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Introduction

A statistic is ancillary if its distribution does not depend on the
parameters of the model. It might appear at first sight as if ancillary statistics
could make no contribution to inference about these parameters. However, as
was pointed out by Fisher who first defined and named the concept (1925, 1934,
1935, 1936), this appearance is deceptive. By themselves ancillaries of course
carry no information about the parameters, but they may be very useful in
conjunction with other parts of the data.

Ancillarity has connections with many other statistical concepts, among
them sufficiency, group families, conditionality, completeness, information, pre-
randomization, and mixtures. Its most important impact on statistical
methodology comes from the suggestion that inference should be carried out
conditionally given an ancillary statistic rather than unconditionally. For small
samples, the resulting conditional procedures can be less efficient than their
unconditional counterparts; however, they have the advantage of greater
relevance to the situation at hand and frequently are simpler. Typically, the effi-
ciency difference tends to disappear as the sample size becomes large (see for
example Barndorff-Nielsen, 1983, and Liang, 1984).

Since ancillaries typically are not unique, the recommendation to
condition on an ancillary is not sufficiently specific. Conditioning comes closest
to its purpose of making the inference relevant to the situation at hand if the
ancillary is maximal, i.e. if there exists no other (nonequivalent) ancillary of
which it is a function. The concept of maximal ancillary, which is basic to the
theories of ancillarity and conditioning, was introduced by Basu (1959) who
showed that maximal ancillaries always exist,2 but noted that even they may not
be unique. In the same paper he also pointed out some measure theoretic com-
plications which require the slightly weaker definition of essential maximality for
their resolution. Further results and some basic examples were given in Basu
(1964) and some additional generalizations in Basu (1967).

1Research partially supported by NSF grant DMF-8908670.
For a more precise statement see Theorem 3.
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Ancillarity is in a certain sense the dual of sufficiency. If T is a sufficient
statistic, then any inference can be based solely on T, and the conditional
distribution of the full data set X given T is independent of the parameters. Con-
versely, if V is ancillary, inference may be based entirely on the conditional
distribution of X given V, while the distribution of V is independent of the
parameters. In this duality, a maximal ancillary corresponds to a minimal suffi-
cient statistic. They differ however in that a minimal sufficient statistic is essen-
tially unique and that explicit methods for its construction are available, neither
of which is the case for maximal ancillaries.

Systems including sufficient and ancillary statistics as special cases are
discussed in Basu (1967). Another common generalization of both sufficiency and
ancillarity are the corresponding concepts (partial sufficiency and partial ancil-
larity) in the presence of nuisance parameters. Discussions of these concepts can
be found, for example, in Dawid (1975), Basu (1977), and Barndorff-Nielsen
(1978).

General discussions of various aspects of ancillarity are given by Cox and
Hinkley (1974), Hinkley (1980b), Buehler (1982), Kalbfleisch (1982), and
Lehmann (1986). A recent important development is the extension to asymptotic
ancillarity, i.e. statistics with limit distribution independent of the parameters,
and from that to higher order and local ancillaries. In the present paper, we shall
restrict attention to exact ancillaries with respect to all unknown parameters, i.e.
in theoriginal sense considered by Fisher and Basu. However, work on both
partial and approximate ancillaries is included in the references.

Relation to Other Concepts

1. Group families

A group family or transformation model is obtained by subjecting a
random variable with a fixed distribution to a group Q of transformations. Any
statistic V(X) that is invariant under Q is ancillary. Thus in particular a
maximal invariant with respect to Q is ancillary.

Example 1. Location family.

Let X = (X lv,.,Xn) be distributed according to a location family with
density

This is a group family obtained by subjecting a random variable X =
with density f{x^..^x^) to the group of transformations

X\ = X{ + c, i = l,...,n, -oo < c < oo.

A maximal invariant is the set of differences



34 E. L. Lehmann k F.W. Scholz

Y- {Xχ Xn,...,Xn_1 Xn).

This is the example with which Fisher introduced the concept of ancillarity.
For some general results for the case of group families see Barndorff-

Nielsen (1980).

2. Mixture experiments

Suppose a family of experiment 6̂ , z G 2S is available, each experiment
consisting of a family of distributions 9Z = {Pz #, θ G Ω}, labeled by the same
parameter 0, i.e. corresponding to the same states of nature. A value of z is
selected according to a known distribution Π and the experiment β2 is performed,
resulting in the observation of a random quantity X with distribution Pz #. For
the final result X of such a mixture experiment, Z is ancillary since its
distribution Π is known.

Example 2. Two workers.

Let

So = (X, 9), 9 = {Pφ θ G Ω}

g1 = (y,Q), Q={Q*,0 G Ω}

be two experiments, corresponding for example to two different workers A and B
performing a needed experimental task. One of the workers is chosen at random
(with probability 1/2 each) and is assigned to perform the experiment. Here a
random variable taking on the values of 0 and 1 as worker A or B is chosen plays
the role of Z. The example, which was first discussed in this context by Cox
(1958), makes clear the appeal of conditioning on the experiment actually
performed.

Mixture models appear to represent a rather special case of models
admitting ancillaries but in fact, unlike group families, they cover all cases. To
see this, suppose that X is distributed according to one of the distributions P^,
θ G Ω and that V is ancillary for X. For each value v, let &v be the experiment
consisting in observing a random quantity X\ distributed according to the
conditional distribution of X given v. Then X1 is the outcome of a mixture
experiment and its distribution is the same as that of X.

Some authors have introduced distinctions between real and conceptual
(Basu, 1964) or experimental and mathematical (Kalbfleisch, 1975, 1982)
ancillaries. However, these distinctions require going outside the postulated
models and are based on considerations involving other models.

3. Conditionally; pre-randomization

Fisher's suggestion that inference should be conditional on an ancillary is
called the principle of condUionaliiy. As was discovered by A. Birnbaum (1962),
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conditionality has surprisingly strong consequences for the foundations of
statistics since in conjunction with sufficiency it implies the likelihood principle.
For discussions of this result and its consequences see Rao (1971), Basu (1975),
Joshi (1983), Berger and Wolpert (1984), and Evans, Fraser and Monette (1986).

Typically, conditioning on ancillaries seems reasonable. However, it runs
into difficulty when the design involves deliberate randomization (e.g. random
selection of a sample, random assignment of subjects, or random choice of a
Latin square). Since the random selection process with known probabilities is
ancillary, the conditionality principle would require conditioning on the selected
arrangement, thus largely vitiating the purposes of randomization. This
difficulty is discussed, for example, in Basu (1969, 1978, 1980), Berger and
Wolpert (1984), and Finch (1986).

4. Sufficiency

Sufficient statistics provide data reduction without loss of information.
The amount of reduction that can be achieved in this way depends on the
situation.

Example 1. Location family (continued).

If the density / in Example 1 is the standard normal density, sufficiency
reduces the full n-dimensional sample X^...,Xn to the single statistic X =
ΣjLjXj /w, regardless of the size of n. On the other hand, if /is, for example, the
logistic, Cauchy, or double exponential density, the minimal sufficient statistic is
the set of order statistics X^\ < . . . < ^(nY s o ^ a t * n e r e * s hardly any
reduction. As discussed in Lehmann (1981), the amount of reduction depends
essentially on how much of the ancillary information the minimal sufficient
statistic retains.

5. Completeness

The most favorable situation for reduction by means of a sufficient
statistic T is that in which all ancillaries are independent of T. A sufficient
condition for this to occur is given by the following result which (together with a
converse) is known as Basu's theorem (Basu, 1955, 1958, 1982 and Koehn and
Thomas, 1975).

Theorem 1. (Basu).

If T is boundedly complete, then every ancillary is independent of T.
That bounded completeness is not necessary for every ancillary to be

independent of T can be seen for instance from examples in which the constants
are the only ancillaries. A condition that is necessary, but not sufficient, is pro-
vided by the concept of weak completeness, introduced by Basu and Ghosh
(1968), and independently in the present context by Lehmann (1981) under the
term ^-completeness.
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Definition 1.

A statistic T is weakly complete with respect to a family Φ =
θ G Ω} of distributions of Γ if

E^T) = 0 for all θ G Ω => /(<) = 0 (a.e. 9>Γ)

for all two-valued functions /.
As we shall see later, this concept is central to the study of maximal

anc Maries.
Note. A (not very useful) completeness condition that is both necessary

and sufficient for every ancillary to be independent of T is given by Lehmann
(1981).

6. Conditionally and sufficiency in conflict

The principles of conditionality and sufficiency may conflict, as in the
following example of Becker and Gordon (1983), which is essentially equivalent
to one considered in a different content by Fisher (1956, p. 47).

Example 3. Quadiinomial.

Consider n quadrinomial trials with the probabilities of the four
outcomes being

and with ΛΓp. ,.,JV4 denoting the numbers of the trials resulting in these outcomes.
Then T = (Nv N2+N3, N4) is minimal sufficient and it appears that there are no
ancillaries based on T. On the other hand, A = (N1-\-N2, N3+N4) is clearly
ancillary, and so is B = (Nτ+N3, N2+N4).

It seems clear to the present authors that here sufficiency should be given
priority over ancillarity, and inference should be based on Γ. For otherwise,
given a trinomial situation with probabilities ((1 + 0)/5, (1 - 20)/5, (2 -f 0)/5)),
(the distribution of 7), we would prefer a procedure that would require dividing
the trials in the middle category, each with probability 1/2 between two artificial
subcategories. This seems very unappealing.

7. Similar regions and regions of Neyman structure

A set S in the sample space is a similar region with respect to a family P̂
= {Pφ θ G Ω} if PQ(X G S) does not depend on 0, i.e. if its indicator is
ancillary. The set S is said to have Neyman structure with respect to a sufficient
statistic T if the conditional probability
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P(X G S\t) is independent of t a.e.

Suppose now that T is boundedly complete. Then by Theorem 1 every
ancillary — and therefore the indicator Ig of any similar region — is independent
of T and therefore has Neyman structure. The characterization of all similar re-
gions as having Neyman structure in the presence of a complete sufficient statistic
is therefore mathematically (although not in its interpretation) equivalent to
Theorem 1.

8. Information

Fisher's primary interest in introducing ancillary statistics was the
recovery of information. If Iχ{β) and h(θ) denote the amount of Fisher
information in the sample X and the maximum likelihood estimator θ
respectively, then it will often happen that1 h(θ) < lχ(β), so that θ is not fully
informative. Fisher discovered that the lost information can be recovered if there
exists an ancillary statistic V such that (0, V) is sufficient, in the following sense.
If Ĵ i (θ) is the information carried by θ in the conditional distribution given V =

then
(1)

For a discussion of the implementation of this program in two important classes
of models, see Barndorff-Nielsen (1980). When (1) holds, the average conditional
information equals the whole information in the sample; for particular values of
v, the conditional information of θ given v may be smaller or larger than Iχ(θ).

Recall now the other motive for conditioning on ancillaries: to make the
inference more relevant to the situation at hand. Cox (1971) points out that
ancillaries are therefore most useful when the amount IJβ) of information in the
conditional distribution of X given v varies widely with v, so that some values of
v are much more informative than others. This point is nicely illustrated by
Example 2, where conditioning on the chosen worker seems particularly
important when there is a big difference in the quality of their work.

In the light of this remark, Cox suggests that when the maximal
ancillary is not unique, that ancillary should be preferred for which Iv(θ) is most
variable, e.g. for which the variance varll^θ)] is the largest.

Weak Completeness

The central concept for the characterization of maximal ancillaries is
weak completeness. It is easy to see that the definition of weak completeness
given in the preceding section is equivalent to the following statement.

We have here assumed for the sake of simplicity that θ is real valued.
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The family <$ = {PΘ, θ G Ω} is weakly complete if any measurable
set A with probability independent of θ has probability 0 or 1. (2)

This is the form in which the definition was given by Basu and Ghosh (1969). A
simple restatement of (2) yields Theorem 2.

Theorem 2.

A family P̂ admits no nontrivial ancillaries (i.e. any ancillary statistic is
almost surely constant) if and only if Φ is weakly complete.

To illustrate the situation of no ancillaries consider the following
examples.

Example 3. No ancillaries.

Let X{ be independent JV(0 , 1), i = l,...,n. Then X = (Xv...,Xn) is
complete, hence weakly complete, and so there are no ancillaries.

Example 4. Sequential binomial sampling.

Consider a sequence of binomial trials, with success probability p and a
stopping rule (with probability 1 of eventually stopping). This can be
represented by a random walk in the plane starting at the origin, with a unit step
to the right for a success and a unit step up for a failure. The stopping rule is
represented by a set of stopping points. The observation is a path starting at
(0, 0) and ending at some stopping point (a, b). Since every path ending at (a, b)
has probability pa(l - p)b, it follows that the coordinates (α, b) of the stopping
point constitute a sufficient statistic, which may or may not be complete
(necessary and sufficient conditions for completeness are given in Lehmann and
Stein, 1950). The path itself is of course not complete except in the rare cases in
which there is only one path to each stopping point.

(i) In light of this it is very surprising that not only the endpoint but
also the path itself is weakly complete, provided the stopping rule has a finite
boundary point on the x or the y axis. To see this let S be a set of paths with
Pp(S) = c V p G (0, 1). Suppose the stopping rule has a finite boundary point
(0, k) for some k > 1. Then the path π 0 from (0, 0) to (0, k) is either contained
in S or in its complementary set of paths 5C. It follows that either c = Pp(S) >
Λ>(πo) = (1 - p)* - 1 or 1 - c = Pp(Sc) > Pp(ir0) = (1 - p)k - 1 as p -> 0 so
that either c = 1 or c = 0. The case of finite boundary point (λ, 0) is treated
similarly. Hence there are no ancillaries.

(ii) If there is no bound on the stopping rule along the x- or y-axis, then
weak completeness may not obtain as the following example shows. Perform the
binomial trials in pairs until the first time that either (success, failure) or
(failure, success) is observed. Then the set S of paths that end in (failure,
success) has probability 1/2 for all p G (0, 1).
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Note. Exactly the same result as in Example 4 with the same proof
applies to sequential sampling from trinomial (or any multinomial) trials.

The following example is due to Basu and Ghosh (1969) where many
additional examples can be found.

Example 5. Two-point location families.

Let X take on the two values θ and θ + c with probabilities

oo,P(X - θ + c) = 1 - 7Γ, -oo < θ <

7Γ and c known. Then X is weakly complete provided π φ 1/2, but not when π
= 1/2. In the latter case any set A whose complement is A + c has probability
1/2, independent of θ.

It turns out that Theorem 2 is a special case of a general characterization
of maximality for an ancillary statistic V, given in its proper setting in Theorem
4. Loosely, this characterization finds V to be maximal if and only if the family
of conditional distributions of X given V is weakly complete. In the situation of
Theorem 2, where V is constant, this family of conditional distributions coincides
with the family ΈP of distributions for X.

In the case when the only ancillary statistics are the a.s. constant
functions there (usually) does not exist a maximal ancillary (due to null set
problems) but a maximal ancillary σ-field Λm does exists, see Theorem 2. The
reason is that not every σ-field is induced by a statistic. Since the σ-field induced
by an a.s. constant function is essentially equivalent to Λm (to be made precise
below) it makes sense to call such an a.s. constant function essentially maximal
ancillary; the alternative would be to admit that there are no maximal ancillary
statistics due to null set problems. This state of affairs carries over to the general
case and the above loosely stated characterization is that of essential maximal
ancillarity. Bearing this in mind one may want to accept that characterization
and skip or skim the next two sections.

Notation and Definitions

Let (95, Φ) be an arbitrary measurable space and {PQ, θ G Ω} be a
family of probability measures on Φ. Considering 95 as the sample space we
denote the random element in 9G by X and write PΘ(X G B) = PΘ(B) V B e <%.
We now give some definitions and a theorem taken from Basu (1959).

Definition 2.

A σ-field Λ C ^ is said to be ancillary if Pβ(A) is constant in θ G Ω V
A G Λ.
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Comment. One easily sees that Λ is ancillary iff J j{x)dPθ(x) is constant
in θ G Ω for all integrable and Λ-measurable functions fi 9&—».β.

Definition 3.

If V: (95, Ώ) -> (U C) is a statistic ( j l v := V~\C) C S) then V is said
to be ancillary if Λ y is ancillary.

Comment. Rather than dealing with (ancillary) statistics we follow
Basu's example and continue the following theoretical exposition in terms of
(ancillary) σ-fields. When dealing with concrete examples we will use the more
intuitive term statistic in place of σ-field. Hence it is understood that the
following definitions in terms of σ-fields have analogous counterparts in terms of
statistics.

Definition 4.

An ancillary σ-field Λ C 36 is said to be maximal ancillary if there
exists no other ancillary σ-field Λ,* C ^ such that Λ C Λ*.

Theorem 3. (Basu, 1959).

Given an ancillary σ-field i C 5 there exists a maximal ancillary σ-
field i m C Φ such that Λ C Λm.

Definition 5.

Two σ-fields J. 1 } Λ2 C ΈB are said to be essentially equivalent if for any
A^ G Λ1 (A2 G Λ2) there exists an A2 G Λ2 (A1 G Λ^) such that

Pθ{AχΔA2) = 0 V θ G Ω.

Definition 6.

Any ancillary σ-field that is essentially equivalent to a maximal ancillary
σ-field is called essentially maximal ancillary.

Comment. Although Theorem 3 guarantees the existence of a maximal
ancillary σ-field Λm containing any given ancillary σ-field Λ the same does not
necessarily hold for statistics. The reason is that Λm is usually too rich to be
generated by any statistic V.

The following definition of conditional weak completeness is a direct
adaptation of the concept of weak completeness to the conditioned case.

Definition 7.

X given Λ is said to be conditionally weakly complete if for any given
function

g(x) = a{x)IB{x) + b(x)IBc(x)
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with B € "3J, o( ) and b( ) ^.-measurable and such that

V 0 6 Ω EAg{X)\J) = 0 a.s. (P$)

we have

v o e f i Pθ(g(X) = oμ) = l a.s. (Pθ),

i.e. Pθ(g(X) = O) = l V ί € Ω.
An equivalent formulation of Definition 7, without the α.s. qualifiers, is

Definition 7'.

Definition 7'.

X given Λ. is said to be conditionally weakly complete if for any given
function

g(x) = a(x)IB(x) + b(x)IBc(x)

with B G ^ a( ) and 6( ) jl-measurable and such that

E θ ( I A ( X ) g ( X ) ) = 0 V ^ G Ω a n d V ^ E ^ t

we have Pθ(g(X) = 0) = 1 V θ G Ω.
Note that Definitions 7 and I1 are not contingent on the existence of

regular conditional distributions. However, if X admits regular conditional
distributions given Λ a natural question is: how does weak completeness of a
family of regular conditional probability distributions relate to the conditional
weak completeness of X given Λ defined above? Lemma 1 will provide a partial
answer under certain regularity conditions. These conditions are as follows:

i) Ω is a separable topological space,

ii) Λ is generated by the ancillary statistic V: (9G, S) —> (%, C),

iii) V v G cl/: {/#( \v), θ G Ω} is a family of conditional densities for
X given V = v with respect to a σ-finite dominating measure μ on

iv) 5 N G C with P( V G N) = 0 so that V v G # c we have / ^ ψ ) -*
fβ (x\v) a.s. in z[/i] whenever θ —• ^0,

Lemma 1.

Under conditions i) - iv) the weak completeness of the families {fθ( |v),
0 G Ω} V v G ΛfJ with P(N jL) = 0 implies the conditional weak completeness
(Definition 7) of X given X
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Proof: Let g be as in Definition 7, then for any θ £ Ω we have

0 = Eθ(g(X)\ V) = J g(x)fθ(x\ V)dμ(x) a.s. P. (3)

Since the exceptional null set may depend on θ (through fθ) we invoke (3) for all
θ in a countably dense subset of Ω. Using Scheffe's theorem in conjunction with
iv) it follows that there exists a set NQ £ C with P(V £ NQ) = 0 such that for
v £ TVQ we have

0 = JK*)/*(Ψ)<M*) V0 £ Ω

which by weak completeness of the conditional densities entails for all υ £

U = ι v θ e Ω'

hence Pθ{g(X) = 0) = 1 V θ £ Ω.
It is not clear whether the converse of Lemma 1 is true under the stated

conditions.

Characterization of Maximal Ancillarity

The following theorem will give necessary and sufficient conditions for an
ancillary σ-fϊeld Λ C Φ to be essentially maximal ancillary. A special case of
Theorem 4 was proved by Basu and Ghosh (1969) for the case of a dominated
location family.

Theorem 4.

If Λ C B̂ is ancillary, then the following statements are equivalent:

i) Λ is essentially maximal ancillary.

ii) % B £ ΈB such that PQ(B\A) admits a version ψB (Λ-measurable)

independent of θ £ Ω with P(0 < φB{X) < 1) > 0.

iii) X given Λ is conditionally weakly complete.

Proof, i) => ii): Λ be ancillary and let B £ ΐB be such that PΘ{B\Λ)
admits a version φB (jt-measurable) independent of θ £ Ω. First note that the
smallest σ-field ΛB containing both Λ and B is ancillary, since

PΘ(A n f i ) = J ΦB(x)dPθ(x) A € Λ
A

is independent of θ £ Ω (Λ is ancillary and φB is ^.-measurable and independent
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of θ G Ω) and since this property extends to all of ΛB by the usual unique
measure extension.

Next let AQ = {x G 9S : 0 < ΨB(x) < 1} G Λ. Assuming Λ to be
essentially maximal ancillary we can find A1 G A such that N = y!1Δ(^40 Π B)
G Λ.£ n a s probability zero for all 9 G ίl. Then

IAι(X) = IAQ(X)IB{X) V X € # c

and taking conditional expectation given Λ. we have

a.s. PΘΘ en

which implies P(0 < ψB < 1) = 0, thus i) => ii).
ϋ) => iii): Let

ί(*) = a(x)IB(x) + b(x)Iβc(x)

= («(*) - i(*))/^x) + δ(x)

B € ΐB, o( ) and δ( ) ^t-measurable such that

V θ € Ω ϋ β (y(A)μ) = 0 a.s. P0. (4)

Let Co = { Ϊ € S6 : α(z) ^ 6(z)}, Bo = Co Π B and

= 0 x 6 Cg

The condition (4) on y implies that φB may serve as a ^-independent
version of P0(B0\Λ) V θ € Ω, since °

0 =

- b(X)) PΘ(BO\Λ) + b(X)ICQ(X) a.s. Pθ,

i.e.

X € Co => PΘ(BQ\Λ) = b(X)/(b(X) - a(X))

= V»BO(-X) a.s. Pθ

and for X € Cg =» PΘ(BQ\Λ) = 0 = φB (X) a.s. P 0 .
Condition (4) also implies

0 = £ β ( ί ( .X)J c g( .X)μ) = </(^)/cc(X) a.s. P j V ί e Π . (5)



44 E. L. Lehmann & F.W. Scholz

Since P(0 < ψB < 1) = 1

ϋ) => P(ΦB0 € {0, 1}) = 1

= ΦBQ(X) a.s. P, V θ e Ω

(*) = ° a s

since

o = ^ ( r t

= (α(Λ) - b(X))φBQ(X) + b(X)IC()(X)

= (a(X) - b(X))IBQ(X) + 6 ( J 0 / C Q ( ^ )

= ICo(X)g(X) a.s. PΘWΘ e ίϊ.

This together with (5) implies Pθ{g{X) = 0) = 1 V θ € Ω, i.e. ii) =ϊ iii).

iii) ^ i): By theorem 4.1 there exists a maximal ancillary σ-field Λm D
Λ. Let DQ 6 -A-m and for some fixed θ0 € Ω and some version P β (Z?0|̂ C) let
^i)0(*) : = ^ o(^ol^)« t h e n f o r A e Λ: °

IAPθ{D0\Λ)dPθ = PΘ(A Π Do) = PΘQ(A Π ί>0)

i.e. V>£) may serve as a ^-independent version of Pβ(D0\Λ) V θ E Ω. Let

then V θ e Ω ^(^(X)|jί) = 0 a.s. P^, which under iii) implies Pθ(g(X) = 0) =
1 V (9 G Ω, i.e.

which shows Λ. and J . m to be essentially equivalent, i.e. iii) =^ i) q.e.d.

Examples

In the examples that follow it is understood that when claiming maximal
ancillarity what is really meant is essential maximal ancillarity. However, these
two concepts coincide when the null set issues do not arise, as in situations when
that ancillary is discrete.
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Example 6.

With probability 1/2 let Xv...,Xn be i.i.d. from N(θ, 1), and with
probability 1/2 from N(θ, 2). Let I = 1 or 0 as the first or the second case
obtains. Then V = (/, X1-Xn,..^Xn_1~Xn) is maximal ancillary since (7,
Xp...,Xn) is equivalent to (X, V) and the conditional distribution of Xgiven Vis
complete.

Example 7.

Let X1}. ,.,Jfn be i.i.d. with continuous and strictly increasing c.d.f. F.
This model is invariant under the group G of common, continuous, strictly
increasing transformations X\ = g(X^ i = 1,...,n. Maximal invariant is the
vector of ranks (Λ lv..,iZn) of the n JΓs. Since the group G is transitive, the
maximal invariant is ancillary. Is it maximal ancillary? Since the conditional
distribution of the X*s given the ranks is the same as the joint distribution of the
rank permuted order statistics and since the distribution of the latter is complete,
hence weakly complete, it follows that the ranks are maximal ancillary.

Example 8.

In Example 6.2, suppose attention is restricted to F with median 0. Now
the ranks are no longer maximal ancillary since the ranks together with the
number of positive observations are ancillary. This latter ancillary is maximal
since the order statistic given the number of positive and negative observations
are complete. (We are dealing with n + and n_ functions on (0, oo) and (-oo, 0),
respectively. Note: This maximal ancillary is a maximal invariant under a
smaller group than in Example 6.2, namely the group G of transformations g
which are continuous, strictly increasing and satisfy g(0) = 0.)

Example 9.

Let Xv...,Xn be i.i.d. ΛΓ(0, 1). Here of course the vector of differences
(X^-X^.. .,Xrr_1-.Xn) is maximal ancillary since the distribution of X is complete.

As has been pointed out by Basu (1959) and others, maximal ancillarity
does not mean that there are no other maximal ancillaries. As a well known
example, in the present case with n = 2, we have that V = (X2-Xι)sign(X) is
ancillary. To see that it is also maximal note that (Xv X2) is equivalent to
(X, V) and that X and V are independent. Now the completeness of X entails
the conditional weak completeness of (X, V) given V.

Another maximal ancillary is V = X^-Xγ Which of these two
ancillaries is preferable? The Cox criterion discussed in part 4 of the section
"Relations to Other Concepts" does not distinguish between them; however, a
criterion advanced by Barnard and Sprott (1971) applies and gives preference to
X2-Xι since it is invariant under translations (see Padmanabhan, 1977).
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Example 10.

Let Xv...,Xn be i.i.d. uniform on [0, 0+1). Here (denoting by [x] the
integer part of x) (Xλ-Xn,.. .,Xn-ι-Xn) together with Xn - [X^ are ancillary and
are easily seen to be maximal ancillary since the conditional distribution of [XJ
(all that is left of the data for any fixed 0) given that ancillary is just a one point
distribution which is complete.

Basu (1964) treats this example in the case n = 1; Basu and Ghosh
(1969) treat the same example for the case of arbitrary n for which they
determine the maximal ancillary σ-field.

Basu and Ghosh (1969) show that a sufficient condition for weak
completeness of the location family of densities {J{x-Θ): θ £ R} is that the
characteristic function }(<) = J exp(-itx)j{x)dx of /has at most a finite number of
roots on the real line.

Example 11. (Basu and Ghosh).

Let X have density f(x-θ) with j{x) = x2e^(-a:2/2)/>j27r. Since %t) =
(l-t2)exp(-t2/2) which has only two roots it follows that X is weakly complete
and hence admits only the a.s. constant functions as ancillaries.

Example 12. The general location family.

Let Xv...,Xn be i.i.d. ~ j{x - θ) where j{x) is a density with respect to
Lebesgue measure on Λ. The differences V = (K2,..., Vn) = (X1-X2, . -,χΓx

n)
are ancillary and the question is for which / may one claim also maximal
ancillarity? Examples 6.4 and 6.5 show that the answer depends on /. The
conditional density of U = Xλ given V = v = (v2» >v

n) i s ^ ( w l v ) =

cj{u-θ)f{u-θ-v^ ••• f(υr-θ-vn) with c being the appropriate normalizing constant.
Since this yields a univariate location family {hθ{u\υ) = hv(u-θ): θ £ R} with
hv(x) = cf{x)}{x-v^) ••• Kx-Vy) one could appeal to the above sufficient criterion
of Basu and Ghosh to establish weak completeness for this family by showing
that hv(t) has only a finite number of roots.

Unfortunately, the Basu-Ghosh criterion of a finite number of roots
frequently is not satisfied and then does not provide an answer concerning
maximality. Examples for which this is the case are the Cauchy and double
exponential distributions with n = 2.

Example 13.

Cox and Hinkley (p. 33, 1974) give the following simplified version of an
example due to Basu (1964) which points out the dilemma of multiple ancillaries.
Consider N quadrinomial trials with probabilities

1(2

If the number of outcomes in the four categories are X, {/, Y, V, respectively,
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then X + U is ancillary, as is X + V. The question is whether either is maximal
ancillary. The answer is somewhat surprising and still mostly a conjecture.

(i) First consider the case of X + U. The conditional distribution of
(X, Y) given X + U = ra, Y + K = n, ( n + m = J V ) is that of two independent
binomial random variables, distributed respectively as h(pv m) and b(p2, n) with
Pi = (1 - 0)/2 and jp2

 = (2 - #)/4. Since the conditional expectation of X/m -
2Y/n + 1/2 vanishes for all θ we do not have conditional bounded completeness,
whenever m > 1 and n > 1. Ifm = 0 o r n = 0 completeness follows easily.

To establish weak completeness (conditionally) one needs to show that
for any indicator function j{x, y) with constant conditional expectation for all θ it
follows that / is either identically one or zero with conditional probability one.
For 0 < a < 1 consider therefore the following identify for all θ:

Show that / = 0 and / = 1, or equivalently that a = 0 and a = 1, are the only
solution. Reparametrizing λ = (1 - 0)/(l + θ) the identity becomes

So 5 ) Λ * ' yi™ly)χX{1 + 3λ)"(3 + x)n~v

ΞΞ aAn{\ + λ)m + n

Comparing the coefficients of λ* and λm+7l~* for i = 0, 1, 2 on both sides of the
identity and exploiting the binary nature of / it is easy yet tedious to show weak
completeness for the following cases: 1) n = 1 and m = 1, m > 3 and 2) n = 2
and m > 1. For the case (m, n) = (2, 1) we don't have weak completeness as
can easily be seen by using /(0, 1) = j{2, 0) = 1 and j{x, y) = 0 otherwise.

Using the reparametrization λ = (2-0)/(2+0) one can show weak
completeness for all (n, m) with 3) m = 1 and n > 1 and 4) m = 2 and w > 1
(no counter example here). The above approach does not appear promising for
the situations n > 3 and m > 3.

(ii) Similar results can be obtained when considering the other ancillary,
X + V, except that the above counter example does not obtain, i.e. the
conditional distribution of (X, Y) given X + V = m is weakly complete for
(m, n) in the following cases 1) n = 1 and m > 1, 2) n = 2 and m > 1, 3) m =
1 and n > 1, 4) m = 2 and n > 1.

What does this mean with respect to maximal ancillarity of X + U and
X 4- V? For JV = m -f n < 5 the latter is maximal ancillary whereas the former
is maximal ancillary for N = 1, 2, 4, 5 but not for N = 3. Maximality in the
cases JV > 5 at this point can only be conjectured.
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