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This paper considers a linear model with an error term following a so-called

radially decomposable multivariate distribution which can be represented as an

independent product of a random scalar component, called the radial component,

and a vector component, called the base component. The radially decomposable

distributions include many symmetric multivariate distributions such as spheri-

cally symmetric distributions, l\ -norm symmetric distributions, Liouville multi-

variate distributions and Gi-symmetric distributions with OL = 1. It is shown that

the inference for the regression parameter β depends only on the distribution of

the base component. Some consequences of this fact are also discussed.

1. Introduction. In many applications of the following linear model

the errors are known to be non-normal. If the errors are i.i.d., one may con-
sider the non-normal univariate distributions such as the Cauchy, Student's
£, Laplace's double exponential, logistic, extreme value distributions and the
stable-law distribution. If the errors are identically distributed but not in-
dependent, multivariate versions of these and other distributions are usually
adopted for the error vector. In general, inference for linear models having
multivariate error distributions is a thorny problem. Some of these multivari-
ate distributions can be represented as an independent product of a random
scalar component and a random vector component. In this case, the multivari-
ate distribution is said to be radially decomposable, the scalar variable being
called the radial component and the vector component the base component.
In section 3, we shall show that the inference for the regression parameters
depends only on the distribution of the base component, but not on that of
the radial component. A change in the distribution of the radial component
will only affect the inference of the scale parameter of the error term.
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2 Radially decomposable distributions. An n x 1 random vector
Z is said to be radially decomposable if there exist a positive random scalar
R and an independent n X 1 random vector W such that Z and RW are
identically distributed, that is

Z = RW, (1)

where the symbol = means both sides are identically distributed. For proper-
ties of this operator, see Fang, Kotz and Ng (1989) and Zolotarev (1985). In
the decomposition (1), R is called the radial component and W is called the
base component We also use these terms for the corresponding distributions
of Z, R and W respectively. Frequently, W is confined in a subset, but this
is not a condition for the definition.

Many symmetric multivariate distributions are radially decomposable. If
W is distributed uniformly on the unit sphere in the n dimensional space R n ,
the distribution of Z of (1) is called a spherically symmetric distribution. The
family of spherically symmetric distributions is a large family including the
multivariate versions of normal, Student, Cauchy, Pearson Type II and Type
VII, logistic, Kotz type, Bessel and symmetric stable law, etc. Readers are
refered to the first four chapters of Fang, Kotz and Ng (1989) for the proper-
ties of the spherically symmetric distributions. If the base component W is
distributed according to a Dirichlet distribution on a closed simplex (i.e. the
elements are all positive and sum to one), the distribution of Z is called a Li-
ouville distribution (see Fang, Kotz and Ng, 1989, chapter 6 and the references
cited there). When W is uniformly distributed on the closed simplex, the dis-
tribution of Z is called a multivariate ί\ -norm symmetric distribution by Fang
and Fang (1988, 1989). This is a special case of the Liouville distribution. To
provide the final example of families of radially decomposable distributions, we
first introduce the so-called α-symmetric distributions of Cambanis, Keener
and Simons (1983). A multivariate distribution is said to be α-symmetric if
its n-dimensional characteristic function has the following form

Cambanis, Keener and Simons (1983) shows that if Z has an α-symmetric
distribution with a — 1, Z can be decomposed into an independent prod-
uct of (1). The elements of the base component W can be represented as
W% = Ui/y/ΊJϊ, where (Z7i, , Un) is uniformly distributed on the unit sphere
in the n-dimensional space and {D\, , Dn) has an independent Dirichlet
distribution. Note that when α = 2, the α-symmetric distribution is a spher-
ically symmetric distribution, also radially decomposable. It is an open con-
jecture that the α-symmetric distributions are all radially decomposable for
0 < α < 2. See Fang, Kotz and Ng (1989, Chapter 7) for a shorter proof of
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the radial decomposability of a 1-symmetric distribution and other properties
of an α-symmetric distribution. Note that since the standard Cauchy distri-
bution has c.f. exp(-|/|), an i.i.d. sample of size n from the standard Cauchy
distributions form an n-dimensional α-symmetric distribution with a = 1.

In each of the three families mentioned above, all member distributions
have a common base component. That is, the member distributions are differ-
ent only by their radial components. This suggests that for such a family, the
distribution of a scale-invariant statistic T(Z), T(aZ) = T(Z), depends only
on the base component. In fact, we can show this for a &-dimensional scale
invariant statistic T(Z), T{aZ) = T(Z) as follows. By taking conditional
expection as an intermediate step and making use of the scale-invariance, we
have

E(exp(isfT(Z)) = E(E(exp(is'T(RW))\R))

=E(E(exv(is'T(W))\R)) = E(exp(isfT(W))). (3)

Therefore T(Z) and T(W) have the same characteristic function, hence the
distribution of T(Z) depends only on that of W. Typical scale-invariant
statistics are ratios of linear combinations of the components (or ordered com-
ponents) of Z and some ratios of homogeneous functions of equal order.

To appreciate the implication of this property of a scale-invariant statistic
of a radially decomposable Z, we consider again the three families discussed
above. Let T(Z) be a scale-invariant statistic of Z in the sequel. As long as
Z is spherically symmetric, the distribution of T(Z) is the same as when the
elements of Z are i.i.d. standard normal. If Z has a Liouville distribution
with Dirichlet parameter (αi, , α n ) , the distribution of T(Z) is the same
as when the elements of Z are independently gamma(α;, 1), i = 1, ,rc.
When oii = 1, i = 1, , n, the case of a multivariate ^i-norm symmetric
distribution, the distribution of T(Z) is the same as if the elements of Z are
i.i.d. standard exponential. Finally, if Z is α-symmetric with α = 1, the
distribution of T(Z) can be obtained treating all the elements of Z as i.i.d.
standard Cauchy.

3. Linear models with radially decomposable error distribution.
Let us consider the linear model

Y = Xβ + σZ, (4)

where Y is an n X 1 observable random vector, X is a given n x m design
matrix of full rank, β is an m x 1 vector of unknown parameters without re-
striction, σ is a positive unknown parameter, and Z is a random n X 1 vector
whose distribution is known to be a member of a family P of radially de-
composable distributions with a common base-component distribution. Note
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that this can be a non-parametric family because the radial component can

have any continuous distribution on the positive axis. The transformation

of Z to 7 , as given by (1), gives rise to an induced family of distributions,

Q(0,/3,σ), where θ symbolically indexes the member distributions in P. The

traditional analysis and Bayesian analysis both start with Y and Q(0,/3,σ).

Since Q(θ, β, σ) is a mixture of parametric and non-parametric family, we shall

encounter difficulties in these two approaches.

In contrast to the above two approaches, the structural analysis (or error

analysis) of the linear model (4) starts with, and focuses at, the source of

variation Z and its family of distributions P. We take the model (4) literally

and interpret the generation of the model output Y with the following analogy.

The elements of Z (the standardized errors) are like numbers generated by one

of the random-number generators — the member distributions of P. These

random numbers are then processed (transformed) by one of the channels

indexed by (/3,<τ), yielding the elements of Y. We first ask the question: how

much do we know about Z, the numbers originally generated? Although Z

cannot be observed directly, we can observe a great deal of its characteristics.

In theoretical physics, one can have a fresh look at the observational system

by making a change of 'reference frame'. In our terminology, it amounts to

changing the coordinates for the input and output variables in equation (4),

namely Z and Y. This we shall do below.

Originally, Z and Y have the rectangular coordinates in Rn. The m

independent columns of X span an m-dimensional subspace C(X) in R n , so

that n is decomposed into C{X) and its orthogonal complement £ ± ( X ) . In

the subspace C(X) we use an ordinary rectangular coordinates 6(.) taking

the columns of X as the basis, while in £"L(X) we use a spherical coordinate

system of a radius r(.) and a directional vector u(.) on the unit sphere in

C^-(X). That is, for the input variable Z as a point in Rn, we make the

change of coordinates Z —> (b(Z), r(Z), u(Z)) as follows

b(Z) = (X'XY1X'Z, (5a)

r2(Z) = Z\I - X(X'X)-1X')Z, (5b)

u(Z) = r-Ύ{Z){I - X{XIX)~1XI)Z. (5c)

Similarly, we obtain the corresponding change of coordinates for the output

variable, Y <—> (6(Y),r(Y),tι(Y)), by substituting Y for Z in (4). The

expressions of old coordinates in terms of the new ones are:

Z = Xb(Z) + r(Z)ti(Z), (6a)

Y = Xb(Y) + r(Y)u(Y), (6b)

Substituting (6a) and (6b) into (4) and comparing the coordinates on both
sides,

Xb(Y) + r(Y)u(Y) = X(β + σb(Z)) + σr(Z)u(Z), (7)
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we obtain an equivalent representation of model (4) in the new coordinates

system:

(8a)

r(Y) = σr(Z), (8b)

u(Y) = u(Z), (8c)

This representation shows that we can observe the n — m — 1 dimensional

coordinates u(Z) of Z, but not the remaining m + 1 dimensional coordinates

At this point we emphasize that the choice of this coordinate system is

not essential but merely for convenience and familiarity in manifesting the

observable and unobservable parts of the source of variability. The analysis

of the n-dimensional Z into a maximally observable n - m - 1 dimensional

component and the remaining unobservable m + 1 dimensional component

can be carried out coordinates-free, using the theory of an m + 1 dimensional

transformation group acting on an n-dimensional space. In fact, the analysis in

its most general form does not limit to model (4), but can be applied to other

models where some parameters are represent at ing a group of transformations,

see Fraser (1968, 1979). For a detailed treatment of the analysis using the

theory of an exact Lie group of diffeomorphisms on an open set of Rn, see Ng

(1975, §1-2, §1-3 and the Appendix to Ch. 1).

Rewriting (8a)-(8c), we have

(&( Y) - β)/σ = b(Z), (9a)

r(Y)/σ = r(Z), (9b)

u(Y) = u(Z). (9c)

One more change of variables in (9a) and (9b), (b(Z), r(Z)) <—• (t(Z), r(Z)),

gives the following equivalent representation of model (4):

(b(Y) - β)/r(Y) = b(Z)/r(Z) ΞE t(Z), (10a)

r(Y)/σ = r{Z), (10b)

u(Y) = u{Z). (10c)

That is, the unobservable m + 1 dimensions of Z are now represented by

(t(Z), r(Z)) and the observable n — m — 1 dimensions are still represented by

u(Z). For inference on β the relevant equation is clearly (10a). But there

are two modes of inference for /3, depending on whether the unconditional

distribution of t(Z) or the conditional distribution of t(Z) given the known

value of u(Z) is used as the inferential distribution. In either mode, a hy-

pothesized value of β corresponds, as b(Y) is given, to a hypothesized value

of t(Z) which is then tested against the distribution of t(Z). Conversely, a
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tolerance region for t(Z) leads to a confidence region for /3, and simultaneous
tolerance intervals for the components of t(Z) induce simultaneous intervals
of the components of /3. A point 'prediction' of t(Z) yields a point estimate
of β. The results of the unconditional mode correspond to that of Fisher's
approach of treating the left-hand side of (10a) as a so-called 'pivotal quan-
tity'. From the analysis of Z, the authors believe the conditional mode is more
appropriate because we should not ignore the given value of u(Z). And for
separate inferences of the components of /3, we can simply use the component
equations of (10a) together with the corresponding component distributions.
For example, a separate confidence interval of βi can be constructed using the
equation

(bi(Y) - βi)/r(Y) = U(Z), i = 1, , m (11)

and the conditional distribution of ti(Z) given u(Z) or the unconditional dis-
tribution of t{ ( Z ) , depending on one's preference of the two modes of inference.
Confidence regions or simultaneous confidence intervals for a subset of com-
ponents of /3, say β^ = (/?2, " ,βm), typically of interest in a regression
situation where the first column of X consists of ones, shall be based on the
equation

(2) W ^\ (12)

and the corresponding distribution of t(2\Z), where b^2\Y) = (
bm(Y)) and &\Z) = ( t 2 (Z), . . ,<m(Z)).

Suppose one is interested in the unconditional mode of inference. Note
that t(Z) is scale-invariant. The discussion in §2 implies that for all member
distributions in the family P, the (unconditional) distribution of t(Z) is the
same. Therefore the unconditional inference for β will be identical for all
member distributions in P. In other words, as far as β is concerned, we may
select a member of P which is the most convenient for deriving the distribution
of t(Z).

For the conditional mode of inference on /3, we note that (t(Z),u(Z)) is
also scale-invariant, so that the distribution of (t(Z)^u(Z)) is the same for
all members of P. This implies that the conditional distribution of t(Z) given
u(Z) is the same for all members of P. Therefore, the conditional inference
of β given u(Z) is also identical for all members of P and we may select the
most convenient member of P to obtain the conditional distribution of t(Z)
given u(Z).

Unfortunately, the inference for σ, which is based on equation (10b) and
the conditional or unconditional distribution of τ*(Z), does depend on individ-
ual members of. In other words, if we have no idea about the true distribution
of Z, making inference on σ is extremely difficult.

In principle, the information on the true distribution of Z is contained in
u(Z)y because u(Z) represents the maximally observable part of Z. And if the
family has only one member, u(Z) would be used for assessing the aptness of
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that assumed distribution. But since the distribution of u(Z) is the same for

all members of P, due to scale-invariance, we have no discriminant information

on the members of P.

4. Some consequences. We shall consider some consequences of

the analysis in §3. If the family of P distributions for the error Z consists of

spherically symmetric distributions, the inference of β in the conditional or

unconditional mode should be the same as in the special situation when Z

consists of i.i.d. standard normal components. This may partly explain the

often-reported robustness of normal inference when the error distribution is not

extremely skewed. In the i.i.d. standard normal case, 6(Z), r(Z) and u(Z),

defined in (5a)-(5c), are independent. The distribution of b(Z) is multinormal

Nm(0, (X 'X)" 1 ) , τ2(Z) has a central chi-squared distribution oίn — m degree

of freedom, and u(Z) is uniformly distributed on the unit sphere in the n — m

dimensional space Rn~m. Therefore the distribution of t(Z)/y/n - m, where

t(Z) is defined in (10a), is an m-variate centered Student distribution with

n — m degree of freedom and quadratic-form parameter matrix X1 X. This

implies that the quadratic form tf(Z)X'Xt(Z)/(n — m) has an F(m,n — m)

distribution. Note that t(Z) is independent of u(Z), so the two modes of

inference should give the same conclusion about β. Since the distribution

of t(Z)/(n — m) has ellipsoidal contours of constant p.d.f., a 100(1 — a)%

tolerance region for t(Z) having minimum-volume is given by the ellipsoid

{t(Z) : t'(Z)X'Xt(Z)/(n - m) < Fa(m, n - m)}, (13)

where Fa(m,n - m) is the (1 - α) percentile of an F(m,n - m) distribution.

This gives the most-concentrated 100(1 — a)% confidence region for β — a

classical result for the normal inference,

{β : (&(Y) - β)'X'X(b(Y) - β)/r\Z) <{n- m)Fa(m, n-m)}. (14)

Other terminal inferences such as testing values of β and simultaneous or

separate confidence intervals for components of β can be derived as discussed

in §3. As for σ, we cannot say much unless we are given a particular member

in the family P since the conditional distribution of r(Z) given u(Z) and

the unconditional distribution both depend on the distribution of the radial

component of (1). In fact, the conditional and the unconditional inferences

for σ may or may not be identical, depending on the particular spherical

distribution. The distribution for u{Z), however, remains the same for all

spherical distributions. Note that u(Z) corresponds to the set of normed

residuals (i.e. residuals divided by the square root of their sum of squares)

of Y in the traditional approach of fitting the linear model by least-squares.

Therefore any 'test of normality5 which is a function of u(Y) is actually a test

for the spherical symmetry of the error term. It seems that this fact is not
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well known. Of course, if 'normality' means the validity of the inference on the

parameter of primary interest, /3, then a 'test of normality' still makes sense

in view of the above discussion. The situation when P is a parametric family

admitting p.d.f. has been addressed in Fraser and Ng (1980).

If the family P consists of α-symmetric distributions having a = 1, the

analysis in §3 implies that we may assume the components of Z being i.i.d.

standard Cauchy in making inference on /3. The case of i.i.d. Cauchy errors

does not allow analytic presentation for the conditional distribution of t(Z)

given u(Z) or the unconditional distribution. Numerical integration shall be

needed to find tolerance intervals for components of t(Z) in order to construct

confidence intervals for the components of /3.

The Liouville distribution is not often used as an error distribution in

a linear model. But if a Liouville distribution with parameter (αi, , α n )

is assumed for Z, the conditional and unconditional inference for will be the

same as that assuming Z consists of independent gamma(αi,l) components,

i = 1, , n. One such application is in the location-scale model

Y = μl + σZ, (15)

where 1' = (1, ,1) and Z has the multivariate ^-norm symmetric dis-

tribution. In this case, X = 1, β reduces to μ, b(Z) becomes the sample

mean Z of Zu - - ,Zn, r(Z) = ^Σ(Zi-Z)2, m(Z) = (Z{ - Z)/r(Z) and

t(Z) = Z/r(Z). The inference on μ is the same as when (Zχ, , Z n ) are

i.i.d. standard exponential. Therefore, the conditional p.d.f. of t = Z/r(Z)

given u(Z) = u{Y) = u is

where a = — min(^i, , un). Since f(t) is decreasing and concave, the small-

est interval with (1 - α) probability content is a < t < α α " 1 ^ 7 1 " 1 ) . Solving

the double inequality after the substitution t = (Ϋ — μ)/r(y), we obtain the

smallest 100(1 - α)% confidence interval for μ:

y ( 1 ) α" 1 /^- 1 ) - y(α-i/(n-D _ i) < μ < y ( 1 ), (17)

where Y^) = min(Y"i, , Yn), Ϋ is the sample mean.
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