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The notion of minimal repair with respect to a history
is defined in terms of a general filtration and a com-
pletely unpredictable stopping time. An inequality re-
lating compensator transformations with respect to the
minimal history of a one-point process and a richér his-
tory is proven. Applied to minimal repair, this result
shows that the modeling of minimal repair in a “black
box” sense always gives a stochastically longer life length
than a more realistic model.

1. Introduction. The notion of minimal repair was introduced in reliability
theory by Barlow and Hunter (1960). Its intuitive meaning is putting the system
back to operation when it fails in such a way that the situation immediately pre-
ceding the failure is restored. The traditional probabilistic model is the following.
Consider a nonnegative random variable S (the life length of the system) with a
continuous distribution function F. When the system fails, say at time § = s, it
is given an additional lifetime S’ with conditional distribution

P(S'>t|S=s)=P(S>s+t|5>s)=(1—F(s+1)/(1 - F(s)).

Equivalently, the minimal repair model can be defined in terms of the cumula-
tive hazard function

R(t) = —In(1 - F(2)) = / 1"F ;f‘(i)

as follows. - The original failure point S(w) is “erased” and the hazard of the
additional life time S’ at age t — S(w) is given the same value as the original hazard
would have had at time ¢ had there been no failure, that is, dR(t). If minimal
repairs are made repeatedly, the sequence of repair times is a nonhomogeneous
Poisson process with integrated intensity R(?).

This simple notion of minimal repair has obvious intuitive appeal. However,
it may not be a realistic description of any actual repair done on a failed system.
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In a sense, it treats the system as a black box, without any reference to what
caused the failure and what repair was needed to put the system back to opera-
tion. Bergman makes this point in a review paper (Bergman, 1985), distinguishing
between “statistical” and “physical” minimal repair. The comments on minimal
repair on page 51 in Ascher and Feingold (1984) should also be mentioned.

As a very simple example illustrating this problem in the definition of minimal
repair, consider a system consisting of two components in parallel, with indepen-
dent Ezp(1) distributed life lengths. The system fails when the component with
the longer life fails. A natural concept of minimal repair of the system would be
the restoration of the working condition of this component when it fails, leaving
the component which failed earlier in the down state. The additional lifetime ob-
tained by this kind of repair is clearly independent of the failure time and Ezp(1)
distributed. The black box model would consider a system life length S with distri-
bution P(S < t) = F(t) = (1—e~*)? and an additional lifetime S’ with conditional
distribution

1-F(s+t) _;2—e*"¢

! — —
P(S'>t]§=s)= Tt =T

which is stochastically larger than Ezp(1) for every s.

In this example, the more realistic model gives a less optimistic estimate of the
total life length than the black box model. We shall show below in Section 3 that
this is always the case. Section 2 is devoted to the definition of minimal repair
with respect to a general history. A more detailed exposition of Sections 2 and 3
can be found in Norros (1987) and Arjas and Norros (1989), respectively.

2. Minimal Repair with Respect to a General History. Consider a
probability space (2, F, P), a history (filtration) F = (F;)¢>0 of sub-o-fields of F
and an F-stopping time S, satisfying the following conditions:

(i) © is a Polish space, that is, a complete separable metric space;

(ii) F is the completion w.r.t. P of B(Q2), the Borel o-field of Q;

(iii) F satisfies Dellacherie’s “usual conditions”, that is, it is right continuous
and Fp contains all P-null sets;

(iv) S is completely unpredictable and a.s. finite.

We denote by N the simple point process N; = 1155 and by A the F-
compensator of N. By (iv), A is a continuous process.

In this section we show how the stopping time S can be “minimally repaired”.
In other words, we define probability measures @Q,, n = 1,2,..., such that under
@, things behave as if S had been n times minimally repaired before its final
failure. In our construction we need the following well-known result and some
facts about the prediction process.

LEMMA 2.1. For any finite stopping time T, the conditional distribution of
As — At given Fr is the Exzp(1) distribution on the set {S > T}.

The notion of a prediction process was introduced by Knight (1975). Aldous
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(1981) developed a somewhat different approach, which was applied in Norros
(1985). The definition given below differs slightly from the above-mentioned ones
since we are considering an abstract history instead of a process.

We denote by P(2) the space of all probability measures on B(Q2), endowed with
the topology of weak convergence. P(f) is in turn a Polish space, and P(P(Q))
can be defined in a similar manner.

THEOREM 2.2. There ezists a P(Q)-valued cadlag process p such that for any
stopping time T, pt is a regular version of the conditional probability P( - | Fr).

The proof can be found in Aldous (1981), and it is reproduced in Norros (1985).
In this paper, we call the process p of Theorem 2.2 simply the prediction process.

PROPOSITION 2.3. LetY be a bounded B(2)-measurable random variable de-
fined on (Q,F, P). Denote by MY a cadlag version of the martingale E[Y | F;].
Then the process [ Ydu;_ is indistinguishable from MY . In particular, [ Ydur_ =
M}/_ a.s. for every stopping time T.

For a proof, see, for example, Norros (1985). Note that, although ur = P[- |
Fr), pr- is not P[- | Fr-]. For example, T is Fr_-measurable, but if T is
completely unpredictable, then the random measure pur_ gives T a continuous
distribution a.s. The random measure pyr_ is not a conditional distribution with
respect to any o-field, but it tells what the prediction was immediately before T
occurred.

Intuitively, the difference between the o-fields Fs.. and Fg is that in Fs_, it
is known when § occurs, but it is not known what else happens at time S. For
example, if § is a point in a marked point process, then S is known in Fgs_, but
the mark is Fs-measurable and may not be Fg_-measurable.

Now we proceed to the construction of the “minimal repair” of S. Suppose
that we choose an w with distribution P and start proceeding at time 0. Suddenly
S occurs. In order to make a minimal repair, we have to change our w to another,
say w’, which is indistinguishable from w strictly before the time S(w) and sat-
isfies S(w’) > S(w). Moreover, w’ should be chosen according to an appropriate
distribution among the candidates satisfying these conditions. This reasoning can
be formalized by means of the prediction process.

Indeed, us_(w) gives the conditional distribution with respect to the history
strictly before S(w) when it was not yet known that S would appear at time S(w).
Thus, if we choose w’ according to the distribution pg_(w), we may proceed further
“as if nothing had happened”. Intuitively, this means that at any time prior to the
ultimate system failure it is not even “known” whether there has been a minimal
repair or not.

In order to be more rigorous, let k be a B(2)-measurable P(2)-valued random
variable such that Kk = pg_ a.s. (k can be constructed by means of the regular con-
ditional distribution of us_ w.r.t. B(2)). Now define successively the probability
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measures Qo, @1, @2,...on B(2) by

Qo= P, Qui1(4) = /Q K(w)(A)Qn(dw).

@y is the measure which is obtained when § is deferred n times in the sense of
minimal repair. The following theorem shows that the measures ¢),, have a density
(w.r.t. P) which has a very simple expression.

THEOREM 2.4. For any n, the probability measure @, is absolutely continuous
w.r.t. P, with the Radon-Nikodym derivative

Q. 1 .,
ap — ms

Moreover, for any stopping time T,

dQ"’ A 1 fAr n_—zx 1 n
(_(Z-PT)]_‘T =€ T1{5>T} (1 - m'/o Tre dIB) + mAsl{SST}.

PRrooF. We prove the first assertion by induction. It holds trivially for n = 0.
Suppose that it holds for some fixed value of n. Let Y be any bounded B(Q)-
measurable random variable. We have to show that

1
Yd EY
Denote by MY a cadlag version of the martingale E[Y | F;]. Now, by the
definition of k, Proposition 2.3, the rules of Stieltjes stochastic calculus and Del-
lacherie’s integration formula (Dellacherie (1972), IV T 47),

An+1

/ﬂ YdQnyy = /Q Qn(dw) L K(W)(d)Y () = /ﬂ MY_dQ, =E-1% n MY

— 1 * nasY - * Y 1 n _ * Y 1 n+1
- EH/O AP MY dN, _E/O MY — ArdA, = E/o MY oy
1
- EMY An+1 EY An+1
Cn+ D (n + s
The proof of the second equation is based on Lemma 2.1.:
dQn
( 7P ) Fr Ls>Ty = Us>Ty oy E[As | Frl

1 [ " —z 1 [ o
= 1{S>T}m/0 (AT + z)"e %dz = 1{S>T}7{! /AT e~ (#=AT) 47

= etr1 1-i T gmemed
= e’ Tlisom) — | eheTTdz ). |
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Theorem 2.4 gives the justification for the following definition.

DEFINITION 2.5. With notation as above, the probability measure correspond-
ing to an n-fold F-minimal repair of the stopping time S is the measure @Q,, defined

by
Q. _ 1 .,
AP~ ml s

We close this section with a remark concerning the situation where the stopping
time S is eliminated completely by repeating “minimal repairs” indefinitely. Since
S is a.s. finite, a measure describing this operation in the sense of Theorem 2.4
can not in general be defined on F, and if it can, it will be concentrated on the
P-null set {S = oo}. However, such a measure can be defined on each sub-o-field
Fr, where T is a stopping time such that Ar is bounded. Letting n go to infinity
in the second assertion of Theorem 2.4, it is seen that this measure, say, QL , is
absolutely continuous w.r.t. P on Fr and

dQT
Pz, AT 1 (55T}

3. Stochastic Comparison of Transformed Distributions. Let (2, F, P),
F = (F¢)i>0, S and N be as in the previous section. Let G = (G;)i>o be the
history generated by the one point counting process N. Let AF and AT be the
F- and G-compensators of N, respectively. Since S is assumed to be completely
unpredictable w.r.t. F, both compensators are continuous.

We consider the following kind of transformations of the compensators. Let
g : [0,00] — [0, 00] be an increasing differentiable function such that g(0) = 0 and
g(o0) = 00. Consider the continuous increasing process BF defined by

= g(Af), t>0.

By the next well-known Girsanov type theorem, we can modify the probability P
in an absolutely continuous way so that BF is the compensator of N with respect

to the new measure. For a proof, see Jacod (1975), Proposition 4.3 and Theorem
4.5.

THEOREM 3.1. Denote by L the process
Li = g/(AF)VeeAT -BF

L is a uniformly integrable martingale with ezpectation 1. Define the probability
measure ) on F by

Then the (QF , F)-compensator of S is BF.



10 Elja Arjas and Ilkka Norros

We consider two special cases of this transformation. The first is minimal
repair. Indeed, choosing g(z) = ¢ — In(1 + z), we have

AF
Loo = —S—exp(Af — (4§ —In(1 + 4F))) = 4§,
1+ AS

which is the density corresponding to an F-minimal repair of S (Definition 2.5).
The other case is the linear transformation

9(z) = oz, a €(0,1),

which could be called proportional improvement since the hazard is reduced by a
fixed percentage. One also quickly concludes that this is equivalent to the imperfect
repair of Brown and Proschan (1983), where the device is repeatedly minimally
repaired with probability (1 — a) up to the first unsuccessful repair attempt. See
also Shaked and Shanthikumar (1986).

We can now prove the main result of this paper.

THEOREM 3.2. With the notation as above, suppose that the function g is such

that e=9(=1n2) js concave for z € (0,1). Then S is stochastically smaller under QF
than under QG.

ProoF. Let T be an F-stopping time such that Ag is bounded. We first
observe that (cf. Norros (1986), Proposition 5.1)

El{s>tAT}eA'F;\T = 1 .

Thus, exp(AE\T) can be viewed as a density function on the set {S > t A T}.
Denote

f(z) = e_g('l”), z € (0,1),

which by assumption is a concave function. Now, by Jensen’s inequality,
F F F F
QF(S >StA T) = El{S>tAT}eAMT_g(AMT) = E]-{S>tAT}eAMT f(e—AMT)

F F
< f(El{S>tAT}€AMTe_AtAT) = f(P(S>tAT)).

Applying this for T = T, = inf{t : AF > n} and letting » — co we obtain, since
S <supT, as.,

QF(S > t) < f(P(S > 1)).
But

F(P(S > 1)) = e 9C1mPE>0) — o~o4B) _ -BF _ 0G(g 5 ). |
It is easy to see that the transformations corresponding to minimal repair and

imperfect repair both satisfy the conditions of Theorem 3.2. Thus we have the
following corollaries, which are of certain practical interest.
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COROLLARY 3.3. Consider the change of distributions which corresponds to ez-
actly one successful minimal repair on a failed device. Then the F-hazard transfor-
mation leads to a stochastically shorter life length than the corresponding G-hazard
transformation.

COROLLARY 3.4. Consider the change of distributions which corresponds to a
fized proportional improvement, or, equivalently, imperfect repair with a constant
probability for successful minimal repair. Then the F-hazard transformation leads
to a stochastically shorter life length than the corresponding G-hazard transforma-
tion.

We conclude with some remarks. First, we return to the distinction between
“physical” and “statistical” minimal repair. Recall that the history F can be
completely general, as long as S remains completely unpredictable. On the other
hand, one could argue that if the minimal repair is an actual physical operation
performed on a failed device, which returns it to the state immediately preceding
the failure, the history should be one “giving a full description of the internal
state”.

It is also interesting that our inequalities hold irrespective of all dependencies
that a conditioning on a history might reveal, whether positive or negative. This
is not obvious since usually stochastic comparison results involving conditioning
require some form of stochastic monotonicity.

Finally, we mention two open problems. First, Proposition 5.4 in Norros (1986)
shows that in the case of proportional improvement, the stochastic comparison in
Corollary 3.4 is reversed if F is the internal history of a set of component life
lengths and if the transformation is made on the compensators of all components.
Would a similar result hold for the minimal repair also, or for a more general class
of compensator transformations? Second, does Theorem 3.2 hold when G is larger
than the minimal history but smaller than F?
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