CHAPTER 3

Derivation and some basic properties of

zonal polynomials

In this chapter we define (real) zonal polynomials and derive their basic prop-
erties. The results derived in this chapter are sufficient for usual applications
of zonal polynomials. Some remarks on notation seem appropriate here. We
define zonal polynomials as characteristic vectors of a certain linear transforma-
tion 7 from V,, to V,,. The normalization is rather arbitrary for a characteristic
vector and many properties of zonal polynomials are independent of particu-
lar normalization. Corresponding to different normalizations, different symbols
such as Zp,Cp have been used to denote zonal polynomials. We find it advanta-
geous to use still another normalization in addition to those corresponding to
Zp,Cp. Considering these circumstances we use Y, for an unnormalized zonal
polynomial. 1Y, is used to denote a zonal polynomial normalized so that the

coefficient of U, or Mj is 1.

§ 3.1 DEFINITION OF ZONAL POLYNOMIALS

As mentioned earlier we define zonal polynomials as characteristic vectors
of a certain matrix. The matrix in question will be triangular and we begin by
a lemma concerning a triangular matrix and its characteristic vectors.

Lemma 1. Let T = (t;;) be an n X n upper triangular matriz with distinct
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diagonal elements. Let A=diag(t11,...,tnn). Then there ezists a nonsingular
upper triangular matriz B satisfying

(1) BT = AS8.
B 15 uniquely determined up to a (possibly different) multiplicative constant for

each row.

Proof is straightforward and omitted. Note that t;;, + = 1,...,n are
characteristic roots of T and i-th row of 8 is the characteristic vector (from
the left) associated with ¢,;.

Remark 1. This lemma seems to be well known to people in numerical
analysis although an explicit reference is not easy to find. It is very briefly
mentioned on page 365 of Stewart (1973) in connection with the QR algorithm.
The QR algorithm is designed to transform a general matrix to a triangular
form in order to obtain the characteristic roots and vectors.

For a k X k matrix A = (a;;) we denote its (possibly complex) characteristic
roots by

(2) a=(ay,...,a;) = \(A4),

and (the determinant of) a principal minor by

R
(3) Alsy,... 1) =

Gy o B4,
For a matrix argument we define
Up(A) = Up(a) = Up(X(A)).

As is easily seen by expanding the determinant |A — \I| the r-th elementary
symmetric function of the roots of a matrix A is equal to the sum of r X r

principal minors, namely

(4) u(l')(A) = u,-(al,...,ak) = E A(‘.l:---;‘.r)'

<<ty



§3.1 Definition of zonal polynomials 19

(See Theorem 7.1.2 of Mirsky (1955) for example.) Hence
(5) Up(A) = {ZA('I)}“_""{ D Al i)yre P

11 <tg
Note that (4) and (5) holds for general (not necessarily symmetric) matrix A.
Now let A be symmetric and consider a (linear) transformation 7, : V,, —
V,, defined by

(6) (ro(Up))(A) = (o Up N A) = Ew{Up(AW)},

where Wis a random symmetric matrix having a Wishart distribution W(I, v),
v > k. Here W(X,v) denotes the Wishart distribution with covariance X and
degrees of freedom v. (7, is defined for the basis {Up} by (6) and for general
elements of V,(A) 7, is given by the linearity of expectation.) First we need
to verify:

Lemma 2. rplp € V.

Proof. Since A is symmetric it can be written as A = I'DI" where I' is
orthogonal and D =diag(ay,...,a;). Now Up(AW)= U,(I'DI'W)= U,(DI’
WI) because the nonzero roots are invariant when the matrices are permuted
cyclically. Since the distribution of I"'WT'is the same as the distribution of W,
we can take A = diag(ay, ..., a;) without loss of generality. Then

(7) AW(il,...,i,-)=(ail ceog JW(S, .. ).
For example

a1wil ajwi2
8 AW],2) =
( ) W( ) | a2w21 a2w22

From (4) and (7) the r-th elementary symmetric function of the characteristic

wyp wj2 I

= aee|
! w21 w22

roots of AW can be written as
(9) ur(NAW)) = Z a; o WIS, . o).
1 <<ty
Substituting this into {5) and taking the expectation we obtain
(10)  (rolUp)(A) = éw Eau WD) TP Y ey e, WEELL i2)fPR T
11 <iz

Clearly this belongs to V,,. (]
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7, has the following triangular property.

Corollary 1.

(11) (ToUpXA) = MplUp(A) + D apgliy(A).
9<p

Proof. It suffices to show this for a diagonal matrix A = diag(ay,...,ar).
As in the proof of Lemma 2.2.2 the highest monomial term in (10) is of the
form

(12) oftah? - obt &y (W11 7P2W(1, 2)P27 P8 ... W1,..., O)PL} .

Then using (2.2.15) we see that (7, Uy)(A) expressed as a linear combination of
Ug's involves only g’s such that ¢ < p. In particular the leading coefficient is

(13) Aop = Ew (WP TP, 2027P8 ... ML, .., £} .

Remark 2. The constants apq in (11) depend on the degrees of freedom
v.
Remark 3. To be complete we have to verify that (8) does not depend

on the number of variables k or more precisely we need to verify

(14) (rvlUplay,...,ar,0,...,0) = (r,Up)ay, ..., o),

for any number (m) of additional zeros. Note that the left hand side is defined
using expectation with respect to W(Ig4,,,v). Now recall that the marginal
distribution of the k X k upper left hand corner of W(I;,,v)is W(I},v) and
(10) depends only on the k& X k upper left hand corner of the Wishart matrix.
Therefore (14) holds.

By Corollary 1 7, expressed in an appropriate matrix form is an upper
triangular matrix. In order to apply Lemma 1 we want to evaluate the “diagonal
elements” X\,p in (13). For that purpose we use the following well known result.
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Lemma 3. Let W be distributed according to W(Iy,v). Let T = (t;;) be
a lower triangular matriz with nonnegative diagonal elements such that W =
TT'. Then tij, ¢ 2 J, are independently distributed as t;; ~ N(0,1), i >
Ity ~ x(v—1i+1) where x(v—i+1) denotes the chi-distribution with v —i+1
degrees of freedom.

For a proof see Wijsman (1959) or Kshirsagar (1959).

Corollary 2.

4
Mp = 2" [[ Tlpi + (v + 1= /Tl (v + 1~ )

=1

on E(v+1—i
(15) —* ;I=Il( ),
— v +2)- (v + 2py — 1))

wv=1)v+1)---(v—1+2(p2 — 1))

v—t+1)---(v—L+1+2p,—1)),
where £ = {(p) and (a)y = a(a+1)---(a+k—1).

Proof. Note
(16) Ml,...,r)=(tll'°’trr)2.
Substituting this into (13) we obtain
2p1 ,2 2
(17) hop = E{t] 655 - g}
Now t2; is distributed according to x*(v—i+1)and & t?f f=w—i+1)v-
{+3)--- (v—1+1+2(p; —1)). From this we obtain (15). ]

This proof is given in Constantine (1963) in a slightly different form.

Using the vector notation introduced in (2.2.13) let

( w(lm) )

n(U(n-1,1))

(18) Tu(u) =

\ 7(lUpany)
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Then Corollary 1 shows that
(19) n(U) =T,

where T), is an upper triangular matrix with diagonal elements t,, = X\p. T},
almost fits the condition of Lemma 1. The question now is what v to take.
Actually a particular choice of v does not matter; we have:

Lemma 4. There ezists a nonsingular upper triangular matriz B such
that
(20) BT, =A,8  forall v,

where A, = diag(Ayp,p € Pp). B is uniquely determined up to a (possibly
different) multiplicative constant for each row.

Lemma 4 shows that T}, has the same set of characteristic vectors (from
the left) for all v. A proof of this will be given later in this section. Now we
define zonal polynomials using this 8.

Definition 1. (zonal polynomials)

Let 8 be as in Lemma 4. Zonal polynomials Y,, p € P,, are defined by

(Y )
Yin-1,1)
(21) y= ) = 8U.
\ Yan)
Remark 4. 8 is upper triangular and therefore Yy is a linear combination

of Ug's (or Mg's) with ¢ < p. It follows that { Yy, p € P, } forms a basis of Vj,.

Remark 5. Since each row of 8 is determined uniquely up to a multi-
plicative constant Y, is determined up to normalization. We use Y, to denote
an unnormalized zonal polynomial.

In order to prove Lemma 4 we first establish that the T,’s commute with
each other.
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Lemma 5.
(22) TyTp = T#Ty.
Proof. For a symmetric positive semi-definite matrix A let A? be the sym-

metric positive semi-definite square root, i.e., A% = DI where I'is orthogo-
nal and D is diagonal in A = I'DI"’. Now let W,V be independently distributed
according to W(Ij,v), W(I, p) respectively. Consider

(23) Ew,v (U(ATVAIW)},

where U =(U(n), Un-1,1)s---,Y1n)). Taking expectation with respect to W
first we obtain

Ew,v{U(Abvaiw))
= &v{T, u(atvat))
(24) = &y{T U(AV)
=T é‘V{u(AV)}
= T, T, U(A).

We used the cyclic permutation of the matrices since nonzero characteristic
roots are invariant. Similarly taking expectation with respect to V first we

obtain
(25) Ew,v {UATVAIW)} = T, T, U(A).

Hence T, T, U(A) = T,T, U(A) for any symmetric positive semidefinite A. Now
a polynomial is identically equal to zero if it is zero for all nonnegative argu-
ments. This implies T, T, = T,T,. (]

See Theorem 2.2 of Kushner, Lebow, and Meisner (1981) for an analogous
result in a more general framework.
Now we give a proof of Lemma 4.

Proof of Lemma 4:  Consider A\yp given by (15). Let us look at A\yp as a
polynomial in v. They are different polynomials for different partitions since
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they have different sets of roots. Now two different polynomials can match only
finite number of times. It follows that for a sufficiently large vo, Aygp, p € Pa,

are all different. Let vg be fixed such that X\, p, p € P, are all different. Let 8
be the matrix in (1) with T replaced by T,,. Note that the uniqueness part of
Lemma 4 is already established now. Let A = diag(X\,,p,p € Pu). Then for any
p ABT,)= (AB)T, = (8T, )Ty = 8(T,,Ty) = B(TuT,) = (8T,)T,, or
AB| = 8,T,, where 8 = BT,. Now by the uniqueness part of Lemma 1 we
have 8; = D& for some diagonal D or 8T, = DB8. Considering the diagonal
elements we see that D = A, = diag(\pup,p € 7). Therefore 8T, = A, 8 for
all p. 1

We defined zonal polynomials by defining their coefficients. From a little
bit more abstract viewpoint they are eigenfunctions of the linear operator r,
and the results in this section can be summarized as follows.

Theorem 1. Let Yy be a zonal polynomsial then

(26) (v YpNA) = EwlYp(AW) = \,pYp(A),

where W ~ W(It,v), A is symmetric and \yp i3 given in (15). Conversely (26)
(for all sufficiently large v and for all symmetric A) implies that Y, is a zonal
polynomial.

Proof. Y==UYwm) Yin-1,1)--+» y(ln))' = HU. Hence by Lemma 4

Ew{Y(AwW)} = &w{BU(AW)}

= Béw {U(AW))
(27) = BT, U(A)

= A, BU(A)

= Auy(A)-
Therefore (26) holds. Conversely assume (26). Let Yp = 3 ¢p, agllg. Then
(26) implies

dT, = Xypa',

where o' = (a(,,),...,a(ln)). Now by the uniqueness part of Lemma 4 o'
coincides with the “p-th” row of 8 up to a multiplicative constant. Therefore
Yp is a zonal polynomial. ]
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Corollary 3.

(28) é‘Wyp(A“’) = Xupyp(AE)y
where A 15 symmetric and W is distributed according to W(X,v).

Proof. This follows from (26) noting that if W = E%WIL‘% then Wj is
distributed according to W(I,v). (]

The converse part of Theorem 1 will be strengthened in Theorem 4.1.2
and will be used to show that a particular symmetric polynomial is a zonal
polynomial. See Sec. 3.3, Sec. 4.4, and Sec. 4.7.

Remark 8. In (21) zonal polynomials are defined as linear combinations
of Ug's. Therefore by (4) and (5) Yp(A) makes sense even when A is not
symmetric. This has been already used in the form Y,(AW)in (26). This might
be slightly confusing because 7, (hence T, and 8) was defined by considering
only symmetric matrices. Indeed in most cases arguments for zonal polynomials
are symmetric matrices.

§ 3.2 INTEGRAL IDENTITIES INVOLVING ZONAL POLYNOMIALS

In addition to (3.1.26) the zonal polynomials satisfy other integral identi-
ties. The fundamental one (Theorem 1 below) is related to the uniform dis-
tribution of orthogonal matrices. The idea of “averaging with respect to the
uniform distribution of orthogonal matrices” or “averaging over orthogonal
group” was a very important idea of James for the motivation of introducing
the zonal polynomials.

A random orthogonal matrix H is said to have the Haar snvariant distribu-
tion or the uniform distribution if the distribution of HI'is the same for every
orthogonal I’ More formally, a probability measure P on the Borel field of

orthogonal matrices is Haar snvariant if
(1) P(A) = P(AI)

for every orthogonal I' and every Borel set A. See Anderson (1958), Chapter
13. General theory of Haar measures on topological groups can be found in
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Nachbin (1965) or Halmos (1974), for example. For the group of orthogonal
matrices, the existence and uniqueness of the Haar invariant distribution can
be established easily. For the uniqueness we have

Lemma 1. Let two probability measures Py, Py satisfy (1). Then Py(A)=
Py(A) for every Borel set A. Furthermore Py(A) = Py(A') where A' = { H' |
HEeA).

Proof. Let Hy, Hs be independently distributed according to Pj, P5 respec-

tively. Then

(2) Pr(HiH} € A) = ég, {Pr(H7\H} € A| Hp)} = &g, {Pi(A)} = Pi(A).

Similarly
(3)
Pr(H\HY € A) = Pr(Hz2H € A') = &, {Pr(HzHY € A' | H)} = Po(4A)).
Hence
(4) Py(A) = Py(4).

Putting P; = P, we obtain Pj(A) = P;(A’),Ps(A) = P,(A’). Substituting this
into (4) we obtain P1(A) = Py(A). (]

Remark 1. For a more rigorous proof (2) and (3) have to be converted
to the form of Fubini’s theorem, as is done in standard proofs (see Section 60
of Halmos (1974)). The same remark applies to the proof of Lemma 3 below.
Also note that the second assertion of Lemma 1 shows that if H is uniform
then H' is uniform.

Existence can be very explicitly established as follows.

Lemma 2. Let U = (u;;) be a kX k matriz such that u;; are independent
standard normal variables. Then with probability 1, U can be uniquely ezpressed
as

(5) U=TH,
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where T = (t;;) 48 lower triangular with positive diagonal elements and H s
orthogonal. Furthermore (i) T and H are independent, (is) H is uniform, (iii)

t;; are all independent and t;; ~ x(k—i+1), t;; ~ N(0,1), 5 > j.

Proof. U is nonsingular with probability 1. Therefore suppose |U] £ 0.
Now performing the Gram-Schmidt orthonormalization to the rows of U start-
ing from the first row we obtain SU = H where S is lower triangular with
positive diagonal elements and H is orthogonal. Letting T = S~! we obtain
(5). Since (5) corresponds to the uniquely defined Gram-Schmidt orthonormal-
ization T, H are unique. Now W = UU’ = TT' is distributed according to
W(I}, k). Hence (iii) follows from Lemma 3.1.3. To show (i) and (ii) we first
note that for any orthogonal I', UT has the same distribution as U. Further-
more UTI" = T(HT). Therefore HI' is the resulting orthogonal matrix obtained
by performing Gram-Schmidt orthonormalization to the rows of UI and T is
common to U and UT. This implies that given T the conditional distributions
of H and HT are the same. Therefore the conditional distribution of H given
T is uniform. Now by unconditioning we see that T and H are independent
and H has the uniform distribution. 1

This lemma has been known for a long time. See Kshirsagar (1959), Ex-
ample 6 in Chapter 8 of Lehmann (1959), Saw (1970) for example.
Now we prove the following fundamental identity (James (1961a)). The

proof is a modification of one in Saw (1977).

Theorem 1. Let A,B be k X k symmetric matrices. Then

(6) EnYp(AHBH') = Yp(A)Y5(B)/Yp(It),

where k X k orthogonal H has the uniform distribution.

Proof. Let f(A, B) denote the left hand side of (8). Let N(A) = &« =
(a1,...,a;) and \(B) = 8= (B1,...,Pk). Let A= H\D\H,, B= H>D> H"2,
where Hy, Hs are orthogonal and Dy = diag(ay,...,a;), Dy = diag(fy,...,
:Bk)- Now

() Yp(AHBH') = Y,(H\ D1 H| HH, D Hy H')
= Yp(D1H3D2 HY),
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where Hy = H’lHHg which has the uniform distribution. Therefore
(8) f(A,B) = égYp(DHD: H').

This depends only on a = (e, ...,a;), and 8 = (A1, ..., ). Now for any per-
mutation matrix P, A= (HP)(P'D,P)(P'H}). Noting that a permutation
matrix is orthogonal we get g Yp (D1HD2H') = égYp(P'Dy PHD2H'). there-
fore f(A, B)is symmetric in ay,..., ag. Similarly it is symmetric in £y, ..., fk.
Now on the left hand side of (6) express Y, in terms of U;’s. Furthermore for
each elementary symmetric function u, = u,(AHBH') constituting Uy use the
relation (3.1.4). We see that Y,(AHBH’) and hence f(A, B) are polynomials
in (ay,...,0,B1,...,8k). Suppose that f(A, B) is completely expanded into
monomial terms. Consider the term of the form caj' ---af¢, (g =(q1,...,90) €
Pn) in f(A, B). By symmetry among a;'s f(A, B) has the term caz:!ll -~-af-:
with the same coefficient ¢. Collecting these permuted terms in a’s we obtain
¢ Mg(a). However c is a polynomial in A’s and by symmetry among A’s ¢ can be
written as a linear combination of M4(B)’s. Collecting all terms we can write

f(A,B) =Y a,g M(a)My(B)
7,4
for some real numbers a,y. Expressing M,’s in terms of Y,’s we alternatively

have
fla,B)= 25 cop Yo(A)Y 4(B).
q,

Note that ¢, = cp, because Y,(AHBH') = Y,(BH'AH) and H' has the
uniform distribution (see Remark 1). Now let A be distributed independently
of H and according to W(X,vy) where vg is such that \,y,, p € P are all
different (see the proof of Lemma 3.1.4). Then by Corollary 3.1.3

(9) éaénYp(AHBH') = § cogMogYq(E)Y ¢(B).
9

On the other hand taking expectation with respect to A first we obtain

EnéaYp(AHBH') = \yopéyY,( EHBH')
(10) = \yop z:,lcqq, Yo(2)Y 4(B).
q9
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Therefore

(11) 0= Xq:’(x,,o,, — Nugg)Cqqt Yo(E)Y y(B).
9

This holds for any X and B. Hence (Ayyp — Ayyq)cgy = O for all g,¢. Since
Avgp 7% Avgq for p 5% q we have cgp = 0 for all ¢’ and all ¢ 5% p. But Cogt =
¢g'q- Therefore ¢,y = 0 unless ¢ = ¢ = p. Therefore

(12) EnYp(AHBH') = cppYp(A)Yp(B).

Putting B = I}, we obtain

(13) yp(A) = Cppyp(Ik)yp(A)-

Hence cpp Yp(It) = 1 and this proves the theorem. (]

For more about this proof see Section 4.1.
Theorem 1 implies the following rather strong result.
Theorem 2. Suppose that a k X k random symmetric matriz V has a

distribution such that for every orthogonal I, I'VI"' has the same distribution
as V. Then for symmetric A

(14) EvYp(AV) = cpYp(A),
where
(15) cp = Ev{Yp(V)}/ Yp(Lt).

Proof. As in the proof of Lemma 3.1.2 &y Y,(AV) € V,,. Now since the
distribution of I'VT" is the same as V we have

(186) EvYp(AIVIT') = Ey Y, (AV).
Letting I' be uniformly distributed independently of V'

EvYp(AV) = €p5VyP(AI"VI")
= CyépYplarvr’)
= Ev{Yp(A)Yp(V)/Yp(Li)}
= Yp(A)Ev {Yp(V)}/ Yp(I1).

(17)
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Remark 2. In the sequel we call the distribution of V “orthogonally
invariant” if it satisfies the condition of Theorem 2.

Although Theorem 2 has not been explicitly stated, it has been implicitly
used for several cases; first with the multivariate beta distribution by Constan-
tine (1963), later with the inverted Wishart distribution by Khatri (1966) etc.
These cases will be examined in Section 4.3 together with the evaluation of c,

for each case.

We note that Theorem 2 is a generalization of Theorem 3.1.1. Now suppose
that we chose V'which has an orthogonally invariant distribution instead of the
Wishart matrix W for the construction of zonal polynomials in Section 3.1.
Then the construction could have been carried out in exactly the same way
provided that ¢y, p € P, in Theorem 2 are all distinct for V. Furthermore if
we examine the proof of Theorem 1 closely we find that we could take A =
TIVEL in (9) and (10). Once Theorem 1 is proved the identity involving the
Wishart distribution can be derived as a special case. Although the Wishart
distribution seems to be a natural candidate to take for our construction, we
could have used any orthogonally invariant distribution from a purely logical
point of view.

Orthogonally invariant distributions are characterized as follows.

Lemma 3. Let V= HDH' where H is orthogonal and D s diagonal. Let
H and D be independently distributed such that H has the uniform distribution.
(Diagonal elements of D can have any distribution.) Then V has an orthogo-
nally invariant distribution. Conversely all orthogonally snvariant distributions
can be obtained sn this way.

Proof. The first part of the lemma is obvious. To prove the converse sup-
pose that V has an orthogonally invariant distribution. Now we form a new
random matrix V= HVH' where H has the uniform distribution independently
of V. Then V has the same distribution as V because for any Borel set A

Pr(VE A) = éy{Pr(HVH € A| H)}

(18) = Eg{Pr(VE A)} = Pr(VE A).
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Now we evaluate Pr(V € A) by conditioning on V. For fixed V we can write V
= IDI"' where I'is orthogonal and D = diag(dy,...,d;). We require d; >
- > dj then D = D(V) is unique. Then

Pr(VEA|V)= Pr(HID(V)I'H € A | V)

(19) = Pr(HD(V)H' € A| V).

Note that we replaced HI' by H since HT has the uniform distribution. Hence

Pr(Vve A) = &y {Pr(VE A| V)}
(20) = éy{Pr(HD(V)H € A| V)
= Pr(HD(V)H' € A).

This proves the lemma. (]

Remark 3. Note that the set of orthogonally invariant distributions is
convex with respect to taking mixture of distributions. Lemma 3 implies that
the extreme points of this convex set are given by those distributions for which

D is degenerate.

We can replace H in Theorem 1 by U whose elements are independent

normal variables.

Theorem 3. Let U= (u;;) be a kXk matriz such that u;; are independent
standard normal variables. Then for symmetric A, B

Ak
(21) EuYp(AUBU') =y 5 Yp(A)Yp(B).

p

Proof. By Lemma 2 U= TH. Then

fuYp(AUBU') = épéy Y ,(ATHBH'T')
= éréyY,(T'ATHBH')
= é‘T.l/p(TlAT)yp( /yp( )
= nyp(ATT' yp( /yp

xk,

We used the fact that TT = UU' ~ W(Iy, k). ]

(22)
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Theorem 3 leads to the following important observation.

Theorem 4. bp = Mip/Yp(Ik) 15 a constant independent of k.

Proof. Let A,B be augmented by zeros as

- A O - B 0
A=(0 0 ) ky X ki, B=(0 . ) ky X ki

Then yp(i) = Yp(A), yp(é) = Yp(B), and yp(;‘ ifﬁij') = yp(AUBU')
where U (k1 X k1) is obtained by adding independent standard normal variables
to U. Now (21) implies the result. (]

We evaluate the by's for a particular normalization of zonal polynomial to
be denoted as 1Yy in Section 4.2. Corresponding to Theorem 2, Theorem 3
can be generalized as follows.

Theorem 5. Let X be a kX k random matriz (not necessarily symmetric)
such that for every orthogonal I'y, Iz, the distribution of I'Y XTI is the same as
the distribution of X. Then for symmetric A, B

(23) Ex Yp(AXBX') = 7 Yp(A)Yp(B),
where
(24) T = Ex{Yp(XX)} /{Yp(1p)}>.

Proof. For any orthogonal I
(25) ExYp(AXBX') = ExYp(AXT B 'X).

Letting I'y be uniformly distributed we obtain

ExYp(AXBX') = % Ex Yp(X'AX)

=y XA

Now V= XX’ has an orthogonally invariant distribution because I VI,' =
(e X)(IyXY. Therefore by Theorem 2

(27) Ex Yp(AXX') = Yp(A)ex{Yp(XX')} Yp(Lt)-
Substituting (27) into (26) we obtain the theorem. (]

(26)
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Remark 4. We call the distribution of X “orthogonally biinvariant” if it
satisfies the condition of Theorem 5.

Corresponding to Lemma 3 we have

Lemma 4. Let X = H\DHy where Hy,Hy are orthogonal and D is di-
agonal. Let Hy,Hy, D be independently distributed such that Hy, Ho have the
uniform distribution. (D can have any distribution.) Then X has an orthogo-
nally bisnvariant distribution. Conversely all orthogonally bisnvariant distribu-

tions can be obtained in this way.

The proof is entirely analogous to the proof of Lemma 3, therefore we omit
it.

Remark 5. The notion of orthogonal biinvariance can be applied to
rectangular matrices. If X is k¥ X m in Theorem 5 we obtain

_ ExYp(xX')

(28) ® = (1) YypIm)

and in Lemma 4 (for ¥ < m) we replace X = H;DH3 by X = II;(D, 0)H>.

In the sequel we almost exclusively work with the Wishart and the normal
distributions. But in view of Theorem 2 and Theorem 5 there could be other
distributions which give information on various aspects of zonal polynomials.

§ 3.3 AN INTEGRAL REPRESENTATION OF ZONAL POLYNOMIALS

We prove an integral representation by Kates (1980) which shows that (i)
zonal polynomials are positive for positive definite A and increasing in each root
of A, (ii) in the normalization Zp defined below the coefficients apy in Z, =
3 apg M4 are nonnegative integers. The derivation by Kates is rather abstract
but the integral representation can be proved directly in our framework. The
representation can be formulated in several ways. James (1973) derived one
involving uniform orthogonal matrix. We discuss these variations in Section
4.7.
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From Theorem 3.2.4 we see that a constant by or equivalently the value of a
zonal polynomial at I describes a particular normalization. The normalization
Zy is the simplest one in this sense.

Definition 1. A particular normalization of a zonal polynomial denoted
by Zp is defined by

(1) Zp(Ik) = Mgy,
or by =1 in Theorem 3.2.4.

Theorem 1. (Kates, 1980}  Letp = (p1,...,pe). For kX k symmetric
A

(2) Zy(A) = Ey{ARTPZADZTPS L ALY

where A; = UAU'(1,...,1) is the determinant of the ¢ X ¢ upper left minor of
UAU' and U is a k X k random matriz whose entries are independent standard
normal variables.

Proof. For symmetric A let
© 1(4) = g {A] P - o).

It can be routinely checked that f is a homogeneous symmetric polynomial of
degree n = |p| in the roots of A. Furthermore augmenting A to A (k; X k;) by
adding zeros and augmenting U to U by adding independent standard normal
variables do not change the upper left part of UAU’. Therefore (3) does not
depend on k. Hence f € V. Note that we can extend the definition of f to
nonsymmetric matrices as well (see Remark 3.1.6). Now we want to show

(4) (70 F)(A) = Mp f(A)

for all sufficiently large v and for all symmetric A. Let

(5 2)
= 0 o0 v XV
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and W = Y'Y where Yis a v X v matrix whose entries are standard normal
variables. Then

(v f)A) = & {f(AW)} = & {f(YAY')}

¢
(5) =& {1 IoYAY U/, ... i)piPinr)
i=1
¢
= &pér{ [l YvAv'Y(h, ... i)t}

1=1

We switched U and Y because they have the same distribution. Now by Lemma
3.2.2 Y= TH and H can be absorbed into U. Therefore

[
o [IIYUAT'Y(1,... )PPt}
1=1
€
= €0£T{ H [T&A&’T'(l, e ,{)]P:‘"Piﬂ}

1=1

8 [
© = &ger{ [T (¢, --- PP [UAT (... PP}
=1
£
= N\pép{ [T IUATU'(, ... )i P}
1=1

= )\upf(A)°
Hence f = Y, by Theorem 3.1.1. Putting A = I}, we obtain
(7 f(Ik)= é‘W{u(l)pl—pz "'w(lr"':e)pt}’

where W ~ W(I}, k). Again by the triangular decomposition W = TT'
(Lemma 3.1.3) we obtain f(Ix) = Atp. Therefore f = Zp. (]

Note that the coefficients of the monomial terms in Z, are integers, being
the expected value of sum of products of independent standard normal vari-
ables. Furthermore if A = diag(ay, ..., ;) then by the Binet-Cauchy theorem
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(see Gantmacher (1959) for example)

UAU'(1,...,r)
-y ¥ U(l ..,r)A(i},...,ir)U,(jl,...,j;)
(8) << i <<gp  \Flreeostr Jlyeeeydr 1,...,r
1 r 2
z: ail...ai'{U(. 7"'y.)} ’
i1<"'<1:r ‘1,-..,"-

where B(;-i’::’;-:) denotes the determinant of a minor formed by rows y,...,t,

and columns jj, ..., of B. (8) is obviously increasing in each a; when A is
positive definite. Furthermore coefficients for monomial terms are nonnegative.
These points are discussed in Kates (1980). For more about this see Section
4.1. Generalizations of Theorem 1 will be discussed in Section 4.7.

§ 3.4 A GENERATING FUNCTION OF ZONAL POLYNOMIALS

One of the main contributions of Saw (1977) is his generating function
which gives a relatively simple way of computing zonal polynomials. Let

(1) (trO)* = Up(C) = Y dpZ,(O).
pEPn

Let C = AUBU' where A = diag(ey,...,a;), B = diag(8y, ..., ;) and the
elements of U are independent standard normal variables. Then by Theorem
3.2.3

fu(tr AUBU')®
= Y dyéy Z,(AUBU’)
PEPu

(2) = Y d My Z,(A)Z,(B)
PEPn ZP( )

= ) dp2,(A)Zy(B).
pEPn
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Therefore for sufficiently small 8

Eu{exp(dtr AUBU’)}

= &y f: (6" /n!)(tr AUBU')"}
(3) n=0

o0
= Y _(0"/n) Y. dpZy(A)Z,(B).
n=0 PEPn
On the other hand
k
(4) tr AUBU' = 2 a;Bu;.
t,J

Hence for sufficiently small 8

k
Eu{exp(0tr AUBU')} = Ey{exp(d Z a;ﬂjv?j)}

(5) e
= ]:J[(l - 20(1,',3]')—7.

From (3) and (5) we obtain

Theorem 1.

[e¢]

k 1
(6) 11— 20a;8;)72 = 3_(0"/n) 3 dpZp(A)Z,(B).

i,] n=>0 PEPn
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The left hand side of (6) can be expanded as follows.

k
(1 - 20a;8,)%
.’j
= exp{log H(l - 20a,ﬂj) }

%)

_ex{ 22(20 rﬂr

1,7 r=1

M =ty 3 Ol o)

N R AT

n=0p€EPy

P Up) -1
L(l) ( P1 ) H rPr"Pr+1
p1!I\2 1= P2,P2 = P3,---,Pe(p)) \ r=1
= Z(o"/n') Z cp Tp(A) Tp(B),

n=0 pEPn

where

) -
(8) ¢p = |p|2PI=PP { I #27Pr+1 (pr — prss)

r=1

The fourth equality follows from the fact that T, being a product of p; terms
comes only from the p;-th power term in the expansion of exp. Comparing the
coefficient of 8" in (8) and (7) we obtain

(9) Y dy2,(A)Z(B) = Y ¢ Tp(A)Tp(B).
PEPn PEPn

Note that cp is positive for every p € P,. Hence the right hand side of (9) is
a positive definite quadratic form. Now the left hand side of (9) is the same
positive definite quadratic form expressed with the different basis { Z, }. The
positive definiteness implies dp > 0 for every p € P,. Now let D = diag(dy,p €
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Pp), C = diag(cp,p € Py). We recall that Z = SU where 5 is upper triangular
and T = FU where F is lower triangular (see(2.2.28)). Therefore in matrix

notation (9) is written as

(10) U(AY8'DBU(B) = U(A) F'CFu(B),
or
(11) 8'Dg = F'CF.

We note that the left hand side and the right hand side correspond to two differ-
ent triangular decompositions of the same symmetric positive definite matrix.
F can be computed from (2.2.24) or alternatively F can be obtained from tables
given in David, Kendall, and Barton (1966) for n < 12. Therefore we can com-
pute the right hand side of (9) relatively easily, then we decompose the resulting
positive definite matrix as 8'D&. Diagonal elements of & corresponding to Zp
is obtained in (4.2.7). This determines D and & uniquely.

Remark 1. In terms of Mp’s (11) can be written as A'8'D8A=A'F'CFA
where A is given in (2.2.14). Saw (1977) defined zonal polynomials or the upper
triangular coefficient matrix A by this relation and derived the first part of
Theorem 3.1.1 from this definition. It seems that (11) should be looked at
as providing a convenient algorithm for obtaining & rather than providing
a definition of zonal polynomials because it lacks the conceptual motivation

necessary for a definition.

Actually dp is known to be (James (1964), formula(18))

dp = X[2p1(1)2"n!/(2n)!
(12) _ "l (20— 2p; — 1 +5)

%), (2p; + tp) - i)!

. . ¢
where n = |p| and xpoy(1) = () TLicj(2p; — 2p; — i + 3) /12 (2p; +
{(p) —1)! is “the dimension of the representation (2p) = (2p1,-..,2py()) of
the symmetric group on 2n symbols.” This is one thing we were unable to
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obtain by our elementary approach. It was obtained by James (1961) using
group representation theory. We will discuss this point again in Section 4.2
and Section 5.4.

dp Zp is usually denoted by Cp so that (1) can be written simply as
(13) (tra)* = ) CylA).
PEPn

This notation often makes it simpler to write down various noncentral densities.
Our last item in this section is related to this point.

Lemma 1.
Eu(r AP = Y 20 7 (441
0EPn (2n )x
(14) . ,
== ——C,(AA),
p§"(2")!)‘kp p( )

where k X k orthogonal H is uniformly distributed.

Proof. Let the singular value decomposition be A = I''DI'; where I'l, I,
are orthogonal, D = diag(éy,...,6;) and 0; = 6?, 1 =1,...,k are the charac-
teristic roots of AA’. Then (tr AH)?*" = (tr [ DI H)*"® = (tr DI HI)*™ and
I>HT has the same distribution as H. Therefore {g(tr AH)?" is a 2n-th de-
gree homogeneous polynomial in 6y, ..., 8. Furthermore the order of 6y, ..., §;
and the sign for each §; are arbitrary in the singular value decomposition. It
follows that p(tr AH)?" is a homogeneous symmetric polynomial of degree n
in (0y,...,0;). Therefore we can write

(15) Eu(tr AHY™ = Y a,2,(AA),

PEPn
for some real numbers a,. Now let A = diag(ay,...,a;) and U = (u;;) be as
before. Then tr AU = }_ o, u;; is distributed according to N (0,3 a?). Hence

Eu(tr AU = (Z a2)" -1-3---(2n—1)
_(2n)!
(16) 2l

=¥ (22’;),':" Z,(AA").
PEPn :

ooy (tr AA')"
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On the other hand by Lemma 3.2.2 and (15)

y(tr AU)™™ = & p(tr ATH)?"

= Er Zo(ATT' A’
(17) 2 T ZATTA)

= Y ap) kpZp(AA").
PEPn

Comparing (16) and (17) we obtain (14).
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