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ABSTRACT

This paper addresses the study of association between two spa-
tial processes. In particular, we consider the properties of modified
tests of the empirical correlation coefficient between the processes.
We show that by a simple adjustment, correct level of significance
can be reached and that the power under a simple linear alternative
is compatible with that of a standard test in an equivalent situation.
These tests can be applied both to regularly and irregularly spaced
points and can be considered as a first step in an analysis of associa-
tion when detailed spatial modelling is not suitable.

Application of these tests to data gives pivotal confidence interval
for the regression coefficient. Furthermore, if one is prepared to model
the observed covariance structure, Monte Carlo tests of association
can be performed. In the examples investigated, which concern the
relationship between lung cancer, smoking, and industrial factors,the
results from the two types of testing procedures were close.
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1. Introduction

This paper is concerned with a topic in spatial statistics, that of testing for asso-
ciation between two spatial processes. This question arises frequently in various fields
and examples abound in geography and regional sciences (Cliff and Ord, 1981), geology
(Malin and Hyde, 1982), sociology (Doreian, 1981)... In the epidemiology of chronic
diseases, etiological clues are sometimes sought by studying joint geographic variations
of environmental risk factors and disease rates (Doll 1980). The examples discussed in
the later part of this paper will be taken from this field.

Throughout the data will consist of a set A of N locations and pairs of variables
(Xa)Ya)> a £ A, indexed by their location. These variables will be spatially autocorre-
lated.

In the first part a method for approximating the critical values of the product
moment correlation coefficient rxγ will be summarized. This method has been described
in detail in Clifford, Richardson, Hemon(1989).

In the following sections we give some complementary results on the performance
of the tests for small domains and on their power. We also discuss the influence of
the choice of the partition of the covariance structure. Finally we give some examples,
comparing our results with those of Monte Carlo tests and giving pivotal confidence
intervals for the regression coefficient.

2. Modified tests of associations

We have devised modified tests of association based either on sχγ\ the empirical
covariance between pairs of observations {XQ^Ya), a G A, or based on τ χy : the
corresponding empirical correlation coefficient. We shall use the notation :

and similarly for Y and Sy.

Method

Suppose that X and Y are independent but that both X and Y are multivariate
normal vectors with constant means and variance-covariance matrices Σx and Σy re-
spectively. A stratified structure for Σx and Σy is imposed. Pairs in Ax A are divided
into strata So,Si,£2, s u c ^ t n a ^ ̂ e covariances within strata remain constant, i.e.

cσv(XaiXβ) = Cχ(k) ]ί(a,β)eSk.

An estimate of the conditional variance of SXY is then derived :

k), (1)

Nk is the number of pairs in strata Sk and Cχ(k) (respectively Cγ{k)) is the estimated
autocovariance :

Cχ(k) = Σ(X* - Ύ)(Xβ - X)/Nk .
Sk

Thus the estimate takes into account the autocorrelation of both X and Y.
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Further it can be shown that, to the first order, the variance of rχγ> σ^ is :

a _
°r ~ E(sx)E(sγ)

which leads to the following estimate :

2 _ ΣNkCx(k)dγ{k)
σ — ^ —

Note that an equivalent expression for Var(sχγ) is N~2tτ(ΣξΣη) where Σξ and
Ση are the variance-covariance matrices of the centered vectors X — ~X and Y — Y.

In the classical non autocorrelated case, when either Σx or Σy = /, it can be shown
that the approximation given by (2) is exact and that rxy follows a ̂ -distribution with
N - 2 d.f. (*AΓ-2). Further : N = 1 + (a*)"1

In general, an estimated effective sample size, M, is defined by the relationship

where σ% is given by (3). A modified ί-test : tfi* is proposed which rejects the
null hypothesis of no association when :

where t*- is critical value of the t-statistic with M — 2 d.f.
In ~~ 2

Equivalently a standardized covariance can be used :

W = 1'2

and tested as a standard normal relying upon central limit theorems for spatially de-
pendent variables.

Results on the performance of W and ĵTj_2

The performance of these tests under the null hypothesis of stochastic independence
between X and Y was first assessed by Monte Carlo simulations for two models :

(a) X and Y were generated on 3 lattice sizes (12 x 12,16 x 16,20 x 20) as nearest
neighbor isotropic autoregressive Gaussian processes, with 1st order autocorrelation
Pχ(l) and pγ(l) ranging from 0.2 to 0.8

(b) X and Y were generated on the grid of the administrative centers of the French
departments as Gaussian variables with a disc model for their autocovariance (Rip-
ley 1981) and arbitrarily defined 1st order autocorrelation ranging from 0.2 to 0.9.

In both cases and for several levels of autocorrelation in X or 7 , 500 trials were
performed with a nominal rejection level of 5%.
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For the two statistics, tjfi__2 and W, the type I errors found did not vary in any
systematic way with the level of autocorrelation and fluctuated around the nominal 5%
level (the confidence interval excluded 5% in only 2 cases out of 45 simulated in (a)).
This contrasted with the performance of the standard t-test procedure based on N — 2
d.f. where the type I error increased systematically with the autocorrelation to reach
values around 50% in the highly autocorrelated cases (Clifford, Richardson, Hemon,
1989).

3. Comparison of W and tjft_2 on small lattices

Based on our first results the performance of the statistics tj^__2

 a n c ^ ̂  seemed
indistinguishable. The number of sample points was reasonably large and a difference
between their respective performances could be better highlighted by studying smaller
samples.

Results from further simulations on smaller lattices of sizes 6 x 6 , 8 x 8 , lOx
10 are shown in Figure 1. The type I errors of the W statistic exhibit a systematic
downward trend with increasing autocorrelation which is not apparent for the modified
*M-2 s t a t i s t * c Consequently, for small domains, the use of the modified *jjj_2 statistic
is preferable to that of W.

We also note that the convergence of W to normality is slower as the autocorrela-
tion increases. Figure 2 shows a Q.Q. plot of W', i.e. quantiles of a standard normal
distribution against the sample quantiles of W for 500 independent trials, in the case
px(l) = pγ(l) = 0.8 and a 12 x 12 lattice. We note that the distribution of the W
statistic has short tails compared to the normal distribution. The departure from nor-
mality is confirmed by a Kolmogorov-Smirnov test which is significant at the 5% level
but not at the 1% level.

4. Power of the modified tests

The power of the modified tests was assessed under a simple alternative hypothesis
of a linear regression between Y and X : H\ : Y = aX + W, X ~ N(μχ,Σχ)1

W ~ N(μW)Σw) and X and W independent. It is difficult to calculate theoretically
the power of the modified tests because their distribution under Hi is not precisely
known. Their power can be assessed by simulations.

Two independent spatially autocorrelated processes X and W were generated on
the grid of the administrative centers of French deparments as Gaussian variables with
a disc model for their autocovariance. Without loss of generality σ\ = σ^ was chosen
and hence the correlation rxy between X and Y was only dependent on the parameter
a. Five hundred trials were carried out for several levels of autocorrelation in X and W
and for the values pxγ = 0.2 and 0.4. The grid contained N = 82 points. Results for
higher values of pxγ are not reported because the power of the tests was very close to
1. In these simulations, the power of W and tQ_2 , was evaluated with a 5% nominal
level.

On the other hand it might be interesting to calculate the power πτ(sχγ) of a test

on the covariance sχγ> similar to W but where the estimate : N~2ΣNkCχ(k)Cγ(k),

of the variance of SXY is replaced by its theoretical value under HI:
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Figure 1. Comparison of the performance of t^_2 and W tests for small lattices:
6 x 6, 8 x 8, 10 x 10. 95% C.I. for the percentage of type I error for a 5% nominal
test.

where Σ* denotes the variance-covariance matrix of the centered vector W — W and Σξ
and E^ are defined as before.

In order to carry out the calculation of πτ{sχγ)i ^ is necessary to suppose that
the distribution of y/Nsχγ under HI is approximately normal. This approximation can
be justified by central limit theorems if appropriate hypotheses are placed on the rate
of decrease of the autocovariances of X and W as a function of the lag.

The expectation and the variance of SXY under HI are given by:

VHI(NSXY) = 2α2 tr (Σ|) + tr (ΣξΣ9).

The traces of the matrices ΣξΣβ or their product can be expressed in terms of
and thus evaluated for specific models for Σx and Σw

The power πτ(sχγ) of the test of the covariance using the statistic NSXY

and
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Figure 2. QQ-plot (sample quantiles (Y) against quantiles of a standard normal
distribution (X)) of 500 trials for the W statistic with two mutually indepoendent
simultaneous autoregressive processes (12 x 12 lattice, pχ(l) = />y(l) = 0.8).

for a bilateral test of nominal level a is thus equal to 1 — [Φ(Mχ) — Φ(M2)] with :

Ca[aHτ(Σ})+
1 [2α*tr(Σ|)+tr(Σ,Σ,)]i/2

tr(Σf)+
_

2 ~

Φ being the iV(0,1) distribution function and CQ being such that P{|iV(0,1)| > Ca} =
α.

It is also interesting to be able to compare the power observed by simulations to
a reference value. Along these lines, we thus also calculated the power of the classical
test of rχγ\ τr/v (r), in a case which would be compatible with the observed empirical
variance of rχγ> ve> estimated by the Monte Carlo simulations. Recall that in the
case of non autocorrelated variables X and Y and large samples, the variance of rxy
is approximately equal to (1 — P2χγ)2/N — 1 for a sample of N observations. For
autocorrelated X and Y, we thus computed an approximately equivalent sample size,
N* :

This number N* was used to compute the reference value, πN (r) , power of the
classical test of rxy based on N* observations.

A summary of the results is given in Table la and lb. In those tables, the observed
power of W is only given since it is almost identical to that of ^jj_2 Overall a-M ^ n e
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powers, whether observed or calculated, are close. The only differences are seen for a
few cases of high autocorrelation for either X and W.

In summary we can say that the "theoretical power" πτ(sχγ) gives a good ap-
proximation of the observed power in most cases and does not require Monte-Carlo
simulations. Furthermore, the modified W and tjft_2 tests have comparable power to
that of a classical test based on an "equivalent" number of observations N*.

5. Choice of the partition for the covariance structure of X and Y

Computations needed in order to apply the modified tests to a data set are straight
forward but rely upon a choice of strata {So, SΊ, 52,...} of A x i , on each of which the
covariance of the two processes is assumed to be constant.

In Table 2 the performance of the tQ_2 statistic is investigated for different choices
of strata in the case of the irregular grid network and Gaussian disc models. Six parti-
tions were defined, ranging from 5 to 21 strata and corresponding to different discretiza-
tions of the distance between pairs of locations (assuming isotropy). Overall the type I
error was close to 5% for most of the partitions. As the autocorrelation increased, the
type I error for the 5-strata partition was inflated whereas there was a stability in the
observed error rate when the number of strata increased. The results for the W statistic
were similar.

This confirmed that a balance has to be reached between choosing too few classes
which can bias expression (1) or too many resulting in less precise estimates of the
autocovariances. Clearly in the case simulated where the autocorrelation decreases
smoothly with distance, the performance of the tjfi_2 statistic is robust to various
choices of partitions.

6. Confidence interval for regression coefficient

Once we have a test for independence it is possible to construct a confidence interval
for the regression coefficient b, in the model

Y = a\ + bX + Z

where Z is a process independent of X and 1 is a vector with unit elements. The
confidence interval for b is the set of values of b which we would not actually reject i.e
the set of b such that Y — bX has no significant correlation with X.

Defining : fa = XQ — X and gQ = YQ — Y the standardized covariance between
y - bX and X is :

w (9Tf~bfτf)
b VΣNkdχ(k)dγ-bχ(k)

where Cγ-bX{k) = Cγ{k) + b*Cχ(k) - 26ΛΓ"1 Σ fa9β

This standardized covariance can be used as a pivot to obtain a confidence interval
for 6. We do not reject the null hypothesis when

\Wb\ < Ca where : P{|tf(0,l)| > Ca} = a.

Therefore the confidence interval is :

{b : (gτf = bfίf < C2

aΣNkCχ(k)Cγ-bχ(k)} (4)
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or
6 - T2 ± (T% + 7i - Γ1Γ3 -

where b = sxγ/sx; Γi = rfχΣΛrtCy(t)δχ(A); T2 = dχZNk dχ(k)Cχγ(k);

T3 = dχΣ NkCx{k) and where dχγ(k) = Σfa9a/Nk and dx = ClN~2sx

4.

7. Examples

Our examples concern the relationship between lung cancer, smoking and industrial
factors. We calculate W, *jjj_2 and a confidence interval for the regression coefficient
for each example. To provide an additional check on the performance of our tests, we
also carried out a Monte Carlo test based on the disc model for cases in which such a
model is plausible.

The data

For 82 "departements" we considered male lung cancer mortality rate (LC) over a
2 year period, 1968-1969, standardized over the age 35-74, cigarette sales per inhabitant
(CS) in 1953 (a fifteen year time lag was chosen to account for the delay between
exposure and the onset of the pathology) and demographic data on the percentage of
employed males in the metal industry (MW) and the textile industry (TW) recorded
by census in 1962.

The coordinates of the points of the network were identified with the geographical
locations of the administrative centers ("prefectures") of French "departements". The
spatial structure of these variables was investigated by means of a variogram. In this
analysis, N = 82 locations were retained after grouping the "departements" around
Paris into one area. The distances between the centers of "departements" were parti-
tioned into 15 classes of 70 kilometers intervals each. This gives 15 strata £ Ί , . . . SΊ5.

The observed variograms, i.e the plot of

Nζι Σ (X α -X/0 2 , fc = l, . . .15,

against the average distance, d*, for "departements" in Sk, for the four variables con-
sidered are shown in Figure 3. Note that the last two classes contain few pairs and
hence have a large variability. Three of the variograms (LC, CS, MW) exhibit clearly
an upward trend with increasing distance. Up until the 10th class, the shape of this
trend is fairly linear with increasing distance, thus compatible with the disc model for
the covariance matrix discussed by Ripley (1981). The variogram for TW gives little
indication of any spatial autocorrelation.

Results

Using the standard test base on rxγ there is a highly significant positive association
both between LC and CS and between LC and MW. The association between LC and
TW on the other hand is less strong but still significant at the 1% level (Table 3).
The W and t* _ statistics for these 3 examples are shown in Table 3. One can see a
substantial reduction of the degrees of freedom when the autocorrelation is taken into
account. We note that this occurs also for the case LC-TW which is surprising if one
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Figure 3. Variograms of the variables considered in §7. Fifteen classes of distance
are considered. The numbers of pairs in each class are: 82, 400, 582, 674, 822, 812,
726, 630, 476, 304, 178, 94, 58, 40.

recalls the shape of the variogram of TW. A possible explanation for this is that the
geographically small "departements", which are over-represented in the first few strata,
are atypical for this particular variable (TW). For CS and MW the effective sample
size is about 20% of the original sample size. Consequently the significance levels are
reduced but even after this "adjustment" these two factors are statistically significantly
associated with lung cancer. For TW the significance disappears after adjustment.
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The first two examples were also investigated by a Monte Carlo test. A disc model
for the covariance was fitted by maximum likelihood. The parameters were found by di-
rect search and corresponded to autocorrelation p (1) of 0.91, 0.85 and 0.91 respectively
for LC, CS and MW.

For each example, 1000 pairs of mutually independent variables, with covariance
given by the estimated disc model, were generated and the observed correlation coeffi-
cient was ranked among the 1000 generated coefficients. The significance levels obtained
are given in Table 3. The agreement between them and the significance levels of the W
or *jjj_2 tests is better for CS than for MW this is possibly due to a better fit of the
disc model for the CS variable. Confidence intervals, given by (4), for the regression
coefficients were also calculated. We note that they are not symmetric.

8. Discussion

In this paper we have studied the properties of modified tests of the empirical
correlation coefficient between two spatial processes. We have shown that by a simple
adjustment, correct level of significance can be reached and that the power under a
simple linear alternative is compatible with that of a standard test in an equivalent
situation. These tests can be applied both to regularly and irregularly spaced points
and can be considered as a first step in an analysis of association when detailed spatial
modelling is not suitable.

The performance did not vary much when different strata of equal covariance were
chosen. On small lattices, the modified tr^ Λ statistic is better than the standardized
covariance.

Application of these tests to data may also give pivotal confidence interval for the
regression coefficient. Furthermore, if one is prepared to model the observed covari-
ance structure, Monte Carlo tests of association can be performed. In the examples
investigated, the results from the two types of testing procedures were close.

It would be interesting to develop distribution-free tests of association based on
permutations and to compare their performance to that of the proposed modified tests
in the case of non Gaussian spatial distributions.
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Table la

Power of the modified tests: results concerning the testing of the correlation between
X and Y = aX + W where both X and Y are spatially autocorrelated, X and W
independent and of equal variance and a is chosen so that the correlation pxy between
X and y takes the value 0.2.

PXY = 0.2

PW

0.0

0.2

0.4

0.6

0.8

Px

N*

XJV (Γ)

power of W

πτ(sχγ)

0.0

79

0.42

0.42

0.44

76

0.41

0.42

0.44

80

0.42

0.44

0.44

78

0.41

0.48

0.45

78

0.41

0.52

0.48

0.2

82

0.44

0.44

0.44

74

0.40

0.42

0.41

78

0.42

0.36

0.39

75

0.40

0.36

0.39

66

0.36

0.48

0.40

0.4

78

0.42

0.43

0.43

67

0.36

0.39

0.39

66

0.36

0.37

0.36

61

0.33

0.36

0.34

54

0.30

0.42

0.44

0.6

79

0.42

0.39

0.42

71

0.38

0.34

0.36

57

0.32

0.34

0.32

46

0.25

0.28

0.27

39

0.22

0.28

0.23

0.8

84

0.44

0.35

0.37

63

0.34

0.30

0.32

54

0.30

0.21

0.27

35

0.20

0.20

0.20

19

0.12

0.12

0.13

500 simulations were carried out. The observed power of W is compared with ππ (r)
and πτ(sχγ) (cf. §4). The observed power of tj^_2

 ιs a ^ m o s t identical to that of
W. Standard deviations and confidence intervals for the observed proportions can be
calculated according to binomial sampling.
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Table lb

Power of the modified tests: results concerning the testing of the correlation between
X and Y = aX + W where both X and Y are spatially autocorrelated, X and W
independent and of equal variance and a is chosen so that the correlation pxy between
X and Y takes the value 0.4.

PXY =0.4

Pw px

N*

TΛΓ (Γ)

0.0 power of W

*τ(sχγ)

0.2

0.4

0.6

0.8

0.0

83

0.97

0.97

0.94

82

0.96

0.96

0.94

84

0.97

0.97

0.94

83

0.97

0.96

0.94

68

0.92

0.97

0.95

0.2

87

0.97

0.96

0.93

73

0.94

0.96

0.91

67

0.92

0.92

0.91

69

0.93

0.95

0.90

52

0.83

0.93

0.91

0.4

81

0.96

0.96

0.92

76

0.95

0.94

0.90

61

0.89

0.91

0.87

66

0.92

0.93

0.85

51

0.82

0.89

0.84

0.6

70

0.93

0.92

0.89

68

0.90

0.92

0.85

63

0.90

0.88

0.81

44

0.77

0.81

0.74

33

0.63

0.76

0.68

0.8

63

0.90

0.87

0.74

55

0.86

0.83

0.70

49

0.81

0.79

0.65

30

0.58

0.56

0.54

20

0.39

0.42

0.38

500 simulations were carried out. The observed power of W is compared with τrjv (r)
and πτ(sχγ) (cf. §4). The observed power of t^_2 is almost identical to that of
W. Standard deviations and confidence intervals for the observed proportions can be
calculated according to binomial sampling.
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Table 2

Percentage of type I errors of the t^ statistic for different partitions of the covariance
structure

Number of strata

in each partition 5

0.056

9

0.052

13

0.05

15

0.056

17

0.054

21

0.054

n ( l ) _ n ( l ) _ n 9
Px — PY — «•*

0.04 0.04 0.036 0.032 0.034 0.03

P(? = pψ = 0.4

pψ = /#> = 0.6

0.062

0.066

0.046 0.05

0.058 0.054

0.05

0.056

0.052

0.052

(1) (1) n Q

px = py = 0.8
0.068 0.058 0.048 0.04 0.046

0.05

0.052

0.046

Table 3

Comparison of the significance levels for tests of the association between lung cancer
mortality rates and several risk factors given by standard test, W and <jvf_2 tests and
Monte Carlo (MC+) simulations, y is the estimated regression coefficient.

W/p M MC + 95%CI for γ

cigarette sales
per inhabitant

(1953) (CS)

% male workers
in metal industry

(1962) (MW)

% male workers
in textile industry

(1962) (TW)

0.76

0.63

0.28

10.48
10- 2 1

7.16
10- 1 1

2.57
0.01

2.94
0.0032

2.48
0.0136

1.51
0.13

15

16

30

4.22
0.001

3.00
0.01

1.52
0.15

2/1000 0.78
[0.54; 0.88]

45/1000 0.29
[0.11; 0.36]

0.18
[-0.07; 0.37]
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