrix A.

Now let A be symmetric and consider a (linear) transformation τv : Vn —•

Vn defined by

where Wis a random symmetric matrix having a Wishart distribution

!/>/:. Here IV {Σy v) denotes the Wishart distribution with covariance Σ and

degrees of freedom v. (τμ is defined for the basis {Up} by (6) and for general

elements of Vn(A) τv is given by the linearity of expectation.) First we need

to verify:

Lemma 2. τv\lv 6 Vn.

Proof. Since A is symmetric it can be written as A = ΓDΓ1 where Γ is

orthogonal and D =diag(αi,...,αfc). Now Up{AW)= Up{ΓDΓ*W)= Up(DΓf

WΓ) because the nonzero roots are invariant when the matrices are permuted

cyclically. Since the distribution of Γ'WΓ is the same as the distribution of W,

we can take A = diag(c*i,..., αj.) without loss of generality. Then

(7) AW(f i,..., tV) = ( « t l 0f*f W i , . . . , *r).

For example

• aχwn axwχ2 . , «/n wϊ2 ,
(8) AW(1,2)= = « l « 2
v f v 7 I »2^21 «2W22 ' I ̂ 21 ^22 '

From (4) and (7) the r-th elementary symmetric function of the characteristic

roots of AW can be written as

(9) «r(λ(AW)) = £ α f l ofrW(f i,..., *V).
tl< <tr

Substituting this into (5) and taking the expectation we obtain

(10) M p X A ) - M Σ " ύ M ' l ) Γ ~ P 2 ( Σ α t lα t 2W(M,ί
t*i

Clearly this belongs to Vn.
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TV has the following triangular property.

Corollary 1.

(11) (τvUp)(A) = \ypUp(A) + Σ apqllq(A).
q<p

Proof. It suffices to show this for a diagonal matrix A = dίag(αi, . . . , αj.).

As in the proof of Lemma 2.2.2 the highest monomial term in (10) is of the

form

(12) oc\ιav

2

2 - oφεw {W(iγι~KW{l, 2f*~** - W(l,... ,tft} .

Then using (2.2.15) we see that (τvUp\A) expressed as a linear combination of

Uq$ involves only qr's such that q < p. In particular the leading coefficient is

(13) λί,p = (fv

Remark 2. The constants apq in (11) depend on the degrees of freedom

i/.

Remark 3. To be complete we have to verify that (6) does not depend

on the number of variables k or more precisely we need to verify

(14) {TyUpfal, , <*k, 0, . , 0) = {TyUpipi,..., ak),

for any number (m) of additional zeros. Note that the left hand side is defined

using expectation with respect to )f (Jj.+m,i/). Now recall that the marginal

distribution of the k X k upper left hand corner of ^(/&+m> u ) λ s ^(Ik>u) a n ^

(10) depends only on the k X k upper left hand corner of the Wishart matrix.

Therefore (14) holds.

By Corollary 1 τv expressed in an appropriate matrix form is an upper

triangular matrix. In order to apply Lemma 1 we want to evaluate the "diagonal

elements" \up in (13). For that purpose we use the following well known result.
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Lemma 3. Let W be distributed according to )f(Jj., ι/). Let T= (t{j) be

a lower triangular matrix with nonnegative diagonal elements such that W =

ΊTf. Then t{j, i > j , are independently distributed as t{j ~ ,λ/(0,1), ί >

j> t%i ~ x ( " ~ * + l) where χ(ι/ —ί + 1) denotes the chi-distribution with i/ — ί

degrees of freedom.

For a proof see Wijsman (1959) or Kshirsagar (1959).

Corollary 2.

2"

(15)

where ί = ί(p) and (α)j. = a(a + 1 ) (o + k — 1).

Proof. Note

(16) W(l,..., r) = ( in *rr)2-

Substituting this into (13) we obtain

(it) Λyp = c \ i | | ^22 # ££ ί

Now ί? is distributed according to χ (v — + 1) and it- (t/ — ί 4-

f + 3) (i/ - + 1 + 2(pt - 1)). From this we obtain (15).

This proof is given in Constantine (1963) in a slightly different form.

Using the vector notation introduced in (2.2.13) let

M«(n)) \

(18)
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Then Corollary 1 shows that

(19)

where Tv is an upper triangular matrix with diagonal elements tpp = \up. Tv

almost fits the condition of Lemma 1. The question now is what v to take.

Actually a particular choice of v does not matter; we have:

Lemma 4.

that

(20)

There exists a nonsingular upper triangular matrix B such

BTU = AμB for all i/,

where Av = diag(λI/|?,p € Λι) B is uniquely determined up to a (possibly

different) multiplicative constant for each row.

Lemma 4 shows that Tv has the same set of characteristic vectors (from

the left) for all </. A proof of this will be given later in this section. Now we

define zonal polynomials using this B.

Definition 1. (zonal polynomials)

Let B be as in Lemma 4. Zonal polynomials yp, p £ Pn, are defined by

(21) = BU.

Remark 4. B is upper triangular and therefore yp is a linear combination

of Uq's (or Mq's) with q < p. It follows that { ypyp 6 Pn } forms a basis of Vn.

Remark 5 Since each row of B is determined uniquely up to a multi-

plicative constant yp is determined up to normalization. We use yp to denote

an unnormalized zonal polynomial.

In order to prove Lemma 4 we first establish that the Tj/s commute with

each other.
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Lemma 5.

(22) Tι/Tμ=TμTι/.

Proof. For a symmetric positive semi-definite matrix A let A? be the sym-

metric positive semi-definite square root, i.e., A? = ΓD^Γ1 where Γ\s orthogo-

nal and D is diagonal in A = ΓDΓ1. Now let W,Vbe independently distributed

according to 1^(1^,1/), 1^(1^,μ) respectively. Consider

(23) £W>V{U(AWA*W)},

where U =(2i(n)>^(n-l,l)> •• >^(i»)/ Taking expectation with respect to W

first we obtain

( 2 4 ) = £V{TμU(AV)}

= TvTμU{A).

We used the cyclic permutation of the matrices since nonzero characteristic

roots are invariant. Similarly taking expectation with respect to V first we

obtain

(25) £Wy{U{AWAhw)} = TμTμU(A).

Hence TuTμU{Λ) = TμTι/U(A) for any symmetric positive semidefinite A. Now

a polynomial is identically equal to zero if it is zero for all nonnegative argu-

ments. This implies TuTμ = TμTu. |

See Theorem 2.2 of Kushner, Lebow, and Meisner (1981) for an analogous

result in a more general framework.

Now we give a proof of Lemma 4.

Proof of Lemma 4: Consider λ ^ given by (15). Let us look at λ ^ as a

polynomial in v. They are different polynomials for different partitions since
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they have different sets of roots. Now two different polynomials can match only

finite number of times. It follows that for a sufficiently large vo, λvop, p 6 Pnf

are all different. Let J/Q be fixed such that \vop, p £ Pn are all different. Let B

be the matrix in (1) with T replaced by Tμo. Note that the uniqueness part of

Lemma 4 is already established now. Let A = diag(λι/oί>,p £ Pn). Then for any

μ Λ(BTμ)= (AB)Tμ = (BT^Tμ = B[TμoTμ) = B(TμTμo) = (BTμ)Tμo, or

A31 = B\Tμ0 where B\ = BTμ. Now by the uniqueness part of Lemma 1 we

have Si = DB for some diagonal D or BTμ = DB. Considering the diagonal

elements we see that D = Aμ = diag(λμp,p 6 Pn) Therefore BTμ = AμB for

all μ. I

We defined zonal polynomials by defining their coefficients. From a little

bit more abstract viewpoint they are eigenfunctions of the linear operator τv

and the results in this section can be summarized as follows.

Theorem l Let 2/p be a zonal polynomial then

(2β)

where W ~ W(Jfc,i/), A is symmetric and\ι/p is given in (15). Conversely (26)

(for all sufficiently large v and for all symmetric A) implies that yp is a zonal

polynomial.

Proof. y = (l/(nj, j / ( n _ M ) , . . . , y^nfl = BU. Hence by Lemma 4

ίW{BU{AW)}
= Bίw{U{AW))

(27) = BTμU(A)

= AVBU{A)

Therefore (26) holds. Conversely assume (26). Let yp = ΣqePn

 α Λ T h e n

(26) implies

aTv = \μpa

where o ; = (θ(n)> >α(i*)) Now by the uniqueness part of Lemma 4 a!

coincides with the up-tΛw row of B up to a multiplicative constant. Therefore

yp is a zonal polynomial. |
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Corollary 3.

(28) εwyp(A\v) = κpyp(AΣ),

where A is symmetric and W is distributed according to ΊV(Σ, v).

Proof. This follows from (26) noting that if W = zk\V\ln then W\ is

distributed according to

The converse part of Theorem 1 will be strengthened in Theorem 4.1.2

and will be used to show that a particular symmetric polynomial is a zonal

polynomial. See Sec. 3.3, Sec. 4.4, and Sec. 4.7.

Remark β. In (21) zonal polynomials are defined as linear combinations

of i/g's. Therefore by (4) and (5) l/p(A) makes sense even when A is not

symmetric. This has been already used in the form yp(AW) in (26). This might

be slightly confusing because τv (hence Tv and B) was defined by considering

only symmetric matrices. Indeed in most cases arguments for zonal polynomials

are symmetric matrices.

§ 3.2 INTEGRAL IDENTITIES INVOLVING ZONAL POLYNOMIALS

In addition to (3.1.26) the zonal polynomials satisfy other integral identi-

ties. The fundamental one (Theorem 1 below) is related to the uniform dis-

tribution of orthogonal matrices. The idea of "averaging with respect to the

uniform distribution of orthogonal matrices" or "averaging over orthogonal

group" was a very important idea of James for the motivation of introducing

the zonal polynomials.

A random orthogonal matrix H is said to have the Haar invariant distribu-

tion or the uniform distribution if the distribution of HΓ is the same for every

orthogonal Γ. More formally, a probability measure P on the Borel field of

orthogonal matrices is Haar invariant if

(1) P{A) = P(AI)

for every orthogonal Γ and every Borel set A. See Anderson (1958), Chapter

13. General theory of Haar measures on topological groups can be found in
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Nachbin (1965) or Halmos (1974), for example. For the group of orthogonal

matrices, the existence and uniqueness of the Haar invariant distribution can

be established easily. For the uniqueness we have

Lemma 1. Let two probability measures P\yP2 satisfy (l). Then Pι(A) =

P2{A) for every Borel set A. Furthermore Pχ(A) = P\{A!) where A! = { H! \

HEA).

Proof. Let H\, H2 be independently distributed according to Pi, P 2 respec-

tively. Then

(2) Pr{Hxtf2 6 A) = ίHi [PriH^ € A \ H2)) = ίHi {Pχ{A)} = PX(A).

Similarly

(3)

Pr{Hχtf2 e A) = Pr(H2HΊ G A') = £Hι {fV(H2flΊ 6 A'\ Hi)} = P2{A').

Hence

(4) Pt(A) = P2(A')

Putting P\ = P 2 we obtain P\{A) = Pι{Ar),P2{A) = P2{Af). Substituting this

into (4) we obtain P\(A) = P2(A). I

Remark 1. For a more rigorous proof (2) and (3) have to be converted

to the form of Fubini's theorem, as is done in standard proofs (see Section 60

of Halmos (1974)). The same remark applies to the proof of Lemma 3 below.

Also note that the second assertion of Lemma 1 shows that if H is uniform

then H9 is uniform.

Existence can be very explicitly established as follows.

Lemma 2. Let U= (wt y) be a kX k matrix such that U{j are independent

standard normal variables. Then with probability 1, U can be uniquely expressed

as

(5) U=TH,
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where T = (ft y) is lower triangular with positive diagonal elements and H is

orthogonal. Furthermore (i) T and H are independent, (it) H is uniform, (Hi)

t{j are all independent and t^ ~ χ(k — ί + 1), t{j ~ Λ/(0,1), ί > j .

Proof. U is nonsingular with probability 1. Therefore suppose \U\ j ^ 0.

Now performing the Gram-Schmidt orthonormalization to the rows of U start-

ing from the first row we obtain SU = H where S is lower triangular with

positive diagonal elements and H is orthogonal. Letting T = SΓι we obtain

(5). Since (5) corresponds to the uniquely defined Gram-Schmidt orthonormal-

ization T, H are unique. Now W = UU9 = ΊT9 is distributed according to

^(Ikyk). Hence (iii) follows from Lemma 3.1.3. To show (i) and (ii) we first

note that for any orthogonal Γ, UΓ has the same distribution as U. Further-

more UΓ = T(HΓ). Therefore HΓ is the resulting orthogonal matrix obtained

by performing Gram-Schmidt orthonormalization to the rows of UΓ and T is

common to U and UΓ. This implies that given T the conditional distributions

of H and HΓ are the same. Therefore the conditional distribution of H given

T is uniform. Now by unconditioning we see that T and H are independent

and H has the uniform distribution. |

This lemma has been known for a long time. See Kshirsagar (1959), Ex-

ample 6 in Chapter 8 of Lehmann (1959), Saw (1970) for example.

Now we prove the following fundamental identity (James (1961a)). The

proof is a modification of one in Saw (1977).

Theorem 1. Let A,B be k X k symmetric matrices. Then

(β) εHyP(AHBHt) = yP(A)yp(B)/yp(ik),

where k X k orthogonal H has the uniform distribution.

Proof. Let f(A,B) denote the left hand side of (6). Let λ(A) = α =

(aι,...,otk) and \(B) = β = (βt,...,βk) Let A = HiDiH^, B = H2D2

where H i , H2 are orthogonal and D\ = diag(αi,. ..,<*&), D2 = diag(/?i,.

Λ ) Now

yp{AHBU) = yp(H1D1H'ιHH2D2H
t

2H
t)



28 Zonal polynomials

where JEΓ3 = H!χHH2 which has the uniform distribution. Therefore

(8) f(A,B)=£Hyp(D1HD2H').

This depends only on α = (a\,..., αj.), and β = (β\,..., βjς). Now for any per-

mutation matrix P, A = (H\P) (PfD\P) (P'flΊ). Noting that a permutation

matrix is orthogonal we get £Hyp {DιHD2H*) = £Hyp{PfDιPHD2H
f). there-

fore /(A, B) is symmetric in a\,..., ajg. Similarly it is symmetric in β\,..., β^.

Now on the left hand side of (6) express yp in terms of Uq's. Furthermore for

each elementary symmetric function ur = ur(AHBH*) constituting Uq use the

relation (3.1.4). We see that yp(AHBH9) and hence /(A,B) are polynomials

in (c*i,..., ajς, β\,..., β^). Suppose that /(A,B) is completely expanded into

monomial terms. Consider the term of the form ca\ι α|*, (q = (gi,..., qt) 6

Λι) in f(A,B). By symmetry among α t 's /(A, B) has the term cα?1 α^

with the same coefficient c. Collecting these permuted terms in α's we obtain

cMq(a). However c is a polynomial in /?'s and by symmetry among /Γs c can be

written as a linear combination of Mq(0y&. Collecting all terms we can write

for some real numbers aqqt. Expressing Mq's in terms of yq's we alternatively

have

Note that cqqt = c^q because Σ/p(AHJBH/) = yp{BHΆH) and Jϊ* has the

uniform distribution (see Remark 1). Now let A be distributed independently

of H and according to 1V(Σ,I/Q) where I/Q is such that \μop, p G P are all

different (see the proof of Lemma 3.1.4). Then by Corollary 3.1.3

(9) ίAεHyp(ABBH>) = £ cqq,\ι,oqyg(Σ)yql(B).

On the other hand taking expectation with respect to A first we obtain

= \ι/opεHyp(ΣHBHt)

- W Σ c^
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Therefore

(11) 0 =

This holds for any Σ and B. Hence ( λ ^ — \μoq)eq^ = 0 for all qr, ς/. Since

\voP η£ \voq for p 7^ g we have c^/ = 0 for all (/ and all q j ^ p. But c?̂ / =

. Therefore c ^ = 0 unless q = </ = p. Therefore

(12) ίny^AHBH1) = cppyp(A)yp(B).

Putting B = Ik we obtain

(13) yp(A) = cppί/p(/fc)!/p(A).

Hence cppyp(Ik) — 1 and this proves the theorem. |

For more about this proof see Section 4.1.

Theorem 1 implies the following rather strong result.

Theorem 2. Suppose that a k X k random symmetric matrix V has a

distribution such that for every orthogonal Γ, ΓVΓ1 has the same distribution

as V. Then for symmetric A

where

(is) cp = £v{yP(v)}/yP(ik).

Proof. As in the proof of Lemma 3.1.2 £yyp(AV) 6 Vn. Now since the

distribution of ΓVT9 is the same as Vwe have

εvyp(Arvr') = εvyp(Av).

Letting Γ be uniformly distributed independently of V

εvyP(Av) = εΓεvyP(Arvr')
= εvετyp(Arvr')
= tv{yP{A)yP(vyyp(ik)}
= yP(A)εv{yp(v)}/yp(ik).
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Remark 2. In the sequel we call the distribution of V "orthogonally

invariant" if it satisfies the condition of Theorem 2.

Although Theorem 2 has not been explicitly stated, it has been implicitly

used for several cases; first with the multivariate beta distribution by Constan-

tine (1963), later with the inverted Wishart distribution by Khatri (19Θ6) etc.

These cases will be examined in Section 4.3 together with the evaluation of cp

for each case.

We note that Theorem 2 is a generalization of Theorem 3.1.1. Now suppose

that we chose Vwhich has an orthogonally invariant distribution instead of the

Wishart matrix W for the construction of zonal polynomials in Section 3.1.

Then the construction could have been carried out in exactly the same way

provided that cp, p £ Pn in Theorem 2 are all distinct for V. Furthermore if

we examine the proof of Theorem 1 closely we find that we could take A =

ΣzVΣϊ in (9) and (10). Once Theorem 1 is proved the identity involving the

Wishart distribution can be derived as a special case. Although the Wishart

distribution seems to be a natural candidate to take for our construction, we

could have used any orthogonally invariant distribution from a purely logical

point of view.

Orthogonally invariant distributions are characterized as follows.

Lemma 3. Let V= HDH* where H is orthogonal and D is diagonal. Let

H and D be independently distributed such that H has the uniform distribution.

(Diagonal elements of D can have any distribution.) Then V has an orthogo-

nally invariant distribution. Conversely all orthogonally invariant distributions

can be obtained in this way.

Proof. The first part of the lemma is obvious. To prove the converse sup-

pose that Vhas an orthogonally invariant distribution. Now we form a new

random matrix V= HVH9 where H has the uniform distribution independently

of V. Then Vhas the same distribution as Vbecause for any Borel set A

(l8) Pr&e A) = £H{Pr(HVHt eA\H)}
V ] =S{pr(V6A)} Pr(VeA)
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Now we evaluate Pr(VE A) by conditioning on V. For fixed Vwe can write V

= ΓDΓ1 where Γ is orthogonal and D = diag(rfi, ...,</j.). We require d\ >

D = D(V) is unique. Then

(19) P r { V e Λ ' V) = Pr(HΓD(V)Γ'H* e A \ V )
{ ' =Pr(HD(V)H*eA\V).

Note that we replaced HΓ by H since HΓ has the uniform distribution. Hence

Pr{VE A) = ίy{Pr{VE A \ V)}

(20) = ev{Pr(HD{V)H9 EA\V)}

= Pr{HD{V)rf β A).

This proves the lemma. |

Remark 3. Note that the set of orthogonally invariant distributions is

convex with respect to taking mixture of distributions. Lemma 3 implies that

the extreme points of this convex set are given by those distributions for which

D is degenerate.

We can replace H in Theorem 1 by U whose elements are independent

normal variables.

Theorem 3. Let U= (t«t y) be a kXk matrix such thatu^j are independent

standard normal variables. Then for symmetric A,B

(21)

Proof. By Lemma 2 17= TH. Then

εvyp(AUBu') = £τεHyp(ATHBHtτl)

(22)

- ετyp(Aττ')yp(B)/yp(ik)

yP(A)yp(B).VΛh)

We used the fact that IT1 = UU' ~ W{Ik, k).
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Theorem 3 leads to the following important observation.

Theorem 4. bp = ^kplVpi^k) is a constant independent of k.

Proof. Let A,B be augmented by zeros as

°o ) ' k l X k l > έ = = ( o °o )> kιXkί

Then yp{λ) = yp{A), yp{B) = J/P(B), and yp(λVBV1) = I/p(Al7Bi;')
where U(k\ Xk\)is obtained by adding independent standard normal variables

to U. Now (21) implies the result. |

We evaluate the ftp's for a particular normalization of zonal polynomial to

be denoted as i]/p in Section 4.2. Corresponding to Theorem 2, Theorem 3

can be generalized as follows.

Theorem 5. LetX be a kXk random matrix (not necessarily symmetric)

such that for every orthogonal Γ\, Γ<ι, the distribution of Γ\XΓ2 is the same as

the distribution of X. Then for symmetric A,B

(23)

where

(24) η, - tχ{yP(χX)}i{yP{h)Ϋ-

Proof. For any orthogonal Γ\

(25) Exyp{AXBX!) =

Letting Γ\ be uniformly distributed we obtain

εx y^AXBJd) = Mf\ exyP(χΆx)

(26) y p ( k )

Now V = XX* has an orthogonally invariant distribution because Γ2VΓ21 =

(Γ2X)(Γ2X)'. Therefore by Theorem 2

(27) exyp{ΛxX) = yp(A)εx{yp(xx')}/yp(ik).

Substituting (27) into (26) we obtain the theorem.
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Remark 4. We call the distribution of X "orthogonally biinvariant" if it

satisfies the condition of Theorem 5.

Corresponding to Lemma 3 we have

Lemma 4. Let X = H\DH2 where H\,H2 are orthogonal and D is di-

agonal. Let H\,H2,D be independently distributed such that H\,H2 have the

uniform distribution. (D can have any distribution.) Then X has an orthogo-

nally biinvariant distribution. Conversely all orthogonally biinvariant distribu-

tions can be obtained in this way.

The proof is entirely analogous to the proof of Lemma 3, therefore we omit

it.

Remark 5. The notion of orthogonal biinvariance can be applied to

rectangular matrices. If X is k X m in Theorem 5 we obtain

and in Lemma 4 (for k < m) we replace X = H\DH2 by X = Π\(D, θ)H2

In the sequel we almost exclusively work with the Wishart and the normal

distributions. But in view of Theorem 2 and Theorem 5 there could be other

distributions which give information on various aspects of zonal polynomials.

§ 3.3 AN INTEGRAL REPRESENTATION OF ZONAL POLYNOMIALS

We prove an integral representation by Kates (1980) which shows that (i)

zonal polynomials are positive for positive definite A and increasing in each root

of A, (ii) in the normalization Zp defined below the coefficients apq in Zp =

ΣapqMq are nonnegative integers. The derivation by Kates is rather abstract

but the integral representation can be proved directly in our framework. The

representation can be formulated in several ways. James (1973) derived one

involving uniform orthogonal matrix. We discuss these variations in Section

4.7.
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From Theorem 3.2.4 we see that a constant bp or equivalently the value of a

zonal polynomial at Jj. describes a particular normalization. The normalization

Zp is the simplest one in this sense.

Definition 1. A particular normalization of a zonal polynomial denoted

by Zp is defined by

(i) Zvih) = λkP,

or bp = 1 in Theorem 3.2.4.

Theorem 1. (Kates, 1980) Letp — {p\,.. .,pι). For kXk symmetric

A

(2) Z p ( A ) = £ t / { Δ f - ^ Δ ξ 2 - ? ) 3 Δ^} t

where Δ t = UAU*(l,... ,ί) is the determinant of the i X t upper left minor of

UAU9 and U is a k X k random matriz whose entries are independent standard

normal variables.

Proof. For symmetric A let

(3)

It can be routinely checked that / is a homogeneous symmetric polynomial of

degree n = \p\ in the roots of A. Furthermore augmenting A to A (k\ X k\) by

adding zeros and augmenting U to V by adding independent standard normal

variables do not change the upper left part of UAU9. Therefore (3) does not

depend on k. Hence / 6 Vn. Note that we can extend the definition of / to

nonsymmetric matrices as well (see Remark 3.1.6). Now we want to show

(4) (TyfU) = W/(A)

for all sufficiently large v and for all symmetric A. Let

( A O

o o
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and W = Y9Y where Yis a v X v matrix whose entries are standard normal

variables. Then

^ - eγ{f{γλγ*)}

εγεϋ{ Π [frrA Y* fr'(1,..., i)]*

= tyrl Π ί̂ ALΓ Vίi,..., op-^ +i}

We switched L/' and Ybecause they have the same distribution. Now by Lemma

3.2.2 Y= TH and H can be absorbed into U. Therefore

(6) e

= εϋ εT{ Π («ii ήj"-"*1 [uλυ'ii,...,

Hence / = yp by Theorem 3.1.1. Putting Λ = Ij. we obtain

(7)

where W ~ )̂ (/^,A:). Again by the triangular decomposition W = 7T ;

(Lemma 3.1.3) we obtain /(/jfc) = λj.p. Therefore f = Zp. |

Note that the coefficients of the monomial terms in Zp are integers, being

the expected value of sum of products of independent standard normal vari-

ables. Furthermore if Λ = diag(αi,..., αj.) then by the Binet-Cauchy theorem
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(see Gantmacher (1959) for example)

(8)

where BΓ 1 '""'*•') denotes the determinant of a minor formed by rows i\,..., t r

and columns /i,..., jV of JB. (8) is obviously increasing in each α t when A is

positive definite. Furthermore coefficients for monomial terms are nonnegative.

These points are discussed in Kates (1980). For more about this see Section

4.1. Generalizations of Theorem 1 will be discussed in Section 4.7.

§ 3.4 A GENERATING FUNCTION OF ZONAL POLYNOMIALS

One of the main contributions of Saw (1977) is his generating function

which gives a relatively simple way of computing zonal polynomials. Let

(1)
p€P

Let C = AUBU' where A = diag(<*i,..., ak), B = diag(^i,.. . , βk) and the

elements of U are independent standard normal variables. Then by Theorem

3.2.3

<ft/(trAI7Bl7/)n

dp£uZp(AUBU')

- Σ
p€Pn

= Σ dpZp(A)Zp(B).
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Therefore for sufficiently small θ

£u{exp{$tτAUBUf)}

(3)
00

n = 0

On the other hand

k

(4) tτAUBU' = Σ
hi

Hence for sufficiently small $

£u{exp($tTAUBU')} =

(5>

From (3) and (5) we obtain

Theorem 1.

Jfc oo

(θ) Πί 1 " U*iβjΠ = Σ (tfn/«0 Σ dpZp(A)Zp(B).
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The left hand side of (6) can be expanded as follows.

Π

k

Π

hi r = = s l

1
(7) - ±

r = l Γ

OO

- Σ

-ί'Γί

n=0

where

(8)

The fourth equality follows from the fact that Tp being a product of p\ terms

comes only from the p\-th power term in the expansion of exp. Comparing the

coefficient of θn in (6) and (7) we obtain

(9) £ dpZp(A)Zp(B)= £ cpTp(A)Tp(B).
pEPn pEPn

Note that cp is positive for every p E Pn Hence the right hand side of (9) is

a positive definite quadratic form. Now the left hand side of (9) is the same

positive definite quadratic form expressed with the different basis { Zp }. The

positive definiteness implies dp > 0 for every p € Λi Now let D = diag(rfp,p E
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Pn), C = diag(cp,p e Pn). We recall that Z = SU where S is upper triangular

and T = FU where F is lower triangular (see(2.2.28)). Therefore in matrix

notation (9) is written as

(10) U{A)fB9DBU{B) = U{A)'FfCFU{B),

or

(l i ) B'DB = F'CF.

We note that the left hand side and the right hand side correspond to two differ-

ent triangular decompositions of the same symmetric positive definite matrix.

Fcan be computed from (2.2.24) or alternatively Fcan be obtained from tables

given in David, Kendall, and Barton (1966) for n < 12. Therefore we can com-

pute the right hand side of (9) relatively easily, then we decompose the resulting

positive definite matrix as BfD3. Diagonal elements of B corresponding to Zp

is obtained in (4.2.7). This determines D and B uniquely.

Remark 1. In terms of Λtp's (11) can be written as AfBfDBA=AfFfCFA

where A is given in (2.2.14). Saw (1977) defined zonal polynomials or the upper

triangular coefficient matrix BA by this relation and derived the first part of

Theorem 3.1.1 from this definition. It seems that (11) should be looked at

as providing a convenient algorithm for obtaining B rather than providing

a definition of zonal polynomials because it lacks the conceptual motivation

necessary for a definition.

Actually dp is known to be (James (1964), formula(18))

dP - χ [ 2 p ](l)2nn!/(2n)!

(12) = 2 n nlΠ«<, (2pt -2py-ι+y)

where n = \p\ and χ [ 2 ,(1) = (2n)! Πi<y(2pί - 2Pj - i + j) / I l £ ( 2 p t +

£(p) — t')! is "the dimension of the representation (2p) = (2pi,... ,2p^p\) of

the symmetric group on 2n symbols." This is one thing we were unable to
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obtain by our elementary approach. It was obtained by James (1961) using

group representation theory. We will discuss this point again in Section 4.2

and Section 5.4.

dpZp is usually denoted by Cp so that (1) can be written simply as

(13) (trΛΓ = Σ CP(A)
pEPn

This notation often makes it simpler to write down various noncentral densities.

Our last item in this section is related to this point.

Lemma 1.

(14)

where k X k orthogonal H is uniformly distributed.

Proof. Let the singular value decomposition be A = Γ\DΓ2 where Γ\,Γ2

are orthogonal, D = diag(ίj,..., ίj.) and 0{ = δf, ί = 1,..., k are the charac-

teristic roots of AA*. Then {tτAH)2n = {tτΓιDΓ2H)2n = (trX>Γ2HΓi)2n and

Γ2HΓ1 has the same distribution as JET. Therefore £j/(tr AH)2n is a 2n-th de-

gree homogeneous polynomial in S\,..., S^. Furthermore the order of δ\,..., 6^

and the sign for each 6{ are arbitrary in the singular value decomposition. It

follows that £j/(tr AH)2n is a homogeneous symmetric polynomial of degree n

in (θ\,..., θjς). Therefore we can write

(15) £H{tτAH)2n = Σ apZp(AAf),
PEPn

for some real numbers ap. Now let A = diag(αi,..., αj.) and U = (tιt y) be as

before. Then t r Λ l / = J ] W i is distributed according to M(0,^2 a2). Hence

f^(trΛl/)2Λ = ( £ α?Γ 1 3 (2tι - 1)
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On the other hand by Lemma 3.2.2 and (15)

AU)2n = £T)H{trATΉfn

= Σ ap£τZp(ATΓΆ')
(17) PePn

= Σ ap\kpZp(AA').

Comparing (16) and (17) we obtain (14).




