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ABSTRACT

We study the problem of the influence and of the choice of the regu-
larization parameter β in the Bayesian image restoration framework.
Binary and geometrically regular images are examined. The noise
degradation process which leads to the observed record can be either
additive Gaussian or a binary symmetric channel noise of transmis-
sion. MAP is not robust with respect to β, MPM and ICM are more
robust. For the three methods, a good choice of β depends strongly
on the noise level. On the basis of the observed record, two possi-
ble choices of β are examined: if the statistical one seems reasonable
at a low noise level, it isn't the case for higher noise for which the
cross-validation criterion still gives good results.
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1. Introduction: the context of our study

Let x = {xs,s E 5},S = {l,2...,n} 2 an image to be reconstructed from an
observation y = {ys, s G S} = Φ(x, 77), Φ, the noise mechanism, know as well as the noise
77. Suppose that E(x) is an appropriate energy on the configuration x which summarizes
the prior information about it and D(y,x) is some fidelity distance between y and x.
Then classical regularization methods estimate x by x(β) = arg MinxH(x : y; β), where
the posterior energy H depends on a so-called regularization parameter β as following

Standard M.A.P restoration ([6]) are exactly of this kind with ( - # ) the logarithm
of the posterior probability Pr(z : y,β), β being the parameter of a prior law on x.
M.P.M method ([11]) is also defined from such a scheme by choosing, in each pixel
s : xs = arg Max^ Pτ(xs : y β) , where this marginal probability in xs is deduced
from H. The prior E can be chosen as a Markovian energy, an entropy or a regularization
function as for example, curvature in the spline smoothing context. The distance D is
always directly derived from both the degradation process Φ and the noise 77.

A crucial question is: how to choose ihe regularization parameter β on the basis of
the record y ? Our paper will give some hints for such a choice based on experimental
results in a specific and well defined context. We first examine the dependency of the
reconstruction x(β) in β (Section 2) as well as some choice for β like statistical estimation
, cross-validation choice and joint M.A.P estimate on (x,Θ)—θ is the parameter of the
y-model (Section 3). This will be studied for two kinds of binary images: the first
one being the realization of some Markov random field (M.R.F); the other one a hand-
drawn picture. The noise degradation can be a binary symmetric channel (B.S.C) noise
of transmission, an additive Gaussian one or a textural variance noise.

By well defined context we mean that we are able to give some answers to the
following questions:

1. What particular family is being studied in the large botanic of images?

2. For a known degradation model (Φ,η), what is the level of the noise: low,
medium or high?

3. What is the quality criterion for restoration?

4. What is the regularization method used?

Without reasonable answers to such questions, there can be no reasonable results,
experimental or theoretical, to the problem of choice of the regularization parameter.

Test images are chosen to be binary and regular in a natural geometric sense. In
particular we will discuss the influence of the second and the fourth questions above on
the problem. The noise level remain high giving from 20% to 40% error rate in the pixel
by pixel maximum likelihood restoration. The mean percentage of pixel classification
error rate is our restoration criterion (we note it by PEC through all the paper) and
M.A.P, M.P.M and I.C.M methods will be experimented.

In the literature, theoretical results are obtained in the following two situations:
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• regularization by spline functions ([4],[14],[18]) or approximate solutions for
integral equations of the first kind ([9],[16],[17])

• smoothing techniques in image restoration in a C? framework ([8]).

In each of these situations, the mathematical context is well defined and theoretical
answers can be derived to help us in the choice of the regularization parameter: cross-
validation choice (or a more easily computable variant) in the first context; for the second
one where it is assumed that the variance σ2 of the noise is low, one must choose the
regularization parameter to be proportional to σ2 whereas all classical choices suggest
to take it proportional to σ which is too regularizing.

Let us describe now more precisely the object x and its noisy observation y. Two
true images x are to be reconstructed:

II The first one is the realization of a binary isotropic M.R.F (with H(x) = βE(x)):

5(*..*0 (1)
<S,t>

Here the neighborhood system {< s,t > } is the four nearest one.

(a) original (b) 6 - 20%

(c) e = 30% (d) e - 40%

Figure 1. Original picture 64 x 64 realization of a M.R.F. with βQ = 1.149 and
B.S.C. noisy image.
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Figure (1-a) gives such a realization on a 64 x 64 lattice, using free boundary
conditions with β = βQ = 1.149 and the Gibbs sampler ([6]). This one is run during
80 raster scans starting at a 0-1 uniform i.i.d configuration. Figure (3-a) gives another
128 x 128 realization for β0 = 1.40.
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Figure 2. The curves of PEC(β) corresponding to several levels of noise, for MAP,
MPM, and ICM.

12 The second one is a hand-drawn (looking like a β) 32 x 32 image given in figure (4-
a)1

The noise degradation is assumed pixel independent:

Pτ(y:x)= ]JPτ(ys : x8)

1 For reconstruction, the same energy (1)) is used.



V - On The Choice of The Regularization Parameter 59

We will examine the following three kinds of noise:

N l Binary symmetrical channel noise (B.S.C.,[11]):

Experiments are realized with e = 0.2, 0.3 and 0.4.

N2 Additive Gaussian noise:
y = x + η

Here η is a Gaussian white noise with mean zero and variance σ2. σ is chose
as 0.594,0.953 and 1.974 which corresponds to error rate 20%, 30% and 40% in
maximum likelihood classification.

N3 Texture of variance noise :

VsES, Pi(ys:xs)~Af(0,a2

XB) (4)

Let us define u = v\lσ\ and suppose that it is greater than 1. For a fixed σ\,
the smaller ι«, the greater the noise. With σ\ — 1.0 and u — 2,4,8, the MX
classification error rate are respectively 46%, 38% and 30%.

2. Influence of the regularization parameter β on the restored image

Using the prior (1) for x and the noise degradation (2)-(3)-(4) we obtain the three
posterior energies Hi(x : y), i = 1,3 :

Hi(x :y) = - at Σ{2y, - l)x, - β Σ δ(*:*t), t = 1,2

«, = l « ί^, «, = ± (5)

On the basis of such posterior probabilities, MAP, MPM and ICM are used to recon-
struct the image x. For the MAP and to avoid the dependency on a particular cooling
schedule, we use the exact maximization algorithm proposed in [12] for binary images.
Referring to this work, we can see that a practical simulated annealing can differ strongly
from the exact MAP and that it is also strongly dependent on β (see the test image A
of [12]). The MPM solution is obtained via the Gibbs sampler after fifty raster scans
(with the first ten sweeps run to reach stationarity). The ICM restoration is obtained
after 8 sweeps.

2.1. Markov random field image

2.1.1. M.R.F image 64 x 64 for β0 = 1.149 (see figure (1-a))

Experiments carried out in ([11]) prove that for low noise level, MAP and MPM
for β = βo give good restorations2. For higher noise level, it seems that such property

2 In [ll] MAP restorations are obtained via simulated annealing with a logarithmic schedule.
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is not preserved and we have performed experimentations to examine the subjective
criterion PEC (β) in β.

First note that, based on the true original image (1-a), pseudo-maximum likelihood
estimation ([1],[7]) for β gives βpML — 101 and the stochastic algorithm for maximum
likelihood estimation proposed by ([21],[22]) gives βML = 0.92 . From a B.S.C noisy
record with the error rate c = 30%, the Gibbsian E.M. algorithm developed by B.
Chalmond([3]) gives $EM = 1.00 (and i = 0.28). Such results shows that x is in
accordance with a Markovian realization of model (1) for βo = 1.149.

Figure l.b-c-d are noisy records y for B.S.C noise levels 20%, 30% and 40%.

The curves shown in Figure 2.a-b-c illustrates the variations of the PEC in β for
the M.A.P, the M.P.M and the I.CM respectively. Each point of the curve was a mean
point based on five independent realizations of the noise.

For the Figure 2-b (M.P.M method) a stochastic behavior of PEC (β) appears: this
is a consequence of the Monte-Carlo algorithm used to compute the marginal mode and
based on a relatively little number of iterations (50 in fact). Such behavior fluctuation
doesn't exist in Figure 2-a or 2-c, because for the M.A.P and the I.CM the performed
algorithms are deterministic. Figure 2-d gives, for e = 30%, PEC for the three methods.

For the I.CM reconstruction, a plateau phenomenon appears (See Appendix A): if
β exceeds some threshold β(e) depending on the noise level e, the I.CM and the Iterated
Modal Filtering are equivalent. Such a behavior can also be observed for the M.P.M.

Figures 3.a-b-c give the M.A.P, M.P.M and I.CM reconstructions of the noisy
image 1-d with the (subjective) optimal choice of β whereas Figures 3.d-e-f give such
reconstructions for β = β0. Table 1 gives the (subjective) optimal choices for each
method and each noise

Method

ICM

MAP

MPM

ε = 0.2

[0.7, oo)

[1.4,2.5]

[1.1,1.7]

ε = 0.3

[0.5, oo)

[1.1,1.6]

[1.1,1.7]

ε = 0.4

[0.3, oo)

[0.6,0.8]

[1.5,1.6]

Table 1. Optimal values for β

2.1.2. M.R.F. Image 128 x 128 for βΌ = 1.4 (See Figure 4-a)

A similar study was done for a 128 x 128 realization of the M.R.F with energy
function (1) and β0 = 1.4. Figure 4.b is the noisy image y with B.S.C noise level
e = 40%. Figures 4.c-d give the optimal M.A.P and M.P.M reconstruction whereas
Figures 4.e-f are the same restorations for βo — 1.4. Estimations on the basis of x give
βpMV = 1.42, βML = 1.19.

Experiments on y based on other independent realizations of the noise lead to the
same results. The PEC curves in β are given in Figure 5.
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(a) β = 0.7(18%)
(b) 3 ---• 1.8(16%) (c) 3 = Q.3(26%)

M.A.P M.P.M I. CM

(d) 8 = /J0(24%) (e) β = A>(18%) (f) β ---- /?0(26%)

Figure 3. Restorations of image 1-d (e — 40%): (a-c) with βoptimaV, (d-f) with βo.
For each restoration, the PEC is given in brackets.

On this graphic, we have also show the variation of another (more contextual)
criterion, the percentage of misclassified windows:

c ses

where {W8} is the nearest neighbor system and c a normalizing constant.

As can be seen here, the two optimal choices relative to both criteria are very close.

From these observed results,one can note that

• The M.A.P restoration is strongly sensible to β, all the more if the noise is
high. The (subjective) optimal value of/? (see Table 1) is decreasing when the
noise increases. At the "error rate" e = 40%, this value becomes significantly
less than to βo.

For the MPM, optimal value βMPM oί β are nearer to β0 and for β >
there is a plateau phenomenon giving good robustness in β in the following
sense: too large choices for β are not very dangerous.
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(a) original

(c) M.A.P β = 0.8(11%)

(b) £ = 40%

(d) M.P.M 3 = 1.4(12%)

(f) M.A.P 0 = 0O(26%)

(e) I.C.M 0 = 0.3(22%)

(g) M.P.M β = ft(12 (h) I.C.M 0 = /?Q(22%)

Figure 4. (a) Original image: 128 x 128 M.R.F. with β0 = 1.4. (b) B.S.C. record
with e = 40%; fc-e,) with optimal choice of/?; (jf-Λj with βo

• An accentuation of this phenomenon appears for the ICM, the plateau for the
PEC function begin at a threshold βicM which is independent of βo for B.S.C
noise (βicM — ot/2, see Appendix A).

• For the three methods(M), the optimal value βM(e) is decreasing in e. We
have also noted (see fig.5), using two distinct criteria, that the dependency on
these criteria is not strong.
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Figure 5. Restoration of the 128 x 128 record 4(b). The curves of PEC(β) and
PEC2(β) + 0.25.

2.2. Hand-drawn image 32 X 32 (see Fig.6-a)

We have performed various estimations for the parameter β of the a priori energy(l)
for this image: from x itself we obtained:

/?PML = 2.74 βMh = 0.86 /?POS = 1.58

where /?POS is the logistic estimation proposed by A.Possolo for binary images([13]).
From the record y and the Gibbsian algorithm([3]) we obtain:

• For a B.S.C at c = 20% : βEM = 1.15, ( e E M = 0.20).

• For an additive Gaussian noise,σ = 0.594 : /?EM = 0.99, (<TEM = 0.565).

As it was observed for M.R.F Images, the structure of the noise is very well recov-
ered by the E.M estimation, but here, the four estimations proposed for β are widely
scattered. Two reasons can explain this: the small size of the image, but also some
inadequacy of this image to be the realization of a M.R.F driven by (1).

2.2.1. B.S.C Noise degradation

Figures 6.b-c-d give PEC (/?) at the three levels 20%, 30%, 40% . For β > βιCM (c) ,
ICM is equivalent to Iterative Modal Filtering and superior to any MAP or MPM. This
phenomenon is specific to this kind of noise as we shall see later for additive Gaussian or
variance texture noise. As we have explained before, the fluctuation of the MPM-curves
results from the small number of iterations in the Monte Carlo algorithm.

/?MPM (0, t n e optimal choice of β , has little sensitivity to e whereas /?MAP (0 has
a great sensibility in e (Table 2)
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(a) original (c) 6 - 30%

t-t- -t-t-M-M-ί-I-I-t-I-M-t-t-I-l-I-ϊ-t-l-ί-J-l-M-t t-t C- I.e.)

!.0C«lL I I I I I I I I 1 i I I I I I I I t I I I I I I I I I I I I

(b) £ --.- 20% (d) £ = 40%

Figure 6. The original hand-drawn image and the curves of PEC(β) (B.S.C. noise).

Method

MAP
MPM

B.S.C. Noise
ε = 0.2

1.7
1.0

ε = 0.3
0.9
0.9

ε = 0.4
0.4

0.8

Gaussian noise
σ = 0.594

1.6
1.1

σ = 0.953
1.3
0.9

σ = 1.974
0.5
0.7

Table 2. Optimal β

2.2.2. Additive Gaussian noise:

For additive Gaussian noise at level 20%, 30%, 40% (σ = 0.594,0.953,1.974 respec-
tively) figures 7.a-b-c give the PEC in β. Here, MPM at βMPM is optimal, there is still
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Figure 7. The curves of PEC(β) (Gaussian noise on the original image of Fig.
6(a).

a plateau phenomenon for ICM and MPM; but the optimal choice βicM gives a better
result than Iterative Modal Filtering.

Table 2 shows the relative stability of PMPM in e whereas PMAP is quite variable.

2.2.3. Variance texture noise:

Figure 8-a gives such a degradation at level u = σ\jσ\ = 4 (σo = 1) and curves
8.b-c give respectively PEC in β for the MAP at various levels and PEC at level u = 4
(error rate 35% ) for MAP, MPM and ICM.

If β > 1.50 all MAP restorations are uniformly white: this is a negative effect of
the strong spatial regularization property of the MAP restoration if β is too large. For
MPM, robustness in β is better than for MAP but it is not very good indeed; ICM is still
robust for β > βicM but its quality is relatively poor. (See also [20] where comparison
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[h)PEC{β) curves of M.A.P

(a) noisy image (u = 4)

(c) PEC{β) curves of M.A.P,

M.P.M, I.C.M (u = 4)

Figure 8. (Λ) Variance texture record of the image of Figure 6(a), and (b-c) PEC
curves for various reconstructions and various noise levels u.

between global and local Bayesian restoration is studied).

3. On the choice of the regularization parameter β

We shall examine here three possible choices for β on the basis of the record y: 1.
the statistical choice; 2. the cross-validation choice; 3. the jointly MAP choice on (θ,x)
for both θ (the model parameters : θ = (e,β) or (σ2,β) ) and x .

3.1. Statistical choice:

We have first used the Gibbsian E.M algorithm([3]): in this algorithm, the pseudo-
likelihood([l],[7]) of the Gibbsian field is substituted to the exact likelihood and in the
E-step, expectations are calculated by the Monte-Carlo method with simulations given
through the Gibbs sampler. These estimation results are the following:

• M.R.F 64 x 64 image (see Fig. 1-a, β0 - 1.149) and for B.S.C noise:

for e = 0.02 0EMJ) = (1-28,0.03)
for e = 0.20 (βBM,e) = (1-15,0.20)
for € = 0.30 0EM,e) = (1-00,0.28)
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Hand-drawn Image 32 x 32 : (see Fig. 6-a )

B.S.C noise
for e = 0.02 (βEM,c) = (1.43,0.02)
for e = 0.20 (βEMJ) = (1.15,0.20)

Additive Gaussian noise

for σ = 0.594 (βEM, σ) = (0.99,0.565)
for σ = 0.953 (βEM,σ) = (0.56,0.797)

For higher level of the noise (e = 0.4 or σ = 1.974), the Gibbsian E.M doesn't give
satisfactory results.

Secondly, moment estimations proposed by A. Frigessi h M. Piccioni([5]) in the
B.S.C noise case are used. We have approximated the involved elliptic integrals by
polynomials of degree 5 (error uniformly bounded by 10~8)3. The estimation results
are as following:

• M.R.F 64 x 64 image (see Fig. 1-a, β0 = 1.149) and for B.S.C noise:

for e = 0 ΦMT , i) = (0.98,0.00)
for e = 0.20 ΦMTJ) = (0.88,0.16)
for e=0.30 φMτ,i) = (1.02,0.31)
for e = 0.40 ΦMTJ) = (0.94,0.38)

• Hand-drawn Image 32 x 32 : (see Fig. 6-a )

for
for e
for e
for e

€ = 0 (βm
= 0.20 φM

= 0.30 φM

= 0.40 φM

r,e) = (0.84,-0.04)
rTlc) = (0.77,0.11)
rT,c) = (0.99,0.32)
τ,c) = (0.38,0.25)

Despite the fact that energy(l) is a good measure of geometric regularity, the
remoteness of the object x from a realization of a M.R.F can lead , in real images
(here the hand-drawn one) to important fluctuations in the various estimations of β.
Further, such a statistical choice of β is independent of the restoration method: this
is not satisfactory when we take into account the strong dependency of the subjective
optimal choice /?Λ/ on the method M. Note that other methods of estimation using
incomplete data are available (see L. Younes, [21],[22]).

Restoration experiments with these estimated values β^ and &MT are given in the
Figure 10 and 11.

3.2. Cross-validation choice:

In some sense, this non parametric choice takes into account all the factors defining
the context of the problem: the method of reconstruction, the quality criterion, and the
process of degradation.

3 See Abrainowitz & I. Stegun: Handbook of Mathematical Functions.
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Given one pixel s £ S let x^ be the restoration obtained when all the record but
the value ys is observed. The Cross-Validation (C.V) distance is defined by:

where α is a convenient normalizing factor depending only on S (see [15], [4], [9], [14],
[16], [17]). The C.V choice for β is:

def
βcv = arg Minβ dcv(β)

Theoretical results are obtained in some linear and Hilbertian context for the object
x (see for example [4]): if we note

the distance to the true object x, then under good conditions and when the density
of observations increases to infinity, then dCv(β) and d(β) reach their minimum at
"the same value" β — βcv - Note that for a binary image x, d(β) and PEC(β) are
proportional.

When the context for x doesn't stay linear (convex or not convex constraints on
x ), no theoretical results are available, but for some problems, the C.V choice still
seems reasonable (see [17]). The following experiments confirm this opinion: values of
PEC(/?) and dcv(β) have been computed from β = 0.2 to β = 2 with an increments
of 0.1 for MAP, MPM, ICM methods, for BSC or additive Gaussian noise at levels 20%
and 30%. Table 3 gives values of/? minimizing dcv and PEC, showing the proximity
of the two determinations.

Method
ICM

MPM
MAP

B.S.C. Noise
0.70-0.70
1.21-0.89
1.66-1.74

0.50-0.50
0.92-0.69
1.00-1.10

Gaussian noise
1.13-1.11
1.27-1.04
1.39-1.28

0.76-0.75
0.95-0.61
0.82-0.95

Table 3. PEC and V.C choices for β

These minima values of β are deduced from the smoothing curves PEC(β) and
dcv(β), obtained themselves by polynomial regressions of degree 3. Figure 9 gives a
example of smoothed PEC and dcv curves after a convenient change of scale for dcv -

The set of figure 10 and 11 allows us to say that overall there is a good quality
of reconstruction with βcv Statistic selection lead to important fluctuations in this
quality.

Nevertheless, at our stage, C.V. criterion cannot be used due to over lengthy com-
puting time unless the restoration method is very rapid (for example ICM): here, one
exact MAP restoration takes 30 seconds (CPU time) on a VAX 750 (less for small values
of/?), MPM with 50 loops in the Monte-Carlo estimation needs 7 seconds (the same for
Simulated Annealing with the same characteristics), ICM needs only 0.2 second.
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o.oδ O7T5" 575) 5775 0750 Γ7Q5 1725 O S Γ75
parametre BETA

Figure 9. Exact and smoothed dcv (curve 1), and PEC (curve 2). Additive
Gaussian noise record (σ = 0.953) and M.P.M. restoration.

3.3. Joint MAP on both parameter (to be estimated) and object (to be restored):

It is known that, frequently, maximizing the conditional likelihood Pτ(x : y,β) in
both parameters β and object x leads to some degenerated solutions, see for example
([10],[19]). We shall briefly illustrate this behavior on three examples of filtering (see
appendix B for the sketch of the proofs).

Example 1. Let x = {xχ,X2, - ,z n } a binary signal taking values in { — 1,1} and
y = {2/i,y2j .,ί/n} the record: j/, = X{ + et where {e,} are i.i.d ΛΓ(0,σ2) variables.
Suppose x has the (one dimensional) prior given by (1). Then the likelihood of the
complete data is:

βn(x) + — <y,x

where n(x) = Σ < 1 ι j > ^(^«,^j) and < x,y > is the scalar product in ΊZn.

Let T(y),T(\y\) be the sums of the components of y, \y\ = {|t/χ|, | j/ 2 | , , \yn\]
respectively, η = inf, |j/t |, and denote s(z) the sign of a real z. Let Py be the conditional
likelihood. Then we have the following result:

• If σ 2 -> 0, β -»- oo and βσ2 > C > 2T(\y\), then for x = {s,s,... ,s} with

If σ 2 -• 0 and β -> oo with βσ2 < C < 2η/n , then with £ = {*(&•), ί = 1, n},

In both case, a degeneration appears: the estimated parameter value goes to the
boundary of the domain of definition and restoration will be driven uniquely by the
regularization component ( βσ2 is large) or by the fidelity to the data y {βσ2 is small).
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The same behavior appears exactly if x is recorded via a B.S.C with parameter a\
(see (5)): complete regularization if/JαJ"1 > C > n/2, complete fidelity to the record if
βoέ^1 < C < 2/n (ctj"1 is increasing with level of noise).

Example 2. Examine now the following filtering of an AR(1) process. The model is:

ί
Vi - Xi + ei

i = l , 2 , . - . , n
Xi- pxi-i + ηi, ρ > 0

with {et }, {77,*} i.i.d variables, and et ~ Λ/"(0,τ2), 77; ~ Λί(0,σ2). The parameter is
θ = ( r 2 , σ 2 , p ) . We have:

py = c(x: y,θ) = λίn ((/ + ^ Σ ; 1 ) - 1 ^ Σ , ( / - (/ + ^ Σ ; 1 ) - 1 ) )

from which it can be deduced:

• (p,<τ2) being fixed, r 2 —• 0 + and x — y give the maximum of Py.

• r 2 and σ 2 = J^-J being fixed, σ —• 0 + and p —»• 1_, x — (y, . . . , y) gives the
maximum of Py.

Example 3. This third example is taken from an exercise in the book by Ch. Gourieroux.4

Let x = (a?χ, # 2 , . . . , xn), Xi EΊZ with no prior knowledge and independent observations

y{ = [ y%1 ), ί = l ,n, where {y t l} and {yi2} are independent Bernoulli variables:
\ to* J

( Pτ(yil = 1) = F(x, )
I P τ ( y i 2 = l ) = F(xi + β ) i = l , n
[ with F(x) = (1 -h e " 1 ) " 1 (Logistic distribution)

Then the M.L (estimation x restoration) for β and x leads to: if yix + y, 2 = 0, έ t =
-00 and if yiχ + yi2 = 2, i t = +00.

Let "n be the cardinal of the set {i/l < i < n, yιγ + y l2 = 1} and 2̂ ^ n e arithmetic
mean of the {t/, 2} for the preceding index set, then:

• If y t l +yi3 = l,x, = — /3/2 where /? = 2 In ί^^- j is the joint M.L estimator of
\ 2/2 /

β . It is easy to check that β ^>2β. Then, if we may consider as satisfactory
the restoration of x , we see that it is associated to a biased estimation of the
unknown parameter.

4 Econometrie des variables qualitatives (Ed. Economica, Paris 1984), Ex. 19, p. 109.
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M.Λ.P [.CM

3PEC =• 1.66(10%)

,βEM = 1.15(12%)

= 0.77(14%)

5£.vί = 1.15(8%)

βPEC = 0.70(8%)

/•fcv = 0.70f8%)

5 £ M = 1.15(8%)

βMT = 0.77(8%)

Figure 10: Various restorations

of the B.S.C. record with

e = 20%. tor various choices of
3: subjective optimal choice.
C.V. choice, E.M. choice
and reconstructions.

3\ΪT = 0.77(9%)

Figure 10. Various restorations of the B.S.C. record with e = 20% for various
choices of/?: subjective optimal choice, C.V. choice, E.M. choice.
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no sv image

M.A.P M.P.M I.C.M

βpEC = 0.82(16%)

βEM=Q.56(lS%)

PPEC = 0.95(14%)

βcv = 0.61(1-1%)

0EM = 0.56(15?

- 0.76(13^:

= 0.75(13%)

= 0.5611

Figure 11: Similar experiments as Fig. 10 for additive gaussian

noise with σ — 0.953.

Figure 11. Similar experiments as in Figure 10, for additive Gaussian noise with
σ = 0.953..
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4. Discussion and further work

We have seen that it is difficult to give a general answer to the crucial question:
How to choose the parameter (say β in a regularization reconstruction method? First,
the general context of the problem need to be conveniently defined: in which family is
the object to be reconstructed?, what is the level of the noise degradation?, but also
the choice of regularization parameter is dependent on quality criterion selected and on
the reconstruction method. We have focussed this experimental study on geometrically
regular binary image x and record y resulting from a noise degradation process of
relatively high level. The robustness in β is decreasing from I.CM to M.A.P via M.P.M,
and it is observed that for high level of the noise, optimal values of β can differ strongly
on true (M.R.F images) or estimated (modelling of a non M.R.F image by a M.R.F) /?,
particularly for M.A.P.

If a statistical criterion (for ex. E.M estimation) of choice of β seems reasonable at
low noise level, this is not the case in medium or high noise level. In this case, cross-
validation criterion gives satisfactory results, but, at our stage of study, its numerical
implementation is too expensive to be used in practice. Next we note that joint M.L.
on both parameter and object leads to degenerated solutions.

Future work arises naturally: how relevant are such results to other families of
objects?, Are they some theoretical results that validate the C.V choice, in the context
of constrained regularization? What are numerically computable variants of the C.V
criterion?

APPENDIX

A. Equivalence for large β between I.CM and the iterative modal filtering

Up to a constant, we have (see (5), i = 1,2):

Hi(x : y) =-aiΣ(2ys - l)x, - β
s

which leads to the local conditional probabilities:

lnPs(xs :xutφs,y) = as + axs(2ys - 1) + β ^ Γ 6(x81xt)
t:<s,t>

In the I.CM context, let x^ be the configuration after the kth iteration and
s = s(k + 1) be the pixel visited at time k + 1, then:

= arg Maxx, Ps(xs : x\k),tφ s,y)

= / 1 if
10 if

if » > 2 - a(2y, - ΐ)/2β
not

First case: B.S.C noise. Here the above updating rule becomes

ifu - la.(*+i) - / 1 i f«>2-α/2/?
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i f 2 / s = 0 χ(*+i) = ( 0 i f V <
8 11 if not

Then suppose that a/2β < 1,

ar, is exactly obtained by modal choice. For e =0.2, 0.3 and 0.4 the threshold
βiCM are respectively 0.693, 0.424 and 0.202.

Second case: Additive Gaussian noise. Now the record values {ys} don't belong to
a finite set as above. However, there is the same plateau phenomenon when a/2β is
small.

For M.P.M restorations, similar behavior occurs: the reason is that the Gibbs
sampler uses the same local conditional laws {Ps(xs : xt,t Φ s,y)}. Then if β is large,
the Gibbs sampler leads to the modal choice with strong probability p. In the B.S.C
noise case, simple calculations show that for a G (0,1),

if 6 d=f max (l/2 In ̂ J - ^ , 1/2 I n - g- - ) , then β > b => p > a

As example for e — 0.3, β > 1.90 ensures that p > 0.95.

B. Degeneracy of joint M.L estimate on θ the parameter and x the object

Example 1. Choose β,σ2 such that βσ2 > 2T(|y|): if we suppose that T(y) > 0, then
x = (1,1 . . . , 1) = x(β,σ2) gives the maximum for Pr(x : y;/?,σ2). Looking at function
ψ of β, σ2: (/?, σ2) i—• Pτ(x : y; /?, σ2), we have the estimation

exp(-2T(y)/σ2) + 2n exp(-/? + 2Γ(: y :) - 1

Then if βσ2 = C > 2T(\y\) and σ2 -> 0+, this probability goes to 1.

Suppose now that βσ2 = C < 2η/n. Then it's easy to see that x — {s(yi), i = 1, n}
is the (/?, σ2)-MAP estimate. Then for the function φ

φ>[l + 2n exp(nβ + 2η/σ2)]~1

So if βσ2 = c< 2η/n, φ -• 1 : as : σ2 ->0 + .

When we are in the presence of a B.S.C noise, we have

Pr(z, y\ α, /?) = K(a, β) exp{βn(x) -f an(x, y)}

with
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ί)(τ τ \ and n(τ tΛά-

If 2/Jα"1 > n,z = {a, a...,a} : where : a = s(T(y)) (the mode of the sequence
{y t )i = l,n}) is the MAP in a? and the estimation

Pr(i : y; /?, or) > [1 + exp(α[n(-z, y) - n ( i , y)] + 2n exp(-/? + nό/2)]" 1

shows that this probability goes to 1 if βa"1 = C > n/2 and a —* oo.

If n/?α < 2, £ = y is the MAP and

Pr(i : y;/?,α) > [1 + T exp(nβ/2 - δ)]'1

So βa"1 = c < 2/n and α —> 0 gives limit value of 1 to this probability.

Example 2. Straightforward calculation from the Gaussian form of the conditional law

Pr(* : y).

Example 3.

ln/( W l > j/, 2 ; *,,/?) = Xi(yil + y<a - 2) - β(l - yh) - ln[(l + e~x')(l + e - ( " + « ) ]

and so we obtain the announced result if y t l -f-yt 3 = 0 or 2. If y t l +y t 2 = 1 , maximization
in X{ gives: exp(—x, ) = exp(/?/2). Then, the informative part for β is:

exp(/?/2)

and maximization in /? gives: β =

Examine now the conditional law Pr(ί/j2 :y%1-\- y%2 = 1)

i2 : Vh + Vi* = 1) = t + e-/?

Then, by the law of large number, yj —* T+F^ a n d s o :' β ~* 2/?.
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