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ABSTRACT

This paper presents practical remarks and numerical results on max-
imum likelihood estimation algorithms for perfectly and imperfectly
observed Gibbsian fields on a finite lattice. These remarks are pre-
ceded by the definition of the algorithms. In the appendix, consis-
tency of maximum likelihood estimation is proved.
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1. Introduction

Since Geman [10], Markov fields have become an efficient tool in image analysis.
They have been used for image restoration, boundary detection, segmentation and ap-
pear to be a very natural way of modeling pictures. In this paper, we overview some
problems related to maximum likelihood estimation for Gibbsian fields. We shall be
mainly interested in giving practical remarks and numerical results about stochastic
gradient algorithms, presented in Younes [32], Younes [33], that make possible the com-
putation of maximum likelihood estimator (m.l.e.) for Markov fields.

Statistical analysis of Markov fields, using the equivalence with Gibbs field rep-
resentation, has mainly been introduced in Besag [8]. A major contribution of this
well-known paper, as regards parameter estimation, is the introduction of the cod-
ing techniques, which finally amounted to the definition of pseudo likelihood estimator
(p.l.e.) for parameter inference. M.l.e. has not been used in this context because its
computation has been considered an intractable problem, for reasons that will appear
in the following presentation of modeling.

We shall consider a domain D, which will be a finite subset of Z2, typically a square.
D is the set of sites, and a field on D is a random vector X = (Xs, s € D). For each s
in D, Xs takes its values in a fixed finite set F. A Gibbs model is a family of laws on
FD,

Mx) = exp(-(9,H(x)))/Z(θ) (1)

H is a function defined on Ω = FD, θ is a parameter which varies in a subset θ of Rd,
and Z(θ) is a normalizing constant, the so-called partition function. The main problem
in parameter estimation (and in other techniques involving Markov field modeling) is the
fact that, because of the very large size of the set Ω, Z(θ) cannot be directly computed,
neither analytically nor numerically. Indeed, this constant involves a sum of a number of
terms that grows exponentially with the cardinality of D. This implies that expectations
with respect to πρ cannot be computed, although it is possible to estimate them using
an iterative simulation algorithm (the Gibbs sampler); but even such an approximation
can require a non negligible time.

Assume we are given a configuration XQ in Ω as a sample of a field X under a law
πβΦ for an unknown θ+ in θ . Maximum likelihood estimation in order to approximate
θ* consists in maximizing τr̂ (a?o) in θ. The m.l.e. is a solution of the equation:

Eθ(H) = Ho (2)

where HQ is by definition H(xo)> and E$ is the expectation under π$. The preceding
remarks about the difficulties that arise in the computation of expectations have led
people to give up maximum likelihood estimation and look for more tractable proce-
dures, in particular pseudo-likelihood estimation. This procedure, which first appeared
(or at least its philosophy) in Besag [8], and has then been used and studied in various
papers, (such as Guyon [9], Geman-Graffigne [22] . . . ) , consists in choosing another cri-
terion than the likelihood in order to discriminate distinct parameters. In general, the
probability, under πθi of observing x8 at site s, conditional to the observation of xt at
site t φ Sj is an easily computed quantity. We shall denote it:

* f ( * | ** , t φ s) = P(XS = x9\Xt = xt,t φ s)

These conditional probabilities are called local specifications, and p.l.e. is the parameter
θ at which

l[π>θ(x,\xt,tφS)
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is maximum, where x = xo is the observation.

Using the fact that it is easy to deal with local specifications, it is possible to
define an iterative simulation procedure of Markov random fields: the Gibbs sampler
(Geman [10]). With this procedure in hand, one can think of using a stochastic gradient
algorithm to solve (2). This is done in Younes [31] and Younes [32]. Moreover, it is
possible to make a generalization of this algorithm, to include the case of imperfectly
observed data (Younes [33]). We shall here recall these procedures. It is not in our
intent to give extensive proofs and details about them, as they already appear in the
references; we shall rather focus on practical remarks and experimental results, which are
new material. In addition, we shall give a result of consistency of maximum likelihood
estimation, which, besides its own interest, appears to be important in a theorem in
Younes [33] where it is stated without proof. We shall state this theorem and give more
details later.

2. Parameter estimation

2.1 Fully observed data

We now give an algorithm that solves equation (2). We begin by an informal
discussion to see that its definition is very natural.

We want to solve: h(θ) = EB(H) — HQ = 0. In theory (we deal here with exponential
models), this is a very simple problem, as h(θ) is the derivative of a concave function,
and we have:

ti(θ) = -υar$(H).

Let us assume that this matrix is definite for all θ.

Our issue is thus that it is impossible to compute exactly h(θ); if we could do so,
a natural algorithm to solve (2) would be of the form:

θn+ι=θn + a(Eθn{H)-HQ), (3)

and this algorithm will converge to the m.l.e., provided that a is a small enough positive
constant. We shall now use the fact that there exists a method for simulating each TΓ*.
The Gibbs sampler has been introduced in Geman [10], and we now recall briefly its
definition; it is an iterative algorithm, that provides a sequence X°,X1,... of configu-
rations that converges in law to π$. To construct this sequence, we first give ourselves
a sequence of sites, (sn,n > 0), which must scan the set D in an almost periodic way;
more precisely, it must verify:

3 Λ > 0 / V n , D c K + i , . . . , * „ + * }

Starting with any configuration X°, one defines now Xn+1 from Xn by taking X5

n+1 =
X? for s φ sn, and taking X?*1 at random according to the law πs

θ

n(.\X?,s φ sn).

In other terms, (Xn) is defined as a non-homogeneous Markov chain, and the
transition kernel from Xn to Xn+1 is

(4)

The Gibbs sampler has the following important ergodic property:

n = x)-πβ(x)\ = O(rn)
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with 0 < r < 1. This implies in particular that one can estimate Eβ(H), with fixed Θ
by using the fact that:

E,(H)= lim i"
"*=i

where (Xk) is obtained by Gibbs sampling with parameter θ.

We can now replace E$n(H) by an approximation in (3). But problems still subsist.
We should know how to choose n0 such that: Y%LX H(Xk)/n0 is close enough to its
limit. Such no can be, in many cases, very large, so that a procedure involving such a
computation would take too long. A second remark is that, in any case, we shall have
to replace the expectation in (3) by a stochastic approximation, which will fluctuate;
to take this into account, we must, (this is standard for stochastic algorithms), replace
the constant a in (3) by a sequence that will tend (not too fast) to 0.

With this in mind we modify the initial algorithm, to reach a feasible procedure,
as follows:

= Θn + σn+1(En(H) - JΪ0) (5)

With: σn = ^ , where U is a fixed positive constant, and

no

J k = l

where (XAj>n+1)jk=i,...,n0

 ιs a sequence obtained by Gibbs sampling, with parameter θni

and taking as a starting point X°>n+1 = Xn°>n.

If is easy to verify that, if the parameter converges, to 0, say, then the sequence
(Xk>n) will follow, for large n, approximately the law πj, and θ must be a solution of
(2), and must then be equal to the m.l.e. θ. Note that in Younes [32], we took no = 1,
and proved essentially the following result, that we state for any n 0:

Theorem 1. There exists an α > 0 such that, if -^JJ < α, the sequence θn denned by

(5) converges almost surely to θ. (cf. Younes [32])

Note that we do not need En(H) to be close to E$n(H) at each step, and moreover,
one cannot expect Xk'n to have law w$n unless the algorithm is near convergence.

In Younes [32], we gave a lower bound for α in Theorem 1. This lower bound, which
can be easily computed in most cases, appears to be too small in the applications, and
we generally allow l/(noί7) to be larger. But one must note that if this quantity is
too large, the algorithm may diverge and simple counter-examples can be found (cf.
Kύnsch, personal communication). However, in all cases, one may apply Metivier and
Priouret's results on stochastic algorithms that once adapted to our context, say the
following:

Theorem 2. If Q is a fixed compact set in Rd, that contains θ we have:

conditionally on the event {θp £ Q}, the probability of the event: {θn G Q for all
n > p and θn —• θ} is greater than 1 — j , where C is a constant that may depend
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on Q, and on the constant U, but not on p. (cf. Benveniste-Metivier-Priouret [15],
Metivier-Priouret [17])

This enables us to obtain, for any value of ί7, a convergent algorithm, by fixing an
α priori compact set Q, and forcing θn to come back into Q every time it goes out (by
projection onto a smaller compact).

2.2 Imperfect observations

We now give an extension of (5) to imperfect observations. For this purpose, we
must introduce some additional notations. X is still the same, with the same model
(π$), but it no longer is observed. We only observe a function Y of X which will be
constructed in the following manner: let b be a function from F onto another set G,
and put Ys = b(X8)y for all s G D. We shall denote this Y = bD(X).

Therefore, although there still is a realization XQ of X, under a law τr #̂, for an
unknown 0*, we can only make statistical inference from the realization t/o = &D(#O) of
Y. Before going further, we remark that this framework contains the case which is of our
main interest: noisy data. Indeed, let Xo be the original field, and N be "noise". We
shall define X as the couple (X0)N), and the laws π$ will model the joint distribution
of Xo and N. Now, the observation Y will be a function of X, for example Y = Xo + N
in the case of additive noise.

We call φθ = π^&p1 the likelihood of Y. It is easy to check that if θ maximizes
Ψθ(yo), it must be a solution of:

Eθ(H)-Eθ(H\Y = yo) = 0 (6)

where the first expectation is under πρ and the second is under π%° which, by definition,
is the law π$ conditional on Y = yo

Note that (6) may have several solutions, as \ogφ$(yo) needs not to be a concave
function of θ. The algorithm we propose is a stochastic gradient algorithm, which, like
any gradient-descent algorithm may converge to a local maximum of the likelihood. In
fact, the result we are going to state, following Younes [33] is a local convergence result.
We now proceed to the definition of the algorithm we shall use; this definition is mainly
based on the following remark:

call X the field ( X i , ^ ) , with independent X\ and XΊ, X\ of law πe and X*ι of
law π^°; X is a Markov field, of which it is easy to compute the energy function, and
which has the same neighborhood system as π*. Let us call Eg the expectation with
respect to the law of X, and note /(xi,x2) = H(x\) - H(x2). Equation (6) can now be
rewritten as:

E{f) = 0 (7)

_ This allows us to try the same kind of procedure as before, simply replacing X by
X\ #n+i will be obtained from θn by

θn+i = θn + σnEn{f) (8)

where En(f) is an "approximation" of E$n(f)i obtained, as in (5), by averaging the
values of / after no steps of a Gibbs sampler simulating the law of X. Note that such
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Gibbs sampler is equivalent to two independent simulation algorithms, one for X\ (i.e.
for the law TΓ̂ ) and one for X^ (i.e. for the law 7Γ̂ °).

We shall now state asymptotic results in terms of the size of the set of sites D. For
this, we need to define, in a proper way, a law π$ for all D, and this is possible after
introducing the notion of potential. Description of this notion, and definition of laws
on D, are made in the appendix. For the sake of brevity, we shall only state here the
result without recalling all definitions that are needed, as its general sense will still be
apparent. (Refer to the appendix for more details)

In Younes [33], we proved that, if the true parameter was θ+, then, for homogeneous
potential (cf. appendix) and under Dobrushin's mixing conditions (Dobrushin [2]), the
function logψβ(yo) was concave in a neighborhood of θ+ for large enough D, and we
gave the expression of the second derivative of the likelihood. This, combined with the
fact that the m.l.e. is consistent (cf. appendix), and after applying results in Metivier-
Priouret [17] gives the following theorem:

Theorem 3. Assume X has homogeneous potential, that under θ+ satisfies Dobrushin }s
mixing conditions. Assume moreover that the m.l.e. is consistent. Then, there exists
an open subset of Rd, V, with θ+ 6 V, such that,

if D (the set of sites) is large enough, then the m.l.e. θ is in Ί), and for all compact
Q included in V and containing θ, one has: conditionally on the event {θp £ Q}, the
probability of the event: {θn € Q for all n > p and θn —• θ} is greater than 1 — y.

We make now some practical remarks and give numerical results.

3. Experiments

3.1 Generalities

Implementation of algorithms (5) and (8) requires some care. As it could have
been expected, the former is far more stable than the latter, since in the first case, the
function to maximize is concave. But even in this case, there are good choices of several
constants that must be done. For example, the best U in Theorem 1, is to be found.
We shall often use matrices to replace σn, and also define a stopping procedure; this
will also require fitting some constants or thresholds. These numbers must in general
be found by experimenting with the algorithm on a given model, as they will highly
depend on the situation in which inference is made. For (5), there can be a significant
difference of computation time between good and bad choices of these constants, and
for (8), a bad choice can simply prevent the algorithm from converging.

Another important point is the need of having a good initialization for the algo-
rithm. This is important first as regards reduction of computation, and also for im-
perfect observations, to prevent non-convergence, or convergence to a local maximum.
Unfortunately, in this last case there exist very few methods for parameter estimation,
even rough parameter estimation. They are in general very dependant on the applica-
tion (Chalmond [20]), or on the model (Frigessi [21]). In most cases, one must rely on
α priori knowledge and heuristic considerations on the model to have an idea of what
kind of parameter is to be expected. Of course, when the data are perfectly observed,
the pseudo-likelihood estimate should be chosen as starting point.
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3.2 Choice of gains

The algorithms we have defined so far were of the kind:

where the gain σn was real. In general, one obtains a significant improvement by using
matrices. These gains can be taken from what is done for exact gradient algorithms: in
order to maximize a function / with known derivatives, "optimal" gains are of the kind:

«»+i - θn = [a.\\l\θn)\\.I - l"{θn))]-Ί'{θn)

In our case, the function / is the logarithm of the likelihood, for which derivatives are
not explicitly known. In the imperfect observation case, for example, we have

l'{θ) = E,(H) - Eβ(H\Y = j/o),

and
-l"(θ) = υarθ(H) - varθ(H\Y = y0).

In the perfectly observed case, both conditional expectation and variance degenerate
into constants.

For fixed 0, one can approximate these derivatives by simulation. Of course, it is
out of question to compute them accurately at each step of the algorithm, as one of
these estimations might be almost as costly as the initial algorithm itself. However,
one can use the sequence(s) (Xn) that are simulated during the procedure, to have
a rough approximation of these differentials. In the fully observed case, for example,
l"{θn) will be estimated by the sample variance of the H(XkiP)) by averaging over a
certain past of time n (typically a few scans of D). These approximations are of course
anything but accurate, as they may even be based on random variables that do not
follow the law under the parameter θn. But, provided one takes good care of problems
related to matrix inversion, use of these approximations can provide a fair increase in
the speed of convergence of the algorithm. Note also that these variances are more
accurately estimated when we approach convergence. This will be important for the
stopping criterion in the next section.

To conclude this section we give the precise form of the algorithm we actually use:

θn+i = θn + σn.[a\\dn\\.I +Γn]-1En(f); (9)

dn is a vector that "approximates" the derivative of the log likelihood, Γn is a matrix
that "approximates" the opposite of the second derivative; a is a real number that must
be chosen, and (σn) is a sequence of real numbers that tends to 0.

It is often useful, in particular when the initial value of the algorithm is far for the
m.l.e., to let σn be constant during the first few iterations (once again, this constant
will have to be properly chosen). Then, one will let σn tend to 0; in our applications,
we took σn = 1/(6 + en), b et c depending on the situation.

We now focus on the choice of an automatic stopping rule for the algorithm.

3.3 Stopping Rule
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The maximum likelihood estimator, both for perfect and imperfect observations, is
a solution of an equation of the form:

Et(f) = 0. (10)

Our stopping rule consists of stopping the algorithm as soon as this equation is satisfied.
Once again, computational constraints do not allow us to check at each step if the
current parameter θn is a solution of (10). We could do here as we have done before:
compute an approximation of E(f) by averaging on some past values of / computed in
the simulations done during the algorithm; but, by doing this, we would have had to
face some complicated problems. The main one is that, for our purpose, it would be
important to have rather good approximations of the expectation, or at least, to have a
measure of the level of accuracy that can be expected; even in the simple case of Gibbs
sampling with constant parameter, it is still an open problem to define a precise criterion
to check how near the estimated expectation is from the true value. Another drawback
of this method is that it doesn't use the fact that, in general, domains on which fields are
observed are large, and laws may have some ergodic properties that imply that f/\D\ is
close to E(f)/\D\f where |JD| is the number of sites. Under some additional hypothesis
(typically mixing), one can even say that f /\J\D\ follows a Gaussian law.

When the algorithm is close to convergence, one can consider that the simulated
configuration Xk)P follows approximately the law under the limit parameter θ. Hence, if
the preceding hypotheses are true, f(XkiP)/y/\D\ is approximately centered and Gaus-
sian. As the variance of / can be estimated during the procedure, and is rather accurate
when we are close to convergence, it is possible to make a χ2-test to check if (10) is
true. In fact, we used this stopping rule even when the hypothesis that we made during
this discussion were not satisfied, and it appeared to still be giving rather good results.
Since approximations of the variances can be very bad when the algorithm has not con-
verged, it is better, each time the test gives a positive answer, to make some additional
iterations to check if this answer was really true. All this is summarized next.

3.4 Summary

Here is the procedure we propose for using the estimation algorithm.

1. Start with a preliminary estimation, ΘQ, of the parameter, as good as possible for
a small cost.

2. Let the algorithm run with constant σ. Compute during this time sample variances
that are involved in the second derivative of the likelihood, as well as in the χ2-test
of the stopping rule (in the case of perfectly observed data there is in fact only one
variance to compute). Stop, when the χ2-statistics is lower than a constant Ci,
provided it hasn't overpassed another constant C[ during a few control iterations.

3. Same as the preceding one, with decreasing gain and new constants C*ι and C'2 for
the stopping rule. The constants Ci,C{, 6*2,6*2 must be empirically chosen.

3.5 Simulations: Fully observed data

We chose, for our simulations, an Ising model, taking binary values (0 or 1), with
external field. The energy is:

Σ Σ ijXij-i (11)
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For several values of (α,/?i,/?2), we simulated 100 realizations of this model on a
64x64 lattice. For each realization, we computed p.l.e. and m.l.e., and estimated bias
and normalized mean square errors on the basis of the 100 results. We also computed
the Fisher information matrix, which is, for exponential models, the inverse of the
covariance matrix of the normalized sufficient statistics. This covariance matrix was
also computed on the basis of the 100 simulations.

1. True parameters: 1,-1,-1.

Bias:

pie: mle:
-0.046 -0.076
-0.086 0.019

0.031 0.039

Mean square errors:
pie: mle: Fisher:

725 -195 -235 \ / 685 -175 -225 \ / 335 -95 - 9 5 '
-195 130 -10 -175 120 -15 -95 75 -20

^-235 -10 150/ \-225 -15 150/ \ - 9 5 -20 701

2. True parameters: 0,-0.8, -0.8.

Bias:

pie: mle:
0.014 0.007

-0.039 -0.032
0.021 0.019

Mean square errors:

pie: mle: Fisher:

1770 -465 -510 \ / 1720 -465 -480 \ / 1090 -330 -265'

-465 265 ° ~ 4 6 5 2 5 5 5 ~ 3 3 0 1 9 5 ~
-510 0 280/ \-480 5 260/ \-265 -10 160.

3. True parameters: .15, 2, 2.

Bias:

pie: mle:
0.003 -0.009
0.018 -0.042
0.032 -0.036

Mean square errors:
pie: mle: Fisher:

15 _15 _ 5 \ A s io 0\ / 15 -10 -20'

-15 135 0 10 85 -35 -10 90 0
- 5 0 110/ V 0 - 3 5 6 5 / V - 2 0 0 110
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4. Trues parameters: 1, 2, -2.

Bias:
pie: mle:

-0.015 -0.021
0.002 0.001
0.004 0.012

Mean square errors:
pie: mle: Fisher:

(125 -70 -70 \ / 95 -50 -55 \ / 75 -40 -45'

-70 80 35 -50 55 30 -40 50 25
-70 35 50/ \-55 30 35/ \-45 25 30,

5. True parameters: 0.15, 2,-2.
Bias:

pie: mle:
0.003 0.003
0.001 0.000

-0.001 0.002

Mean square errors:
pie: mle: Fisher:

335 -165 -160 \ / 275 -130 -130\ / 255 -115 -120'
-165 100 75 -130 80 60 -115 65 55

k-160 75 90/ \ -130 60 75/ \ -120 55 65,

The average time for estimation by maximum of likelihood is approximately 5 minutes
on a Vax 750, the maximum of pseudo likelihood only takes a few seconds. In general,
m.l.e. is more efficient than p.I.e., and always is at least as efficient. Both as very
bad for "ferromagnetic fields" (/?,- < 0), and more accurate for "anti-ferromagnetic"
fields. Difference in efficiency between the two estimators becomes larger as interactions
become stronger (|/?, | increases).

Finally, we point out that the preceding matrices were only empiric estimations.
Hence, it may happen that the theoretical Cramer-Rao inequality is not always satisfied
between mean square error matrices and Fisher information.

3.6 Simulation: Noisy Data

We now add noise to the preceding observations. In fact, we used three kinds of
noise:

• Forgotten data: an Ising model provides binary values ( 0 or 1 ); 1 can be, for
example, interpreted as a presence of a certain particle on a site; we assumed that
some of these particles have not been seen by the observer so that the true field
has been perturbed by replacing by 0 some values with a probability p, which is
assumed to be known. If we call Xo the original field, and N is the noise, Xo

follows an Ising law, N is field of i.i.d. Bernoulli r.v. of parameter 1 — p, which is
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independent of Xo, and the function b in the section 2.2 is

b(x, n) = xn

• Flipped data: now, we assume that some of the values have been flipped, with
probability p. X and N are as before, except that the parameter of the Bernoulli
laws is p\ b is now:

b(x,s) = x(l - n) + n(l - x).

• Gaussian additive noise: We add to the binary field Gaussian white noise, so that
the observed data are real. The variance of the noise is assumed to be known. 6 is

b(xjTi) = x + n

We now give some estimated mean square errors for some values of the parameter.
We still give three matrices, but they must not be compared in the same way as
in the preceding section. P.l.e. is computed on the noisy data, as if there were no
noise. It thus gives very biased results; the only interest of this computation is that
it shows that the perturbation of the data was significant. We used this very bad
estimation as starting point of the procedure of section 3.4. The Fisher information
matrices are computed on the original data, before adding of noise. They are thus
not to be considered as an efficiency criterion, but they give information on the loss
of accuracy of estimations because of the noise. Here are the results:

• Forgotten data:

(a) True parameters: 0.5, 1, 1. p = 0.3

Bias:

pie: mle:
0.74 0.02

-0.12 -0.004
-0.13 -0.014

Mean square errors:
pie: mle: Fisher:

2260 -400 -415 \ / 36 -30 -30 \ / 20 -15 - 1 5 '
-200 155 75 -30 125 0 -15 50 - 5

-415 75 150/ \ - 3 0 0 100/ \ - 1 5 - 5 55

(b) True parameters: 0.5, -0.5, 0.5. p = 0.3

Bias:
pie: pie:

0.5 0.008
0.16 -0.002

-0.11 0.002

Mean square errors:
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pie:
/ 1040 320 -240 '

320 125 - 7 5
\ _ 2 4 0 - 7 5 75.

mle:
60 -35 -35

-35 40 5
-35 5 45

(c) True parameters: 0.5,-0.5, 0.5. p = 0.4

Bias:

pie: mle:
0.71 0.07
0.19 -0.04

-0.15 -0.05

Mean square errors:
pie:

2085 550 -460 '
550 175 -125

^-460 -125 130 >

(d) True parameters: 0.5, -1, 1. p = 0.3

Bias:

pie: pie:
0.48 0.03

-0.25 -0.02
0.35 0.01

Mean square errors:
pie:

970 -520 665'
-520 305 -365

665 -365 505,

Flipped Data.

(a) True parameters: 0.5, 1, 1. p = 0.1

Bias:

pie: mle:
-0.003 -0.03

-0.58 -0.07
-0.58 -0.05

Mean square errors:
pie:

20 -5 - 5 \
-5 1390 1370
-5 1370 1405/

mle:
45 -50 -40

-50 230 -30
-40 -30 265
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(b) True parameters: 0.5, 0.5, -0.5. p = 0.1

Bias:

pie: mle:
-0.11 0.02
-0.19 -0.01

0.20 -0.02

Mean square errors:
pie: mle:

80 -105 75\ / 70 -45 -35
-105 170 -155 -45 50 5

75 -155 175/ V~3 5 5 4 5

(c) True parameters: 0.5, 1.5, -1.5. p = 0.1

Bias:

pie: mle:
-0.20 0.01
-0.61 -0.01

0.59 -0.02

Mean square errors:
pie: mle: Fisher:

195 455 -485 \ / 105 -50 -55 \ / 40 -20 - 2 0 '
455 1535 -1460 -50 40 20 -20 20 10

k-485 -1460 1420/ \ - 5 5 20 35/ \ - 2 0 10

Gaussian noise.

(a) True parameters: 0.5, 1, 1. Variance of the noise: 0.25

Bias:

pie: mle:
-0.04 0.04
-0.73 -0.03
-0.73 -0.04

Mean square errors:
pie: mle: Fisher:
/ 30 105 105\ / 70 -45 - 7 0 \ / 15 -10 - 1 5 '

105 2230 2200 -45 240 -65 -10 50 - 5
\105 2200 2220/ \ - 7 0 -65 300/ \ - 1 5 - 5 60y

(b) True paramaters: 0.5, -1, 1. Variance of the noise: 0.25

Bias:



416 Laurent Younes - XXVIII

pie: mle:
-0.20 0.01

0.54 0.006
-0.57 -0.02

Mean square errors:
pie: mle: Fisher:

175 -425 420 \ / 90 -55 -45 \ / 30 -20 -15X

-425 1195 -1255 -55 60 10 -20 20 5
420 -1255 1355/ \-45 10 55/ \-15 5 15,

(c) True parameters: 0.15, 1.5, -1.5. Variance of the noise: 0.25

Bias:

pie: mle:
-0.09 -0.007
-0.80 0.006

0.80 -0.004

Covariance Matrices:
pie: mle: Fisher:

75 290 -325 \ / 100 -45 -50 \ / 65 -25 -30 '
290 2655 -2655 -45 30 20 -25 15 10

-325 -2655 2695/ \-50 20 40/ \-30 10 20 J

Appendix: Consistency of M.L.E.

A.I Introduction

We now study consistency of m.l.e. for imperfectly observed data. For this, we
shall need some definitions and notation, in particular suitably to define laws on any
finite subset D of Z 2.

A potential is a family (on which we shall put a parameter) of functions (λc(#, ))c>

where C runs over all finite subsets of Z2, λc(0,.) is defined on Fz , takes its values in

R, and only depends on coordinates indexed by elements of C.

We shall make the following hypotheses on this family:

• Homogeneity: let us call Ts the shift operator on Fz defined by: (Tsx)t = xs+t

for x in Fz and t G Z 2. We assume that, for all C, 0, s and x:

Uniform bounded range: we assume that there exists a 7 > 0 such that, for all
0, λc(#,.) = 0 if diam(C) > 7. The diameter of C is taken with respect to the
distance on Z 2:

d((i,j), (*V)) = max(|i-iΊ,tf- j'\)

Regularity: we assume that λc is continuously differentiable in θ for all θ.
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Once we are given a family of potentials, we define for each D C Z 2 a family of
conditional laws in the following manner. Let x G FD, and x1 G FD°. Call z = x.x' the
element of Fz , such that zs = xs ΐoτ s e D and zs = x, for s € Dc. Define on FD the
law TΓ^.IZ') by:

πθ(x\x') = e-A°($>*)/Z*'(θ) (12)

where

x' is called the boundary condition. We can also define a free boundary condition
law on FD by replacing the sum in h.x

D by a sum over those C that are included in D,
that is, use the energy:

Σ . x ' ) . (13)

The preceding formula does not depend on x', which can be arbitrary, because λc only
depends on coordinates indexed by C.

In general, assume that we have, for all D C Z 2, a family π^p of laws on D1 defined
by (12), replacing Λf>' by another energy AD- We say that we have a suitable family of
approximate laws (s.f.a.l.) if:

Dlim3 \\AD(Θ,.) - AD(Θ, .)\U\D\ = 0 (14)

uniformly on compact sets in θ. The preceding limit, like all limits over subsets of Z 2

in this paper, is to be understood as being true for any sequence (Dn) of squares in Z 2

that contains any finite set for large enough n. Because of the hypotheses we made, it
is easy to check that, if we arbitrarily fix a boundary condition for each D, then the
resulting family is a s.f.a.l.

The family of laws given by (12) form a consistent system of conditional laws. And
in fact, there exists a law π$ on Fz such that πβ(.\xf) is (as indicated by the notation)
the conditional law of πθ on D when the outside of D is known, and equal to x1. In
fact, there may even exist several laws on Fz which satisfy to this property.

Our conditions on the potential imply the following results:

Result 1. For each θ, there exists at least one (spatially) homogeneous law on Fz

associated to the potential (λc(0, •))• ^ e c a ^ ^ne family of these laws: QQ{Θ). QQ{Θ) is
convex, compact. Its extremal points are ergodic measures on Z 2, and any two of them
are singular. Each element ofQo(θ) is a convex combination of extremal points.

These facts can be found in Ruelle [7]. Existence of a field has first been proved in
Dobrushin [2]. Note that there can exist non-homogeneous laws associated with a given
potential. The set G(θ) of all these laws, which contains (7o(0) n a s the same properties
as Go. But, as it will appear in the hypothesis that we shall give later on, we shall
only be concerned with homogeneous laws. There exist sufficient conditions that ensure
uniqueness of a law associated to the potential, ie. \Q\ = \QQ\ = 1. These conditions
given in Dobrushin [2], and simplified in Simon [8], are used in theorem 3 of section 2.2.
In our context, they are:
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Let θ be fixed. There exists an a £ [0,1] such that:

C,0€C

We shall not assume these conditions to prove consistency; in fact our framework is the
following : give ourselves a family of potentials satisfying the hypotheses given at the
beginning of the section. The true law of X is an element of (?o(0*), for an unknown θ*.
Our purpose is to estimate θ+ on the basis of imperfect observations of X on a finite
square D.

Description of the way imperfect observations are obtained is given in section 2.2;
we recall that we gave ourselves a function b from F to G such that, for all s, the
observation at site s is Ys = b(Xs). We shall call b the application from Fz to Gz ,
with all components equal to 6, so that Y = h(X). Similarly, the function bo defined
on FD is treated in the same way.

If z = (zs, s £ Z2) is a configuration on the whole plane, we denote ZD = {zs, s £ D)
its restriction to a subset D of Z2 For a law φp on HD, where H can be F or G, and
z £ # z , we shall note: ΦD{Z) instead of ΦD(ZD) to simplify formulas.

Now, we describe how parameter identification is done: we fix a s.f.a.l. for X,
choosing, for each D, an energy that can be boundary free, but may be anything else,
provided that (14) is satisfied. π$t£>(x) denotes the approximate law of X on D (it is
not a marginal of a law in Qo(θ))1 and ψθtϋ(y) denotes the image of this law under bu
We assume that there exists a configuration xo of X, which is a realization of a law
of unknown parameter. The observable configuration is y0 = h(xQ). If D is a finite
subset of Z2, the maximum likelihood estimator on D is any parameter that maximizes
Φθ,D(yo) on a given set Θ C R2, which we assume to be compact.

Whenever possible, we leave our subscripts such as D or θ.

In general, when we talk about true marginal laws, we use an subscript a (suggesting
"absolute"), and write τrα or φa. They cannot be put into form (12), and thus cannot
be used for parameter estimation. This is why we introduced the notion of s.f.a.l. Note
that, in the first part of the paper, we only used exponential models, which are particular
cases of the ones we use here.

We need to make a last, but crucial, assumption before stating and proving consis-
tency: identifiability of the parameter on the basis of Y.

To a parameter value 0, we can associate the family GQ(Θ), which is the set in which
the law of X may vary, if the true parameter is θ. Now, the law of Y must be an element

Identifiability then means that for 0, θ' £ Θ,

θφθ1=> Ήo(θ) Π Wo(0') = 0 (15)

We impose that two different parameters give two different laws.

TD denotes the σ-algebra induced in Fz by the coordinates included in D [To —
σ(Xs,s £ D)). TD denotes the σ-algebra on Gz , induced by YD, which is the image
of TD under b&.
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Elements de Ήo(θ) are characterized by the property: Q G Ήo(0) if and only if
there exists P G (7o(0) such that

VD C Z2, finite, VA G7D>Q(A) = /M*D(A)\*D*)P{dxDc). (16)

This only says that Q is the image of a law P associated to the potential indexed by 0.
The true parameter being 0*, the law of X is an element P* of ί/o(0*); its image under
b will be denoted QΦ; E* and Ej denote expectations with respect to P* and Q*.

A. 2 Statement of the theorem

Theorem 4. If Θ is compact, 0* G θ, the identifiability condition (15) is true, and
that the law of X is homogeneous, then

the maximum likelihood estimator on θ is consistent.

This theorem is a consequence of the following proposition, which will be proven
next:

Proposition 1.

exists Q* almost surely, and h(θ,θ+) is positive, continuous in θ, and vanishes only for

In addition, if θ is compact and convex in Rd, then there exists a constant K
depending on 0 such that, for all 0, θ' in θ ,

| l V ( ) \φ{yD)\ < K\\θ - θ'\\

To prove Proposition 1, we shall proceed as follows. We first check that the asymptotic
behavior of (17) does not depend on the s.f.a.l. that has been chosen. We then prove
the equivalent of Theorem 7.1 in Preston [5], adapted to imperfect observation context.
We shall then be able to prove Proposition 1.

A.3 Proof

A.3.1 First step

We first show that the quantity in interest has asymptotic behavior that is inde-
pendent on the choice of J he s.f.a.l. The parameter 0 is fixed, and we omit it in the
formulas. Let (ΦD) a n d (ΨD) be two s.f.a.l. We need to show that

maxlog tβψ- = o(\D\). (18)
y
 Φ ( )

y

We denote ΛD the energy associated with ψι>, Λp the one associated with φn, and
define
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CD tends to 0 by assumption. In addition, we have:

And the same formula for ψ, replacing Λ by Λ. But

lies between — \D\CD and |Z>|eχ>, as soon as the sum is made over the same z's in the
numerator as in the denominator. This implies that:

<2eD

and thus tends to 0 uniformly in y if D tends to Z2

Note that one can show in the same way:

where φx (resp. ψx ) is the law with boundary condition x (resp. x'). This implies
that logipD(y) — logψatι>(y) is o(|D|), where ψa,D is the marginal of some law in Q{θ).
Indeed, we have:

(the expectation is with respect to the chosen absolute law) hence:

• x' / / x' /

mf ψ (t/) < ψa\y) 5: SUp ψ (t/)

A.3.2 Second step

L e m m a 1. For a given θ let P$ be any element of Go(θ), and Q$ its image by b . Let
παD and ψαD be the marginals of these laws on finite domains D; let π+j) and φ*}D be
the marginals of Pφ and Q+ on D.

If

then θ = 0*.

Note the behavior of the preceding ratio does not depend on the choice of P$ in
Go(θ).

Theorem 7.1 in Preston [5] states this result for the case of perfectly observed data
(Y = X). The proof can be adapted to our context. Consequently, we shall only detail
those points in the proof that have to be modified, referring to Preston [5] for complete
information.
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If we put gD(y) = £*$&, a n d

we can check that HD = Ej[f(9D(y))] where f(t) = tlog(t) + l-t. Because / is convex
and positive, Hp is increasing with D> and is positive.

If we put, for finite D and "D qD^(y) = ''ffiff» we have (Preston [5]; Lemma 7.1),

for A TD-measurable:

Q*(A)= [[
JA

Moreover, if D if finite and A is /"^-measurable, then for large enough, finite D C Dc:

J 9D(y)Qe(dy) = J*B{bl\A)\xDc)P.(dxDc)

This equality corresponds to lemma 7.2 in Preston [5]; its proof is based on the identity:

EΪ(lA9π) = 2?f [EfiUobfo)] -

and on the fact that, as we have assumed bounded range:

Ef(lΛ o b|%) = Ef(lA o

as soon as D is large enough.

We get from this that

Q.(A) - J *D(bh\A)\xD.)P.{dxD.) =

as soon as D is large enough.

To prove Lemma 1, it suffices to show that this quantity vanishes for all A, as (16)
would imply that Q* G HQ{Θ) and thus θ = θ* because of condition (15).

To obtain this, the rest of the proof in Preston [5] can be applied without modifi-
cation (lemmas 7.3 to 7.6).

A.3.3 Third step

We now proceed to the main part of the proof. We shall study the limit of

for a fixed θ, and a given s.f.a.l. Because of the first step of the proof, this limit does
not depend on the choice of the s.f.a.l.; therefore we shall choose, for each D, ψn as
being associated with free boundary energy, which is:

CCD
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Since θ is fixed, we leave it out of the formulas.

One can write

with ZD{y) = Σ M * D ) = y D e- Λ D W > ™* ZD = Σ * D ̂ Λ D W

It is well known, from the theory in the case of complete observations, that

converges when D tends to Z2; we thus only have to study the limit of

E?(\og{ZD{y))/\D\.

Note also that convergence of the former is a consequence from convergence of the latter.

Fix a square Do = [0,ifco]2 Let TZ denote the sub-lattice of Z2 generated by the
vertices of DQ. (ΊZ is the set of pairs of integers of the kind (p.ko, q &o) )

For a square D included in Z2, we call IZo the set of elements s of ΊZ for which
s + DoCD.

We first study the ratio:

zD(y)

For this, note Dλ = U € π I > + β o ) , D2 = Z?\Z?i, and

now can be written:

All sums being taken over x such that b(x) — y.

We have:

Σ
Let Ci? be the set of all C that are included in Dy but not in any of the s + DQ) and
of diameter lower than 7. (Recall that 7 is the range of the family of potential; \ c

vanishes if C has a diameter larger than 7.)

One can write:

*)= Σ Σ

+ Σ M*) (20)
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As the \c are uniformly bounded (by a constant K, say) we have |Λχ) — AD\ <

CD only contains sets that intersect some Do + s without being included in one
of them, and sets included in Di. The former are fewer than (constant . | 7 £ D | \ / | A ) | )

Indeed any element of CD that meets ans + Do must be a subset of a square of diameter
7 centered at an element t of s + £>o, but not included in s -f A) If s is fixed, the
number of such squares is lower than (constant .^/|Z)|), the constant only depending on
7 (it can be taken as 27); the number of subsets of such squares can now be bounded
in the same way, for fixed s; taking all possible s gives the preceding estimate. If one
notes that the cardinal OΪTZD is less than |£)|/|Do|) this estimate can be seen to be of
the same order as /[

If we now count the sets in CD that are included in D2, we see that there can be no
more than (constant .|-D2|)J the constant depending once again on 7. We can remark
now that D2 only contains sites that are at a distance lower than an edge of Do from
the outside of D. With this in mind, it is easy to convince oneself that |£)2 | is smaller
that: (constant .^|J9|.|Do|), and thus smaller than (constant .\D\/y/\Do\).

Therefore, we have shown that:

Mo being a constant that depends on K and on 7. Coming back to rp, we get:

D y

hence:
\F\\D2\e-M0\D\/^/\DZ\ <rD<

Using once again the estimate on the cardinality of D2, we obtain the fact that there
exists a constant M such that:

If we note that ZS+D(V) = %D °Ts(y), and that P* was assumed to be homogeneous,
we deduce from (21) that

Calling aD = E? jj

and thus limsupα£) < liminf α# and OLD converges.

If we now assume that P* is ergodic, we get from (21):

1 M
limsup —r logZD{y) < aDo +
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and thus

limsup — log Zn(y) < lim a>D

In the same manner, we get

lim inf j — log ZD (y) > lim aD

which implies r^τ log ZD(y) converge P* p.s.

Finally, if we do not assume that P* is ergodic, we know that P* is a convex
combination of the extremal points of (70, which are ergodic and mutually singular.
This means that there exists a probability measure ω on the set S of extremal points
such that:

P* = / P.ω(dP).
Jε

Let us call Sp the support of P G S. We know that, on each Sp) πjj \ogZo(y) converges
(y is a function of x); but the support of P* is equal to the union of the Sp, up to a set
of null P*-measure. Hence, here again r^τ log Zo(y) converges P* a.s. Its limits under
P* is in the set of its limits under the various extremal ergodic measures.

A.3.4 Conclusion

The preceding result shows that lim τjπ log ??*'p;y( exists, P* almost surely (y =
b(x)). In addition, the foregoing discussion shows that the limit is one of the limits for
one of the extremal point P of Go(θ*) This P = P(x) depends on x, but not on Θ. The
limit, under P(x), of TJJT log ^x>PΛΛ is the same as the limit of the expectation of the
same quantity under P(x), where y = b(x). Lemma 1, taking P(x) instead of P*, now
shows that this limit can be 0 only if θ = θ+.

For a fixed x, we denote this limit Λ(0,0*). The second part of the proposition,
as well as the continuity of h can be proved by noting that, for all D, T^r\og(^p$(y)) is
continuously differentiate in 0, and that its derivative can be estimated uniformly in y
and D and uniformly on compact sets in Θ. We get from this a Lipschitz inequality for
τ^τlog(^(j/)) which is uniform in D and in θ on compact sets, and thus get the same
inequality for Λ by letting D tend to Z2.

This ends the proof of proposition 1, and the proof of the consistency of m.l.e.
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