
Stochastic Orders and Decision under Risk
IMS Lecture Notes - Monograph Series (1991)

REPAIR POLICIES AND STOCHASTIC ORDER

BY THOMAS H. SAVITS*

University of Pittsburgh

This paper reviews the role of stochastic order as it relates to the study
of maintained systems in reliability theory. The classical univariate comparison
results for the age and block replacement policies are presented. Extensions to
stochastic comparison of processes and recent generalizations of age and block
policies are also discussed.

1. Introduction. The purpose of this paper is to survey the role of
stochastic order as it relates to the study of maintained systems in reliability
theory. Some of the earliest treatments of maintenance considerations date
back to Khintchine (1932), Lotka (1939), Campbell (1941), and others. An
excellent presentation of the historical background is contained in the book of
Barlow and Proschan (1965).

Maintenance policies are followed so as to reduce the number of system
failures. Typically, as a unit ages it tends to break down more frequently.
Since these unplanned failures can be costly, it may at some point in time be
more cost effective to simply replace the unit before it fails with a new unit.
Any such strategy of planned replacement is called a maintenance policy. Two
policies that have received considerable attention in the literature are known
as age and block replacement policies. These will be reviewed in Section 2.

The (cost) effectiveness of a maintenance policy has been quantified in
various ways. One simple measure is in terms of the expected number of fail-
ures (and/or repairs). This information would be sufficient provided the re-
placement costs are identical and constant. For more complex cost structures,
however a better measure is provided through the notion of stochastic order.
Early comparisons were between random variables; the modern viewpoint is
to compare processes.
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The outline of this paper is as follows. In Section 2 we review the classical
(marginal) comparison results. The framework for stochastic comparison of
counting processes is given in Section 3. We extend the classical notions of
age and block replacement policies in Section 4, and list some new results in
Section 5. An illustrative example is presented in the final section.

Throughout this article, the life distribution F of a new unit is assumed to
be a continuous function; its survival probability is denoted by F(t) = 1 — F(t).
We shall also use the term "repair" in the wide sense: a replacement can be
interpreted as a complete repair. Generally, the letter aNn is used to denote
a process which counts the number of unplanned repairs. Superscripts "A"
and "i?" refer to an age policy (even in the extended sense of a repair policy
introduced in Section 4) and block policy, respectively. If we want to emphasize
the dependence on the life distribution F, a subscript will then be used.

Lastly, we mention that, because of space considerations, only comparison
results for unplanned repair/replacements were considered here. A more com-
plete cost analysis would also include a comparison of planned replacements.
These comparisons have been considered in the literature (e.g., see Barlow and
Proschan (1965,1981) and Block, Langberg and Savits (1989,1990).

Some additional related material may also be found in Blumenthal, Green-
wood and Herbach (1976), Deng (1985), Langberg (1988), O'Brien (1975),
Shaked and Shanthikumar (1989), and Whitt (1981).

2. Review of Classical Results. For the classical situation we suppose
that a new unit on line has survival distribution F. There are three general
strategies we want to consider: (i) no maintenance policy, i.e., replacement
at failure only; (ii) a block replacement maintenance policy; and (iii) an age
replacement maintenance policy.

In the first case, we simply wait for a unit to fail and then replace it with
a new identical unit. Since there is no maintenance policy, all replacements
are unplanned. We denote the number of such unplanned replacements in [0,ί]
by N(t). Thus {N(t),t > 0} is a renewal process generated by F.

For a block replacement maintenance policy, complete replacements are
performed at failure (unplanned replacements) and also at absolute times
Γ,2Γ,••• (planned replacements). The number of unplanned replacements
in [0,<] is denoted by NB(T;t).

In the case of an age replacement maintenance policy, we have complete
replacements at failure (unplanned replacements) or at age T (planned re-
placements), whichever comes first. The process NA{T\t) counts the number
of unplanned replacements in [0,ί].
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The basic question of interest then is how these strategies compare. It
is intuitively clear that if the performance of a unit deteriorates as it ages, a
planned replacement policy (e.g., age or block) would result in fewer unplanned
replacements. This is indeed the situation.

We first need a notion of wear-out. In the reliability literature there are
several nonparametric classes of life distributions that are used to describe
this phenomenon. The two that we discuss here are the new better than used
(NBU) class and the increasing failure rate (IFR) class. A life distribution F
is said to be NBU if F(s + t)< F(s)F(t) for all s,t > 0; it is said to be IFR
if F(s + t)/F(s) is nonincreasing in s > 0 for each t > 0.

Intuitively, the first notion (NBU) says that the probability of surviving
an additional t units of time is less than that of a new unit; the second notion
(IFR) says that the probability of surviving an additional / units of time
decreases as it ages. It should be noted that if F is IFR, then it is also NBU.

In order to compare the strategies, the standard notion of stochastic
ordering is used, i.e., a random variable X is said to be stochastically smaller
than a random variable Y if F(t) = P(X > t) < P(Y > t) = G(t) for all t. In

st st
this case, we write X < Y, or alternatively, F < G.

The classical comparison results are listed in Theorem 2.1. A good ref-
erence for these results is Barlow and Proschan (1981).

(2.1) THEOREM. Let T, t > 0 be fixed. If F is NBU, then

(i) N*{T;t)< N(t)i

(H)J^(T *)<*(*);

(Hi) NB(T; t) < NB(kT; t) for k = 1,2, •;

(iv) NΛ(T] t) < NA(kT; t) for k = 1,2, • .

When F is IFR, we have

(v) iVΛ(T i ;t) < NA(T2;t) whenever ϊ\ < Γ2;

(vi)

(2.2) REMARK. The results (i)-(v) also characterize the life class of F.

That is, for example, if (i) holds for all Γ,/ > 0, then F is NBU.

The results (i) and (ii) of Theorem 2.1 show that under a wear-out as-

sumption, a planned replacement maintenance policy reduces stochastically

the number of unplanned replacements. The results (iii), (iv), and (v) com-

pare what happens when the parameter Γ is changed, and (vi) compares age

and block policies.
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An important point to observe about the classical comparisons is that
even though a stochastic process is used to record the number of unplanned
replacements, only marginal comparisons are considered. This may be suffi-
cient for making simple cost comparisons, however, a more complicated cost
structure would generally require information about the entire process. This
provides the motivation for the next section.

3 Comparison of Counting Processes. We first introduce some
basic terminology. By a counting process we mean a stochastic process whose
sample paths are nonnegative right-continuous step functions starting at zero
at t = 0 and only increasing by jumps of size one. The totality of such paths
is denoted by 5.

If K and L are two counting processes, we say that K is stochastically

smaller than X, written as K < L, if for every n = 1,2,••• and all choices

n)) eu}< p{(X(ί!),...,i(ίn)) e u}

for every Borel upper set U in R n . A set U in R n is called upper if whenever
x - (xi, , x n ) G U and y = (t/i, ,y n ) satisfies yt > z;, i = 1, , n, then
yeU.

(3.1) REMARK. A more general treatment of stochastic ordering is given in
Kamae, Krengel and O'Brien (1977). Indeed, S can be viewed as a partially
ordered Polish space. If \κ and λjr, denote the corresponding probability

st
measures induced on S by the counting processes K and i , then K < L is

st
equivalent to \κ < A/,.

A technique that is useful for stochastic comparison of processes consists
of the following three steps. Let K = {K(t),t > 0} and L = {L(t),t > 0} be
two counting processes.

STEP 1: Identify "objects" Uχ9 V<ι, in K and Vi, V25 in L and a monotonic
function Φ : Π£U En -> S such that K = 9((Un)) and L = »((Vr

n». Here En

is an appropriate state space for Un and Vn which is equipped with a suitable
notion of upper sets. The notation (Un) is used to denote the sequence on the
product space Π^Li En whose nth element is Un. Similarly for

STEP 2: Show (Un) < (Vn) by showing that
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and

(fffc+i I U\ = ui, ',Uk = uk) < (Ffc+i I Vx = vi, ,Ffc = «*)

for all u\ < vχ, ,Uk < v* and fc > 1. This is a main result in Kamae,

Krengel and O'Brien (1977).

st st
STEP 3: Conclude that K < L if Φ is nondecreasing or K > L if Φ is nonin-
creasing.

Perhaps the most crucial step is the first. This is the decomposition step.

The goal is to decompose the counting processes into simpler pieces. The

particular choice of these pieces (or "objects") depends upon the nature of the

counting process and on one's ingenuity.

We now illustrate with some examples. In the first example, the "objects"
are restrictions of the counting process to specified time intervals. For the
second example, the "objects" are the interarrival times, and in the last case,
we use the arrival times (also, see Section 6 for a more specific example).

EXAMPLE 1. Let {/n} be a partition of [0, oo). Then define Kn = {K(t); t G In}

and Φ by

EXAMPLE 2. If the interarrival times of K are denoted by ΛΊ,X2? •? then Φ
is given by

3=1

EXAMPLE 3. This time we consider the arrival times Si, S2, of K. Now

Note that Φ is nondecreasing in Example 1, whereas it is nonincreasing

in Examples 2 and 3.

(3.2) REMARKS. Let (Xn), (5 n ) , (Yn), (Tn) denote the interarrival and
arrival times for the counting processes K and L respectively.

st st
(i) (Xn) < (Yn) implies (5 n ) < (Tn) since nondecreasing functions pre-

serve stochastic order.
st st

(ii) {Sn) < (Tn) if and only if K > L. Hence, the stochastic ordering of
interarrival times gives a stronger result than the stochastic ordering
of the processes themselves. This observation may be useful if the
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cost structure is a nondecreasing function of the interarrival times

but not of the arrival times.

4. Extending the Notions of Block and Age. The classical notions

of block and age replacement policies are extended in Block, Langberg and

Savits (1989,1990). In addition to their mathematical interest, they also have

technical utility.

We briefly describe these extensions in the case of an arbitrary counting

process Q. Let Qi = {Qi(t),t > 0} be independent copies of Q and Z = (zk)

a sequence of positive numbers.

The extension in the block policy case is straightforward. We define

{ Qi(t) i f θ < ί <zu

k k A -fl

\^Qi(Zi-)+Qk 1U-zι zk) if Vz< < t < V^i
t = l t = l i=l

The process QB(Z;t) counts the number of unplanned repairs in [0,ί]. Intu-

itively, we have planned replacements at the times z\, zι + z2, •; unplanned

repairs between Σ<=i z* a n ( ^ Σt=i z* a r e g° v e r n e ( i by the process Qk+i

The extension in the age policy case is of a different nature. We shall need

to make use of the interarrival times {Vij} for the process Qi. A typical sample

path may be described as follows. Suppose that Vu < zι, V12 < z2, V13 < z$

but V14 > z4. Then for 0 < * < Ci = Vu + Vi2 + V13 + z4 we set QΛ(Z;t) =

Qι(t). The times Vu, Vu + V12, Vu + V12 + V13 are interpreted as unplanned

repair times, whereas the time ζι corresponds to a planned replacement. Thus

we have unplanned repairs as long as the times between repairs is not "too

great" as measured by the z^s. Next suppose that V21 < z$ but V22 > ZQ. Then

for 0 < t < ζ2 = V2i + 26 we define QΛ(Z;t + ζι) = Qι(ζi-) + Q2(t). Continue

in this manner. The process QΛ(Z; t) counts the number of unplanned repairs

in[0,*].

(4.1) REMARK. The planned replacement events above do not, in general,

have an age interpretation, i.e., a planned replacement is governed by the time

between repairs and not by the age of the unit. The only exception to this

is when the process Q is a renewal process, as in the classical case. We thus

choose to call this extended notion a repair replacement policy instead of an

age replacement policy.

5. Applications. We now restrict our attention to two special cases.

For the first case we take the counting process Q in Section 4 to be a renewal

process N generated by F. Then, for Z = fa), we define the processes NA(Z)

and NB(Z) by NA(Z;t) = QA(Z;t) and NB(Z;t) = QB(Z;t). If all 2* = Γ,
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we obtain the classical age and block counting processe NΛ(T; t) and NB(T\ t),
respectively, of Section 2.

For the second case, we take Q to be a nonhomogeneous Poisson process
Nm with mean function E[Nm(t)] = -In F(t). The process Nm thus corre-
sponds to a minimal repair process, i.e, at failure times the item is restored to
its functioning state just prior to failure. Now set N^(Z t) = QΛ(Z;t) and
N%(Z;t) = QB(Z;t).

For the above six processes there are many possible comparisons that
might be of interest. These are considered in great detail in Block, Langberg
and Savits (1989, 1990). The following theorem lists a few of the results.

(5.1) THEOREM.

(i) All classical results in Theorem 2.1 remain valid as stochastic com-
parison of processes.

(ii) N^G(Z) < N^F(Z) for all Z if and only if F < G.

(iii) N*G{Z) < N£F(Z) for all Z if and only if F < G.

(iv) NB(Z) < Nm for all Z if and only if F is NBU.

(v) NΛ(Z) <* Nm for all Z if and only if F is NBU.

(vi) N£(Z) S< Nm for all Z ifF is IFR.

(5.2) REMARK. Most of the above results were obtained through com-
parison of interarrival times. Thus those results are actually stronger than
indicated. However, for (vi), we could only find a proof based on arrival times.

6. Illustrative Example. We close this article with a simple exam-
ple which illustrates some of the technical aspects. We consider a stochastic
comparison between two minimal repair processes based on different distri-
butions, namely Nmyp and NmiG Our goal is to find conditions such that

Nm,F > NmyG.

Method 1. Our first attempt is to consider the interarrival times (Xn)> (Yn) of
Nm,Fi NmiG respectively. By definition of a minimal repair process, we have

and a similar expression for (Y*+i | Yi = yi, , Y* = Ite) in terms of G. Thus,
st st

if we want to conclude that (Xn) < (Yn) (and hence NmtF > Nm,G) using the
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method outlined in Step 2 of Section 3, we must require that

(6.1)

for all t > 0 and all 0 < d < e.

Method 2. The next approach is to use the arrival times (Sn) and (Tn) instead.

Now, we can write

. x F(tV*k)

and a similar expression for (7fc+i | Γi = ti, ,2* = t*) in terms of G. Here

a V 6 means max{α,δ}. It is not hard to show this time that in order for
st

(Sn) < (2n)> we only need to require the condition

(6.2) Fd(t) < Gd(t)

for ail <M > 0.

Although condition (6.2) is weaker than condition (6.1) it is not the best

possible result.

Method 3. For this approach we make use of a special fact about nonhomo-

geneous Poisson processes. Let M be a Poisson process with mean rate one.

Then NmyF(t) = M[-ln F(t)] and iVm,σ(<) = M[-ln G(t)]. Since a Poisson

process has nondecreasing sample paths, it follows that Nm>p(t) > NmiG(t)
- - st

pathwise provided — In F(t) > —In G(t)y i.e., NmyF > Nm,G if

(6.3) F *< G.

Moreover, this condition is also necessary.

Acknowledgement: The author would like to thank the referees for their
helpful suggestions.

REFERENCES

BARLOW, R.E. and PROSCHAN, F. (1965). Mathematical Theory of Reliability.
Wiley & Sons, New York.

BARLOW, R.E. and PROSCHAN, F. (1981). Statistical Theory of Reliability and

Life Testing: Probability Models. To Begin With, Silver Springs, MD.

BLOCK, H.W., LANGBERG, N.A. and SAVITS, T.H. (1989). Repair replacement
policies. Department of Mathematics and Statistics, University of Pitts-
burgh.



T. H. SAVITS 319

BLOCK, H.W., LANGBERG, N.A. and SAVITS, T.H. (1990). Maintenance com-
parisons: block policies. J. Appl. Probab. 27, 649-657.

BLUMENTHAL, S.H., GREENWOOD, J.A. and HERBACH, L.H. (1976). A compar-
ison of the bad as old and superimposed renewal models. Management Sci.
23, 280-285.

CAMPBELL, N.R. (1941). The replacement of perishable members of a contin-
ually operating system. J. Roy. Statist. Soc. 7, 110-130.

DENG, Y.L. (1985). On the comparison of point processes. J. Appl. Probab.
22, 300-313.

KAMAE, T., KRENGEL, U. and O'BRIEN, G.L. (1977). Stochastic inequalities
on partially ordered spaces. Ann. Probab. 5, 899-912.

KHINTCHINE, A.YA. (1932). Mathematisches fiber die Erwartung von einem
offentlicher Schalter. Mat. Sb.

LANGBERG, N.A. (1988). Comparisons of replacement policies. J. Appl.
Probab. 25, 780-788.

LOTKA, A.J. (1939). A contribution to the theory of self-renewing aggregates
with special reference to industrial replacement. Ann. Math. Statist. 10,
1-25.

O'BRIEN, G.L. (1975). The comparison method for stochastic processes. Ann.
Probab. 3, 80-88.

SHARED, M. and SHANTHIKUMAR, G. (1989). Some replacement policies in a
random environment. Probab. in the Engrg. and Info. Sci. 3, 117-134.

WHITT, W. (1981). Comparing counting processes and queues. Adv. in Appl.
Probab. 13, 207-220.

DEPARTMENT OF MATHEMATICS AND STATISTICS

UNIVERSITY OF PITTSBURGH

PITTSBURGH, PENNSYLVANIA 15260




