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A stochastic order relation for discrete random vectors is introduced that
relies on the mixed descending factorial moments. Connection with more
usual orderings is pointed out through a hierarchical classification. The
order relation is then used for comparing the state of a population which
is subjected to certain damage processes by death, sampling or infection.
In particular, for the multipopulation collective epidemic model, it allows
us to establish in which sense the ultimate numbers of susceptibles do de-
crease with the infectivity level of the infectives. This paper extends to the
multivariate case a recent work by the authors.

1. Introduction

In a previous paper (Lefevre and Picard (1991)), we introduced an or-
der relation for IN-valued random variables, unusual in the literature, that
relies on the descending factorial moments; for this reason, we called it the
factorial ordering. Our original motivation came from the epidemic con-
text, namely to make precise in which probabilistic terms the total damage
caused by the disease in a collective Reed-Frost epidemic model can indeed
be viewed as an increasing function of the infection intensity exerted by
the infectives. Further applications occur when comparing certain sampling
procedures through the number of unsampled individuals. In particular, we
used the ordering to obtain qualitative results for a reinforcement-depletion
urn model and for a non-linear death process.

Our purpose here is to construct a multivariate version of this ordering
based on the mixed descending factorial moments, and then to illustrate its
relevance with some applications in the same fields. The ordering is derived
in Section 2 through a hierarchical classification of various potential order
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Medicale under contrat n°898014.
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relations for discrete random vectors. Connection with more classical order-
ings follows easily. In Section 3, we use it to compare the size of a population
subjected to certain damage schemes. This allows us to generalize the qual-
itative analysis for the urn model and the death process mentioned above.
Section 4 is concerned with the collective epidemic model, this time for an
heterogeneous population. Thanks to the ordering, we are in a position to
establish a monotonicity property of the ultimate numbers of susceptibles
with respect to the infectivity level of the infectives. To this end, we adopt
the approach developed recently in Picard and Lefevre (1990) and which
has recourse to a special family of polynomials with several variables defined
in Lefevre and Picard (1990). The method is direct, though rather techni-
cal, and has the merit to emphasize the interest and the flexibility of these
polynomials.

2. Ordering Random Vectors by the Mixed Descending
Factorial Moments

A number of stochastic order relations have been proposed to compare
random vectors (see, e.g., Stoyan (1983)). We are going to derive a hierar-
chical classification of various potential multivariate stochastic orderings for
discrete vectors. As a consequence, the ordering of interest by the mixed
descending factorial moments will then emerge in a simple and natural way.
For simplicity, but without loss of generality, we only consider bidimensional
random vectors. We mention that the presentation below extends the one
followed in Lefevre and Picard (1991) for the univariate case; a letter I will
be added to the numbering when referring to the associated formula in that
paper.

2.1. A Sequence of Remarkable Cones of Functions

Let us consider the cone T2 of the functions f{x\,x<ι) from IN2 to R + .
We start by constructing in T2 a sequence of remarkable cones T^ > ? ^2
Put 1(A) as the indicator function of A, and for i, j 6 IN", let jpj = j(j -
l ) . . . ( j - i + l) and jM = j(j + 1)...(j + i - 1), with j [ 0 ] = jM = 1.

DEFINITION 2.1 For j = 1,...,5 and (1*1,12) G IN2, let

(2.1) e^(x WW
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with ef \x) given respectively by

eγ\x) = l(x > f),
(2.2) e$\x) = 1 and e\2\x) = (*-» + 1)+,i = 1,2,...

eJ3 )(x) = x[{i , e!4 )(x) = z - , e | 5 )(x) = *M.

Then, "̂2 \ J = 1,.. . ,5, is defined as the cone of the functions /(xi, x 2) in F2

that can be expressed as a linear combination (finite or not) with positive

coefficients of the functions of the family {e^ t 2 ( # i , £2)9(^1^2) G IN2}? in

short, T2 is said to be generated by the e\3\ (#i,£2) Similarly, T\ is the

cone generated by the elements of the family {β^ ,02(^1 >χ2)> for any reals

αχ,α2 > 1}, where

with

(2.3) e£6>(s) = α*.

The first three cones can be characterized equivalently as follows. We

denote by Ail>i2(Vil'i2)f(jiJj2), (»i,<2) and (juj2) £ IN2, the forward (back-

ward) difference of f(x\,X2) of orders i\ in x\ and 1*2 in X2 evaluated at

0*1,32) = (ii»J2)- For ij e K, we put iAj = min^,,?*).

PROPERTY 2.2 J^\ j = 1,2,3, is ίΛe cone 0/ Λ̂e functions f(x\,X2)
in T2 such that, for (iui2) G IN2, V 1 Λ t l ' 1 Λ t ' 2/(ii,*2) > 0 when j = 1,
V2Λt"i 2 Λ f V ( M 2 ) > 0 u Λen j = 2, and Δ* 1 ' 1" 2/^^) > 0 when j = 3.

P R O O F Fix j = 1,2 or 3. We first observe that any function f{x\,X2) in

^2 can be expanded in terms of the β^ t 2(a?i,a?2) as

(2.4) /(«!,*,) = f ) f ) «B2e1%2(x1,x2)

for some appropriate coefficients αjί.ty I n ( i e e ( i , by (2.1) and (2.2), the sum-

mation in (2.4) is, for any given (#1,2:2) G IN2, a finite sum, so that the α ^ \

may be determined recursively. Now, we proved in (I, 2.2) and (I, 2.5) that

(2.5) V1Aielϊ\i) = V2Λt'42)(z) = Δ'ef\θ)/i\ = l(k = i) , i ,*€l ί .

Combining (2.5) with (2.1), (2.2) and (2.4), we obtain successively that

(2.6) &

Δ<» <»/(0,0)/ii!t2! = αίfk, (ΰ,i 3 ) G IN2.
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By definition, f{x\,x2) is in T^j) iff the α ^ 2 are in R+. From (2.6), the

above characterizations of F2 , j = 1,2,3, are then straightforward. •

REMARK 2.3 From Property 2.2, we easily deduce that jήf\ j = 1,2,3,

contains any function f(x\,x2) in T2 that can be factorized as

(2.7) /(*1,Z2) = /I(*l)/2(Z2),

where fι(x) and f2(x) are functions from IN to IR+ which are increasing
for j = 1, increasing and convex for j = 2, and such that Δ*/i(0) and
Δ7 2 (0) > 0, i G IN, for j = 3.

We now show that the six cones decrease in the inclusion sense.

PROPERTY 2.4 ^ j ) D ̂ 2

( j + 1 ) , i = 1,...,5.

PROOF Using Property 2.2, we observe that T^ D T^ obviously, and

?ψ D Tψ D T^A) because by (2.1) and (2.2),

^ f W > 0,

> 0,

for (ή, i 2 ) and (kuk2) £ IN2, respectively. Moreover, jήp D jήj^ D ̂ *2

(6)

since xW, i G IN, can be generated by the x 7, j G IN, and α*, a > 1, by the

zM, JGIN (see (I, 2.7)). •

2.2. The Induced Stochastic Order Relations

Let us denote by V2 the space of the IN2-valued random vectors. To each

of the cones of Definition 2.1, we can associate an order relation on V2 as

follows. Let X = (Xi,X2) and X = (XUX2) be r.v.s in V2.

DEFINITION 2.5 X is smaller than X in the <j sense (written X <j X),

j = 1,...,6, when

(2.8) E[f(XuX2)\ < E[f(XuX2)} for any function in

that is, equivalently,

(2.9) when j = 1,...,5,

< JB[eg)α2(X1,X2)]fo

when j = 6.
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REMARK 2.6 From (2.8), (2.9) and Remark 2.3, we obtain directly the
following characterization of the first three orderings. For j = 1,2,3, X <j X
iff

(2.10) E[f1(X1)f2(X2)] < E\fi{Xi)f2{X7)]

for any functions f\ and f2 from IN to R + that are increasing when j = 1,
increasing and convex when j = 2, and such that A*/i(0) and Δt/2(0) > 0,
i e IN, when j = 3.

The orderings <i and <2 correspond to those introduced by Bergmann
(1978), for discrete or not random vectors. At our knowledge, the four
others have not been investigated so far in the literature. In fact, from (2.1),
(2.2) and (2.9), we see that <3 compares the mixed descending factorial
moments of X and X, < 4 their moments about zero, < 5 their ascending
factorial moments and <6 the expected value of increasing exponentials of
their components.

By Property 2.4, the six orderings in Definition 2.5 decrease in the
strength sense.

PROPERTY 2.7 X <j X implies X < j + 1 X, j = 1,... ,5.

These order relations generalize those defined in (I, Section 2) for 1N-
valued random variables. Furthermore, the following connection is immedi-
ate from (2.9).

PROPERTY 2.8 For j = 1,...,6,

(2.11) X <j X implies X1 <j Xλ and X2 <j X2-

When Xχ,X2, as well as Xι,X2, are independent, then the converse of (2.11)

is true.

2.3. The So-Called Factorial Ordering

For the sequel, we will mainly use the order relation <3 As it compares

random vectors through their mixed descending factorial moments, we keep

the name given in I of factorial ordering, with the notation < F In addition,

we will limit our attention to the subspace Dm,^ m ^2 of the random

vectors X = (X\,X2) with X\ and X2 valued in the sets {0,1,... ,ni} and

{0,1,... ,7*2)5 respectively. Thus, for X,X G X>ni,n2,X <F X when

(2.12) 4 * i , [ y * 2 ^ > 0 < i i < m , 0 < < 2 < n 2 .

We note that within P n i > n 2 , all the orderings of Definition 2.5 satisfy

the axioms of partial order relation. Moreover, <6 is now closely tied with
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the probability generating function ordering (<g in Stoyan (1983)). For

(2.13) E (z*1 z*ή > E (z*iz§ή , 0 < *!, s2 < 1.

From (2.3) and (2.9), we thus deduce that for X,X G Vnun2,

(2.14) X < 6 X iff n - X >g n - X,

where n — X denotes the vector (ni — Xi, n2 — X2) As a consequence, when

comparing <p with more usual orderings, we have the following implications:

forX,XeX>n i,n2,

(2.15) X<2X=»X<FX=»n-X>, n-X.

3. Comparison of the Outcome of Certain Damage Procedures

We are going to show that the factorial ordering is a well-adapted notion
when comparing certain damage procedures through the number of unhurt
individuals. As main applications, we will use it for two particular situations,
namely a non-linear death process and a reinforcement-depletion urn model.
The results extend in several ways those obtained in (I, Section 3) - and
earlier ones.

3.1. 4̂ Single Population Subjected to a Death Risk

Consider a population of initial size n which shares a death risk. We
denote by Tt ,i = 1,... ,n, the lifetime of individual i. The Tt are assumed
to be exchangeable; this hypothesis, however, could be removed without
difficulty. We are interested in the number Xt of individuals surviving at
time t,t eM+ (or IN).

Let ίi,t2 be any two instants with t\ < t2. Fix then k\ and k2 in [l,n].
We can write that

(3.1) ( £* )

where the sum is over the ί jM groups of k\ distinct individuals α i , . . . , α

k * 2 ) . From (3.1), we then obtain that

>h,---,Taki >h]Tβl >h,...,Tβk2 >t2),
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where the sum is over the MM (ΐ2J groups of kx distinct individuals α x , . . . ,

akl and k2 distinct individuals /?χ,... ,βk2. Certain of the α, and βj individu-

als may be identical, of course; in fact, there can exist k = 0,... ,min(&i, k2)

individuals in common. For a given value of A;, since t\ < t2j the sum con-

tains Uj-jfejk) indicator functions of the type 1(TΊ > tι,... ,Tkl_k > t\ -

provided k\ - k > 1; Tkl+ι > t2,... ,Tkι+k2 > h) Therefore, taking the

expectation in (3.2) yields for the mixed descending factorial moments

(3.3) E

k=o
Tfc1+i > *2ί ?21b1+jb2 > t2).

We note that when k2 (e.g.)= 0, (3.3) is easily adapted and becomes

(3.4) E [ X t l f [ w ] = n[Jfcl]P(Γi > ί i , . . . ,Tkl > h).

Consider now a similar model characterized by the lifetimes Γt ,i =

l , . . . , n . Let Xt,t G R + , be the state of the population at time t. Using

the factorial ordering (2.12), we deduce from (3.3) and (3.4) the following

comparison.

PROPOSITION 3.1 Let tλ φ t2. If for any r i , . . . , τ t , i e [l,n], taken in

(3.5) P{Tλ > τu...,Ti > Ti) < P{tx > τu...,ti > rf ),

then

(3.6) (Xtl,Xt2)<F(Xtl,Xt2).

3.1.1. A non-linear death process

A special case of the model arises when Xt,t £ H + , is governed by a

non-linear Markovian death process. Here, given Xt = #, x = 1,... ,n, each

of the x individuals still alive at t can die, during (t,t + di), independently

of the others and with the probability ξ(x)dt, where ξ(x) is some positive

function of the current state x.

Now, the (unconditional) lifetimes T{ are clearly exchangeable and in-

terdependent. Ball and Donnelly (1987) investigated the nature of that
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dependence; see also Lefevre and Michaletzky (1990) and an amendment by

Donnelly (1991). They proved that if

(3.7) £(#)?# = l , . . ,τι, forms an increasing (decreasing) sequence,

then for any τ\,..., τt , i € [1, n],

(3.8) P(Γi > n , . . . , T * > rή < (>)

We can use this result to compare the model with an approximated one
where the individuals would behave independently. Specifically, consider a
population of n individuals whose lifetimes T t,i = l , . . . , n , are i i.d., with
the same marginal distribution as the original T{. Thus, for any r i , . . . ,r t ,

(3.9)

Let X*,/ £ 1R-"1"? be the new population state at time t. From (3.7), (3.8),
(3.9) and Proposition 3.1, we then deduce that

(3.10) the condition (3.7) implies (Xtl,Xt2) <F (>F)(Xil9Xi2), h φ t2.

3.1.2. A reinforcement-depletion urn model

We turn now to an urn model, developed by Shenton (1981), with suc-
cessive reinforcement-depletions of random size. The urn contains initially
n white balls and m black balls. At stage t,t = 1,2,..., the black balls are
reinforced by the addition of a random number Rt of extra black balls. All
the balls are then uniformly mixed, and depletion occurs as a sample of balls,
of the same size Rt, is drawn without replacement from the urn. Attention
centers on the number X% of white balls that remain in the urn just after
stage /.

This model can be viewed as a particular case of the model above by
simply assimilating the sampling of a white ball from the urn to its death.
Thus, Tt , i = 1, . . . , n, represents here the time period white ball i will spend
in the urn. These Tt are exchangeable. Moreover, let τ\ < τ2 < . . . < r t ,
i G [l,n], be the termination time of various stages. By conditioning on the
event A = [Rt = r*,i = 1,... ,rz ], we obtain

(3.11) P(T1>τu...,Ti>τi\A) =

Π TT ί n + m + r U j - ( i - j + l ) \ . ί n + m + r \
1 1 I r / M r j
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where we put TQ = 0 and \[u. = 1 when Tj_i = Tj. From (3.11), we then
deduce that

(3.12) P ( Γ 1 > r 1 , . . . , T t > r t ) =

Π Π (n + m + Λ«i)[.w+i] [
j=i«;=τ;-i+i J

Recently, Donnelly and Whitt (1989;Section 4) examined for the model
some effects of more variable reinforcement-depletion sizes. Their results
can be strengthened, as shown below for their Corollary 4.1; for brevity,
that corollary is not recalled. We begin by introducing a further stochastic
ordering for random vectors which was proposed before by Bergmann (1978).
In the notations of Section 2, X is smaller that X in the <2d sense when the
inequality (2.10) holds for any functions f\ and f2 from IN to IR+ that are
decreasing and convex. It is easily seen that an analogous inequality is then
valid for the cone of the functions /(#i, x2) in ?2 that are generated by the
elements of the family {(i\ - x\)*(i2 - £2)+>(*i»*2) £ IN2}. Now, consider
another urn model with random sizes ^ , tf = 1,2,..., and let Tt, i = 1,..., n,
be the lifetime of white ball i. We observe that (3.12) is the expectation of
the product of rz functions with arguments Rt,t = l,.. .,r, , respectively,
each of these functions being decreasing and convex. Therefore, applying
<2d, we deduce from (3.12) and Proposition 3.1 that

(3.13) (Rut = 1,...,ί2) <2d (Rut = 1,...,t2) implies

(Xtl,Xt2) <F (Xt^Xt^jh < t2.

3.2. A Multipopulation Subjected to a Sampling

Consider a bipopulation of n\ individuals of type 1 and n2 individuals
of type 2, subjected jointly to a sampling procedure. Let B\j(B2j) be the
event that individual i in population 1 (j in population 2) is not drawn.
The i?ijt , i = l,...,τii, are supposed to be exchangeable, as well as the
B2jj j = I,...,7i2; ^is hypothesis, however, is not essential. We are con-
cerned with the vector (Xι,X2) of the numbers of unsampled individuals
from populations 1 and 2, respectively.

Fix kι in [l,ni] and k2 in [1,^2]. Arguing as for (3.2), we obtain that

(3.14)

i ( 5 l f β l n . . . n Bhaki n B2Λ n . . . n B2βk2),
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where the sum is over the π£ J ί j£ J groups of fci distinct individuals c*i,..., α

in population 1 and k2 distinct individuals /?i,...,/?fc2 in population 2. Let

9(^15^2) denote the probability that any given group of individuals of that

kind is not drawn from the population; thus

(3.15) q(kuk2) = P(B1Λ Π . . . Π BlM Π B2Λ Π . . . Π B2M).

From (3.14) and (3.15), we then deduce that

(3.16) E [ΛΊι[jbl]X2|[fa]J = Λif[*i]Λ2,[*2]ϊ(*i>*2)

We note that when &2 ( e g ) = 0? (3.16) is still true provided we put g(fcχ, 0) =
P ( £ M Π . . . Π J B 1 Λ ) , with g(0,0) = 1.

Suppose now that another sampling is based on the parameters φ(&i, £2)9
0 < fci < ni , 0 < £2 < n2, and let (X^X^) be the resulting size of the

unsampled populations. The characterization of < below follows then

directly from (3.16).

PROPOSITION 3.2

(3.17) (Xi,X2)<F(XuX2)iff

q(kuk2) < q(kι,k2) , 0 < h < n1 ?0 < k2 < n2.

3.2.1. A sampling with random size

Let us examine the special sampling that consists in taking, with or

without replacement, random numbers of individuals Rι and #2, possibly

dependent, from populations 1 and 2, respectively. Such a situation can

arise, for instance, when modelling the infection process in epidemic models

(see 4.3(i) below).

For a sampling with replacement, we obtain, for 0 < k\ < 7iχ, 0 < k2 <

n2,

(3.18) q(kuk2) = E{[(m - hymf^n, - k2)/n2}
Rή .

Consider a similar sampling with random sizes Rι and R2. Using the def-
inition (2.13) of the <g ordering, we then deduce from (3.17) and (3.18)
that

(3.19) (Rι,R2) >9 (Ri,R2) implies (XUX2) <F ( X I , X 2 ) .

When the sampling is done without replacement, we have, for 0 < k\ <
ni, 0 < k2 < n2,

(3.20) q(kuk2) = E
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so that from (3.17) and (3.20),

(3.21) (XUX2) <F (X - R2) <F (m - Run2 -

3.2.2. An extended urn model

We generalize the reinforcement-depletion urn model described in 3.1.2
by putting in the urn balls of three different colours, white, red and black, in
initial numbers 7iχ, n2 and ra, respectively. As before, at stage t,t = 1,2,...,
the black colour is reinforced with a random number Rt of balls, and just
after, Rt balls are drawn without replacement from the urn. Interest centers
on the vector (Xi^, X2,t2) where Xχitl (X2,t2) represents the number of white
(red) balls that remain in the urn immediately after stage t\(t2).

From (3.15) and (3.16), we have, for k\ G [l,nχ], k2 G [1,̂ 2]?

(3.22) E = nlf[kl]n2i[k2]q(kljk2]tut2)J

where q{k\ ,k2\t\,t2) denotes the probability that any given group of k\ white
balls and k2 red balls is still in the urn just after stages t\ and t2, respectively.
Choose tfi < t2, for example. By first conditioning on [Rt,t = 1,... ,t2], we
then obtain

(3.23)

x E \ ι/tί Π m

J
where we put fo = 0, k% = 0 and Πu2 = 1 if î = 2̂ We note that the
formulae (3.22) and (3.23) are easily adapted when k2 (e.g.)= 0.

Consider now another urn model with random sizes Rt,t = 1,2,..., and
let Xιitl(X2j2) be the resulting number of white (red) balls just after stage
h(t2). Using, as for (3.13), the <2d ordering, we deduce from (3.17), (3.22)
and (3.23) that

(3.24) (Rut = 1,...,t2) <2d {Rut = 1,... ,ί2) implies

( X l i t l , X 2 i t 2 ) < F ( X l J )
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4 Comparison of the Final Outcome of Collective Epidemics

In (I, Section 4), we showed the effect of increased infection intensity on
the total damage caused by a collective epidemic process. We are going to
generalize our analysis by examining this time the case of an heterogeneous
population. For clarity, that population is supposed to contain only two
different groups of individuals. The approach relies on results derived in
Lefevre and Picard (1990) and Picard and Lefevre (1990); these results will
be referred with a supplementary letter II or III, respectively. We begin
by establishing a comparison property that involves a family of polynomials
with several variables introduced in II. We then apply it to the epidemic
model formulae obtained in III.

4.1. A Property of the Family of Polynomials

Let us recall the definition (II, 4.1) of these polynomials, given here for

two variables. For j = 1,2, let U^ = {u\l]i2,(iι,i2)
 G ^ b e a fixed f a m i l y

of real numbers. To U^ι\U^ is attached a unique family of polynomials

Gkuk2(
xuχ2\U^\U^) of degrees kx in xu k2 in z 2, (hM) £ IN2, defined

recursively by

and when kι + k2> 1,

Σ
D{kχ,k2)

k2-

where D{k\,k2) denotes the set of indexes {(ύ,^), with 0 < i\ < &i, 0 <

i2 < k2 and i\ + i2 < &i + fc2}. Observe that G^fa ( )? ^1 + ̂ 2 > 1? depends

only on the u^i2 and uf^2 with (ή,i 2 ) G Dklyk2.

For our purpose, we need to establish a monotonicity property of cer-

tain expansions constructed from these polynomials with respect to the

parameters in U^ and U^. Let f{x\,x2) be a function with deriva-

tives /( iΛ)(a:1,a:2), (iui2) e IN2, and let i , A , ^ 1 ) , ^ 2 ) , ^ 1 ) , U& be six

families of real numbers άiui2,aiui2,ύ\l]i2, uf^2,u\]]i2,u\*]i2, respectively,

(ii,i2) G IN2. Given these elements, fix (&i,fc2) E IN2 and consider the
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polynomial

= Σ Σ Λί
t 1 = θi 2 =θ

- Σ Σ «ιl

Note that hklM ( ), (*i,*2) e IN2, depends only on the α ^ , ^ , ύ j 2 ^ '
αtiA»ttii,ί2ί ^ ί ^ w i t h 0 < ii < Λ?i, 0 < i2 < *2 We remark that the two
sums in (4.2) correspond to finite Abel expansions of the function f(x1,x2)
of the type given in (II, 4.5).

P R O P E R T Y 4.1 Let (kuk2) G IN 2 . If for j = 1,2 and 0 < ix <h,Q< i2 <

&2, the following conditions hold

(4.3)
un »2 α n c ' "»i,t2

 α r ε decreasing sequences in i\(i2 fixed) and i2(i\ fixed),

ω«i,«2 - ω t l l ί 2 '

ue2, for ix < 4 < *i,»2 <h< k2},

2)>0,and

and f(k»k>+1\x1,x2) > 0 for xx > u^M,x2 > u ^ ,

then

(4.4) hkuφux2\A9U^9U^J9A9U^\uW) > 0

for xλ > u$,x2 > ύ{ol-

PROOF This can be shown by extending to the multivariate case the argu-
ment by induction followed for Property (I, 4.2). The proof is then direct,
though rather technical, and uses properties of the polynomials given in (II,
Section 4); it is omitted. •

4.2. Varying Infectiυity in Collective Epidemics

The multipopulation collective epidemic model introduced in (III, Sec-
tion 4) describes the spread of an infectious disease in a closed population
subdivided in several (here two) groups (men and women, for example). Each
group j , j = 1,2, is partitioned in three classes of individuals, the suscep-
tibles, the infectives and the removed cases. Initially, these are in numbers
Tij, πij and 0, respectively, and infection is then propagated as follows. Any
infective remains infected during a random period of time. All the infectious



248 Claude Lefeυre and Philippe Picard

periods are independent and, for j given, identically distributed, the com-
mon distribution being that of a variable Dj, say. These Dj are in general
It-valued, but can be discrete and possibly constant. While infected, the
individual behaves independently of the others and can contact susceptibles
of the two groups. Specifically, he will fail to transmit the infectious agents
within any given set of k\ susceptibles in group 1 and k2 susceptibles in group
2, k\ in [l,ni] and k2 in [1,712], with a random probability that depends on
his infectious period. We make for these random variables, k\,k2 fixed, the
same hypotheses as for the infectious periods, the common distribution for
j given being that of a variable Qj{kuk2), say. After that, the infective
becomes a removed case and plays no further role in the infection process.

Let T denote the end of the epidemic, when there are no more infec-
tious present in the population. We are interested by the vector (5Ί,τ,S2,τ)
that represents the ultimate numbers of susceptibles surviving the disease in
groups 1 and 2, respectively. Using the polynomials (4.1), we obtained, inter
alia, in (III, 4.15) the formula (4.5) below for the mixed descending factorial
moments of that vector. For j = 1,2 and k\ 6 [l,ni], k2 G [1,^2], let

(4.5) ©(*l,*2) = Wi(fcl,*2)]

be the expected value of the different probabilities of non-infection; when k2

(e.g)= 0, put qj(ku0) = qj(kx,-), with ty(0,0) = 1. Then, for 0 < kx < n ^

0 < k2 < rc2,

(4.6) E [5lfΓf[*1]52fr,w] = Σ Σ {»i fpi]^ ffe][ft(ii.<2)]nι+mi" ί ι

1*1 =&1 «2=/f2

where for j = 1,2, £**.*> l/0'> is the family { u ^ ^ ^ i i u h ) G IN2}, with

( 4 7) 4i]i2 = #(«i>*2) , 0 < t'i < m,0 < i2 < n2,

the tij^t for other indexes being superfluous and omitted.

Intuitively, one expects that lower infectivity levels translated by smaller

qj(kι,k2) should generate larger ultimate numbers of susceptibles. Hereafter,

we prove that this is indeed true provided comparison on (SΊ,τ,52,τ) is

made through the factorial ordering. Thus, consider a similar bipopulation

collective epidemic characterized now by the variables Dj and Qj(kι,k2),

j = 1,2 and 0 < kx < m, 0 < k2 < n2. Let qj(kι^k2) be the associated

expectations (4.5), and denote by (5Ί,τ,52,τ) the resulting final numbers of

susceptibles.
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PROPOSITION 4.2 If for j = 1,2 and 0 < i\ < nlf 0 < i2 < n2,

(4.8) 9i(ίi,ί2)<?i(ίi,ί2),

(4.9) (5 , , Γ , 52,τ) < F (&,τ, 5 2 > Γ ).

P R O O F We have to show that for 0 < &i < ni, 0 < fo < n 2 ,

(4.10) E [SΊ,τ,[fc,]S2,τ,[fc2]] - £ [5liΓi[fcl]S
l2>ri[fc2]] > 0.

Define Sk^k*A = K 1 + 1 1 > f c 2 + ί 2 , ( ή , ί 2 ) G IN2}, with

(4.11) aiui2 = (^ ί- , ) " 1 ( 4 ί i 2 ) m 2 . 0 < ΰ < m,0 < i2 < n2,

the other αt 1>t 2 being superfluous for the discussion. Putting

(4.12) f(xux2) = x?-k>x?-k\

(4.6) can be expressed as

ni-fci 7i2-A;2

(4.13) E [Srilτ,[jb1]5
r2lrffe]J = ^ I , ^ ] ^ , ^ ] Σ Σ

t'1 =0 t2=0

Write then the formula (4.13) associated with the alternative model. Using

the definition (4.2), we see that the difference in (4.10) just corresponds to

(4.14) n l t , f a ] n 2 | ^

Now, let us examine hni^kι1n2-k2 ( ) ̂ n (4 14). It is easily verified that thanks
to the hypothesis (4.8), the conditions (4.3) in Property 4.1 are well satisfied.

Since 1 > ά j ^ a n d άSfc2 ' w e d e d u c e ( 4 1 0 ) f r o m ( 4 4 ) a n d ( 4 1 4 ) D

The factorial ordering between final epidemic outcomes has been ob-

tained under rather weak conditions on the model parameters qj(k\,k2). We

will show in a forthcoming paper how it can be strengthened under stronger

conditions on these parameters.
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4.3. Some Specific Applications

For illustration, let us discuss some applications of this comparison result

for two particular cases of the model.

(i) Suppose that the infectious periods are of length 1 (D\ = D2 =

1), and each infective can contact, independently of the others, a random

number of individuals per time unit. All these numbers of contacts are

independent, and for infectives of group j , j = 1,2, identically distributed,

the common distribution for contacts within groups 1 and 2 being that of the

vector (i?j,i, Rj,2), say. The contacts then occur with or without replacement

amongst the N\ = n\ + πi\ and N2 = n2 + rn2 individuals of these groups.

Clearly, the model here can be viewed as the iterative version of a sam-

pling scheme such as described in 3.2.1. For the case with replacement, we

have, for j = 1,2 and 0 < k\ < ni, 0 < k2 < n2j

(4.15) Ϊ ;(*I,* 2 ) = E {[(Nt - h)/^}^[(N2 -

From (4.15) and Proposition 4.2, we then deduce that (in obvious notations)

(4.16) (Rj,uRj,2) >g (Rj^Rj^J = 1,2, implies (4.9) .

In a similar way, for the sampling without replacement,

(4.17) qj(h,k2) = E [(JVi - RjΛ)[kl](N2 - Rjt2)lk2]} /Nlt[kl]N2tlk2],

and we deduce that

(4.18) (Nt - RjΛ,N2 - Rja) <F (ΛΓi - RjiUN2 - Λ i f 2), j = 1,2,

implies (4.9) .

(ii) Consider the situation above where the infectious periods are r.v.s

which are independent and, for infectives of group J , J = 1,2, distributed

as Dj. Suppose now that while infected, each infective can contact, inde-

pendently of the others, any susceptible present at the points of a Poisson

process. All these processes are independent, and for infectives of group

jyj = 1,2, the associated contact rates within groups 1 and 2 are equal

to βjtι and βj^, respectively. Here thus, for j = 1,2 and 0 < k\ < ni,

0 < k2 < n 2,

(4.19) Qj(kuk2) = exp[-(Mj,i + k2βj,2)Dj].

The so-called general epidemic model corresponds to the case where the Dj

are exponentially distributed. When D\ = D2 = 1, then Qj(k\,k2) = (qj,i)kl

(qj^)1*2 with qj,χ = exp(-/Jj ji), qjj2 = exp(-βji2), and the model reduces to

the Reed-Frost process (see, e.g., Bailey (1975)).
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We start by assessing the effect of varying the infectious periods. For this,
we are going to use a weak stochastic ordering based on the Laplace-Stieltjes
transform ( < L in Stoyan (1983)): for random variables X\,Xi valued in R+
^ l <L ̂ i when

(4.20)

From (4.19), (4.20) and Proposition 4.2, we thus deduce that

(4.21) Dj >L DjJ = 1,2, implies (4.9) .

This result can be exploited to construct bounds for the ultimate numbers
of suceptibles when only partial information on the Dj is available. For
example, suppose that Z)j, j = 1,2, are known to belong to the C{£) class
introduced by Klefsjδ (1983); in other words, we have

(4.22) Dj >L {<L)Exp{μj),

where μj = E(Dj) and Exp(μj) denotes an exponential variable with the
same mean μj. From (4.21) and (4.22), we then obtain that the general
epidemic with exponential infectious periods with the same means provides
an upper (lower) <p bound for the statistic (5itτ,5r2,τ)

Another comparison of interest is between the original epidemic model
with random infectious periods and an approximated Reed-Frost process in
which, by definition, infectious periods are all equal to 1. Take first the
expectation in (4.19). Using the fact that the set of a single random variable
is associated (Esary, Proschan and Walkup (1967)), we can write that for
j = 1,2 and 0 < k\ < ni, 0 < k2 < ̂ 2?

(4.23) qj{hM) > {Eiexvi-hfaDj)]} {E[exV(-k2βji2Dj)}} .

Then, applying twice Jensen's inequality in (4.23), we obtain that

(4.24) qj(h,k2) > C & i ) * 1 ^ ) * 8 > (?i,i)fel(?i,2)
fc2,

where for i = 1,2,

Therefore, from (4.24), (4.25) and Proposition 4.2, we deduce that the Reed-
Frost model with the ξjj as probabilities of non-infection yields to a lower
<F bound for (5Ίfτ,52,r) Moreover, replacing the infectious periods by
their mean leads to a further Reed-Frost model that predicts an even <p
smaller number of susceptibles. We mention that for the latter comparison,
the factorial ordering could be strengthened.
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