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Abstract

When there exists a statistic which has its distribution free of nui-
sance parameters, the optimality of the marginal score function can
be investigated in the context of generalized Fisher information for
parameters of interest. In the case of a partially sufficient statistic,
i.e. a statistic sufficient for parameters of interest, the marginal score
function is the optimal estimating function. With the new concept of
q-sufficiency for parameters of interest, the marginal score function is
operationally equivalent to the optimal estimating function.
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1 INTRODUCTION

The optimality of the conditional score function as an estimating function
for the parameter of interest, in the presence of unknown nuisance parame-
ters, was established by Godambe (1976) in the situation where there exists
a statistic which is ancillary for the parameter of interest and which is also
complete for nuisance parameters. Such a statistic has been termed a com-
plete p-ancillary statistic in an earlier paper (Bhapkar, 1989).

Refer to Liang and Zeger (1995) for a review of estimating functions
theory, some discussion of optimality of the conditional score function under
the conditions assumed by Godambe, and references to further work (for
example, Lindsay 1982) to find approximately optimal estimating functions
in more general situations.

The analogous question concerning optimality of the marginal score func-
tion in the complete case, has not yet been satisfactorily resolved. Lloyd
(1987) considered this question; however, his assertion of optimality of the



84 BHAPKAR

marginal score function has been shown recently by Bhapkar (1995) to be
invalid.

In a special case where the two appropriate components of the sufficient
statistic happen to be independent, the marginal score function does turn
out to be optimal i.e., the property (6.2) holds. In such a special case, the
appropriate component possesses the property of p-sufficiency, symbolized
by the relation (6.1); this p-sufficiency then implies the optimality of the
marginal score. However, in the general case where the two components
of the sufficient statistic are not necessarily independent, the property of
p-sufficiency does not necessarily hold (as shown by the counter-example
by Bhapkar, 1995). This paper now establishes a certain weaker property,
referred in this paper as q-sufficiency; this property is symbolized by the
relation (7.7).

For example, in the case of a random sample X = (X\,..., Xn) from a
normal population with mean μ and variance σ2, T = X is a complete p-
ancillary statistic for σ2 and 5 = Σi(Xi ~^)2 i s p-sufficient for σ2. Here S
satisfies the property (6.1). However, in examples (4.1) and (5.1) S satisfies
only the weaker relation (7.6), but not (6.1). Thus, here the marginal score
function of 5 satisfies only the weaker optimality relation (7.7), but not (6.2),
which is satisfied in the first example. In both these examples, the family of
distributions of Γ, given S = s and 0, is complete for the nuisance parameter

φ.
The optimality of marginal score function, in its weaker or stronger forms,

is shown to be related to certain generalized Fisher information functions.
Section 2 introduces the basic terminology, Section 3 considers information
in a statistic (or its marginal distribution) as well as the information in the
conditional distribution given the statistic. Section 4 discusses the special
case where the marginal distribution of a statistic is free of the nuisance
parameters, while Section 5 deals with the optimality of estimating functions.
The case where the statistic happens to be sufficient for parameter of interest
(i.e. p-sufficient) is described in Section 6 while the last section establishes
a somewhat weaker property (viz. q-sufficiency) that holds in general in the
complete case, and in another specific situation.

2 INFORMATION IN ESTIMATING FUNCTION

Suppose that the random variable X has probability distribution Pω and the
probability density function (pdf) p(x; ω) with respect to a α-finite measure
μ over the measurable space (χ,A). The parameter wGίl and assume that
ω = (0, φ), where θ is the parameter of interest, φ is the nuisance parameter
and 0, φ are variation independent in the sense that Ω = Θ x Φ, where Ω is
an open interval in the d-dimensional space Rd, and d\ is the dimensionality
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oΐθ.

Let l'ω{X) = [dlogp(x]ω)/dω], be the row-vector of ω-scores, and its
components [lβ(X),l'φ(X)] are referred to as 0-scores and φ-scores of X,
respectively.

We assume the standard Cramer-Rao type regularity conditions:

R: i. J p(x;ω)dμ(x) = 1 can be differentiated twice under the integral
sign with respect to elements of ω;

ii. The Fisher information matrix I(ω) — Eω[lω(X)l'ω(X)] is positive
definite (pd).

If θ is real-valued, g — g(x\ θ) is said to be a regular unbiased estimating

function (RUEF) for θ if it satisfies the regularity conditions:

RG: i. Eωg{X;θ)=0,Eωg2{X;θ) < oo;

ii. f g(x;θ)p(x;ω)dμ(x) = 0 can be differentiated under the integral
sign with respect to elements of ω.

Operationally, g(x; θ) = 0 is to be solved to produce an estimate θ = θ(x).
In the d\-dimensional case, we shall still use the term estimating function

for a real-valued function g = g(x; θ) if it satisfies conditions RQ', however to
solve for θ we need an estimating equation g{x',θ) = 0, all elements of which
satisfy conditions RQ. Furthermore, in order to ensure that the equation
leads to a solution θ = θ(x), we also need the conditions:

(a) the covariance matrix σg(ω) = Eω[ggf] is pd.

(b) G(ω) = Eω[dg{X;θ)/dθ] is nonsingular.

In any case, we denote by G the space of real-valued functions satisfying

the regularity conditions RQ

The generalized Fisher information for 0, when ω = {θ^φ) is the full

parameter in the distribution Pω of X is defined (Godambe, 1984) in the

one-dimensional case as

IG{θ;ω) = minEω [lθ(X) - u(X ω)}2 . (2.1)
uζU

Here U is the space of real-valued functions u = u(x\ ω) such that

(i) Eωu(X\ω) = 0, Eωu\X\ώ) < oo (2.2)

(ii) Eω[u{X ω)g(X; θ)] = 0, for all g E G.

On the other hand, the information concerning θ in the RUEF g = g(x\ θ)

is defined as
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gι is then said to be more efficient than g if Igi(θ\ω) > Ig(θ\ω) for all ω
with strict inequality for at least one ω. We have, then, the generalized
information inequality (Godambe, 1984)

Ig(θ;ω)<IG{θ;ω), (2.4)

for all g EG.

The multi-dimensional analogs of (2.1), (2.3) and (2.4) are (see, Bhapkar,
1989):

IG(θ;ω) = mmEω[lθ(X)-u][lθ(X)-u}' , (2.5)

Ig(θ;ω) = G'(ω)σg1(ω)G(ω), (2.6)

Ig(θ;ω) < IG(Θ]ω). (2.7)

Here, of course, A < B for non-negative-definite (nnd) matrices means B — A
is nnd, min denotes the minimal matrix M* = M(u*) in the class of nnd
matrices {M(u)} such that M{u) > M* for all tx, and u denotes a vector
with all elements u G ZY, which satisfy (2.2).

It has been proved (Bhapkar and Srinivasan, 1994) that IQ exists; in fact

IG(θ',ω) = Eω[g*g*'}, (2.8)

where g* is the projection of IΘ{X) onto the space spanned by G. This
G-form indeed generalizes the usual Fisher information matrix in the sense
that

; θ) = I(θ) = Eθ[lθ(X)l'θ(X)]. (2.9)

In order to prove (2.8) and the results in this paper we find the Hubert
space technique quite useful. Another motivation for this is the need to
tackle the identifiability problem posed by the distinction between a func-
tion involving parameter 0; e.g. g = g{x\θ) and a function involving full
parameter ω, e.g. u = n(x α ), for the given ω.

To treat ω as a variable, along with x, Bhapkar and Srinivasan (1994)
introduced an arbitrary probability distribution π over the measurable space
(Ω,/3) for "random variable" ω, and consider the joint distribution Pω x π
of (X,ω) over (Xxίϊ).

Thus in the Appendix the space C of real-valued functions c = c(x; ω) is
defined such that

1. Ec(X]ω) = /c(x',ω)p(x;ω)dμ(x)dπ(ω) = 0

2. Ec2(X]ω) <oo.
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Here we write E for joint expectation, while we write Eω for expectation,
given ω.

The technical discussion in this context, along with proofs where nec-
essary, is given in the Appendix, in order to provide validity to statements
in sections 4, 5 and 7 of the text of the paper, which specialize the general
results for arbitrary π to the one-point distribution π at ω.

Thus Cω denotes the space of real-valued functions c = c(x; ω) such that

1. Eωc(X\ώ) ΞΞ f c(x\ω)p{x\ώ)dμ{x) = 0

2. Eωc2(X;ω) <oo.

Similarly, Q denotes the closure G of the subspace G of functions g = g(x\ 0),

which depend on ω only through θ. Then Qω denotes the space with π a

one-point distribution at ω. The orthogonal complement of Qω in Cω is then

3 INFORMATION IN A STATISTIC

Suppose now (5, T) is a minimal sufficient statistic for the family {Pω ) :

ω G Ω} of probability distributions Pύ ' of X. Without loss of generality,

we replace hereafter X by (S,T) in view of the anticipated result stated here

as a lemma (Bhapkar, 1991):

Lemma 3.1 Under regularity conditions R for the distribution of X, and

conditions RQ,

I{

G

X\θ;ω) = I{

G

S'T)(θ;ω). (3.1)

Now we want to investigate the information contained in S alone, in
relation to (5,T); similarly we want to find out the maximum information,
concerning 0, for estimating function based on S alone, in relation to such
maximum information in the functions based on both S and T.

Let then /(s; ω) denote the marginal pdf of 5 with respect to measure ι/,

and h(t\ ω\s) the pdf of conditional distribution of Γ given 5, the value of 5,

with respect to measure τ?s, when (5, T) has pdf p(s, t; ω) with respect to μ.

In view of regularity conditions R for p, we assume the following conditions

for / and h:

β*: 1. f f(sm,ω)dv(s) = 1 can be differentiated, twice under the integral

sign, with respect to elements of ω;

2. f h(t;ω\s)dηs(t) = 1 can be differentiated twice with respect to

elements of ω under the integral sign for almost all (y)s\
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3. The Fisher information matrix J ( 5 )(α;) = Eω[lω(S)l'ω(S)] exists
where l'ω(S) = [d\ogf{s\ω)/dω\ is the marginal ω-score of 5;

4. For almost all (v)s, the information matrix of T, given s, viz

I™{ω) = Eω[lω(T\s)l'ω(T\s)] exists where

lω(T\s) = [dlogh{T;ω\s)/dω]

is the conditional ω-score of T.

Let Cω denote the Hubert space of real functions c = c(s,t\ω) such that

Eωc = 0 and Eωc2 < oo (see Lemma A.2), and Qω = Gω the closed linear

subspace, where Gω is the set of functions g = g(s, t; θ) in Cω, which satisfy

regularity conditions as in RQ. Hereafter we drop the subscript ω from

Cω<>GωMω >- for simplicity of notation. Thus, we have

C = G®U (3.2)

where U is the orthogonal complement of Q in C; the elements u = u(s^ t\ ω)

are orthogonal to g G Q i.e. Eω[gu] = 0 for all g G G-

Now we denote by C(S) the subset of functions c = c(s ω) in C, which

depend on (s,t) only through 5. Similarly G{S) = G(S) denotes the closure

of G(S), the subset of G depending on (s,t) only through s. Thus, G{S) =

GnC{S).

Note that C(S) is itself a Hubert space, which is a subspace of C, and
the inner-products (or norms) for both spaces coincide for cχ,C2 G ̂ (5), in
view of the fact that

G(S) is a closed linear subspace of C(S) and we denote the orthogonal com-

plement of G{S) by V(5); thus

C(S)=£(S)ΘV(S). (3.3)

Observe that V(S) contains both functions u — u(s\ω) in ZY, not depending
on ί, and functions v = u(s;ω) = Eω[u(s,T]ω\s] for the remaining u in ZY,
since Eω[gu] — 0 for all g eG(S) for any uGW.

We can then define the generalized Fisher information matrix for 5, with
respect to parameter of interest θ when ω is the full parameter, as

= mmEω[lθ(S) - u][lβ(S) - «/]', (3.4)

in analogy with (2.5).
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Similarly, for each value s of 5, we consider the conditional distribution
of T, given s, and define the Hubert space Cs of real functions cs = cs(t;ω)
satisfying

Eω(cs\s) = 0, Eω(c2

s\s) < oo, (3.5)

in view of Proposition A.2. The closed linear subspace £ s = (5S, and its
orthogonal complement ys in Cs, are defined like Cs above; thus we have

Cs = Gs®ys, (3.6)

for each value 5 of S.

The generalized information in the conditional distribution Pω \ given
s, is defined now as

- ys] [lθ(T\s) - y s ] ' \ s } , (3.7)

in analogy with (2.5).

Finally we define the subspace C(T\S) in C of functions c(s,£;u;) =

cs(£;ω), G(T\S) as the subspace in G of functions (g(s,t]θ) — #s(£;0),

G{T\S) = G i r l S ) , and y{T\S) as the subspace in C(T\S) of functions

y(s,t\ω) — ys(t;ω). Thus these functions satisfy (3.5) a.e. (Pi ;) and, thus,

Q (T |S) C C{T \S) and {y(T \S) C C{T \S)). We also note that {G{T \S)

= gnc(τ\s)).
We now have the following lemma from Bhapkar and Srinivasan (1994),

which is the special version of Lemma A.3.

Lemma 3.2

C = C{S)®C{T\S) . (3.8)

PROOF It is easy to see that if c E C(T \S), then c _L C(S). We want

to prove the converse that if c _L C(5), then c G C(T \S).

Let then c ± C(5), and Eω ( φ , T ; ω ) \s) = c*(β;ω). Since c* 6 C(5),

and c ± C(5), we have Eω(cc*) = 0. But Eω{cc*) = ^ [c*(5;ω)β(l,(c|Sf)] =

J5ω[c*2(5;ω)]. Hence Eω{c*2) = 0, which implies c*(5;ω) = 0, a.e. ( P ^ ) .

Thus, c G C(T 15) and the lemma is established.

Note that the decomposition of the space C into C(S) and C(T \S) cor-

responds to the fact that, for any ceC, Eω{c\s) E C(S), while c - Eω(c\s) E

C{T\S).

In view of Lemma A.4 we have C{T\S) = Q{T\S) Θ y{T\S). The

generalized information for θ in the conditional distribution of T, given 5,

is defined as

(0; ω) = ^ e mm | s ) £ ω [i,(T |5) - y] [Iβ(T \S) - y]' . (3.9)
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Lemma 3.3 In view of (3.7) and (3.9),

I{GlS)(θ;ω)>Eω[IG(θ;ω\S)] (3.10)

PROOF. The proof is immediately obtained by noting

min Eω \[as - ys] [as -

with a(s, t\ ω) = lθ{T \S) and as = lθ(T \s).
We are now in a position to prove the following theorem;

Theorem 3.1 Assume the regularity conditions R* for the marginal distri-
bution of S and the conditional distribution of T, given S. Then

(i) ifτ\θ-,ω) > i£V;") + -rgΊ5)(0;ω); (3.u)
and

(ii) I^Hθ ω) > I(g)(θ;ω) + Eω[IG(θ )ω\S)}. (3.12)

PROOF. Let n(u) = lo{S,T) - ix, m(i/) = lθ{S) - v and r(w) =
IQ{T \S) — iϋ, where 1/(5; ω) = Eω[u \s] and w = u — v for any u eU (i.e.
every element of u belongs to U).

Then v 6 V(5), since u _L Q{S) implies E f̂tep] = Eω\gu] = 0 for all
g e G(S). On the other hand, if g = 0 is the only g in ^(5), then 1/ 6 V{S)
in view of (3.3). Also, for all g e G{T |5), Eω[gw] = £?ω[flf(tι - v)] = ^[ptt]
—JSα b^] = 0? a n d then tϋ E [V(T |5) in view of Lemma A.4. It is also true
that w e y(T\S) if g = 0 is the only g in G(T\S).

Now n(ϊz) = m(i/) + r(w) and we have

Eω[n{u)n'(uj\ = Eω[m(u)m'{u)\ + Eω[r(w)r'(w)].

Since we have 1/ G V(*S) and iϋ E y{T \S) for every tx € W, it follows that

mmEω[n(u)ri(u)] > min. Eω[m(u)mf(u)) + min

i.e. inequality (i) holds. The inequality (ii) follows immediately from Lemma
(3.3). Thus the theorem is established.

Remarks, (a) The relation (i) would be a strict equality if there exists
u — u* for which Eω[u* \s] = v* minimizes Eω[m(υ)m'(υ)] for v € V(S)
and simultaneously y* = u* — υ* minimizes Eω[r(y)rf(y)] for y E y(T \S).
The relation (ii) would be a strict equality if, furthermore, y* = y*s(t;w)
where y* minimizes Eω[r(ys)rf(ys) \s] for ys E ys a.e. (Pώ )•
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(b) The inequality (3.12) was earlier given as Theorem 4.2 in Bhap-
kar (1991), subject to the condition that Ic{θ\ω) exists. Since existence
of such a generalized information matrix has been established by Bhapkar
and Srinivasan (1994), such an existence qualification is no longer needed.
Furthermore, the present proof is mathematically more rigorous.

(c) For the special case discussed in next section, when S has distribution
depending on ω only through 0, VG' (0; ω) reduces to 1^ (θ) in the inequality
(3.12). Such an inequality was earlier established as Theorem 3.1 in Bhapkar
(1991) subject to existence qualification. The previous comments (a) and
(b) apply to this case as well.

(d) The fact that we need a possible inequality in (3.11), rather than a
strict equality, is seen from the following example: Suppose X = (X\1X2)1

where X\,X2 are independent N(φ, θ) variables. Then IG{Θ; ω) = 1/202, but
forS = Xi,T = X2, wehave45)(0;ω) = 0, and J™(0;u;) = I{P{θ;ω) = 0
as seen from Example 4.2 Bhapkar (1991).

4 SPECIAL CASE

Now we deal with the special case where the marginal distribution of S
depends on ω only through θ. Then every element of the marginal score
function of 5, viz IQ(S) is a RUEF in view of condition R*{ϊ).

We can now characterize all the RUEF in G in view of Lemma A.6 in
the Appendix.

Theorem 4.1 Assume that the joint distribution o/(5, T), given ω, satisfies
the regularity conditions R* in Section 3, the marginal distribution of S
depends only on θ, and the estimating functions g = g(s, t; θ), for parameter
of interest θ, satisfy the regularity assumptions RQ Then any RUEF in G
can be expressed in the orthogonal decomposition:

g(s, t; θ) = b'(s, t; θ)lθ(s) + «>(*; θ) (4.1)

where Eω[b(s,T]θ) \s] = α(ω), and g0 e G0(S), the set of RUEF in g(S)
uncorrelated with IΘ{S).

Remark (a) Although we are assuming here that ω is fixed (i.e. π is
a one-point distribution at the given α;), as in most of the text, the strict
validity of the statements with ω = (θ, φ) as variables follows from the proofs
given in Appendix (e.g. Lemma A.6 for Theorem 4.1) where (5,T;ω) are
variables.

(b) Observe from Lemma A.6 that Q = Q{S,T) Θ Go(S), where Q(S,T)
is defined by (A.10), and QX(S) C G{S,T). In particular, if G(T\S) is empty,
G is not necessarily equal to G(S). See Example 4.1 below in this regard.
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Example 4.1. Let X = (Xχ,...,Xn) be independent pairs Xi —
(Yi,Zi), where Y{,Z{ are independent exponentially distributed variables
with means φ and φθ respectively. Letting Y = £^ Y{ and Z = Σ% Z% ? ( ^ ^0
is minimally sufficient for ω = {θ,φ). Equivalently, (S,T) is a minimal suf-
ficient statistic with S = Z/Y and T = Z.

The marginal distribution of S is

free of </>, and the conditional distribution of T, given s, has

t2n-l e-t/δ(s)

where 5(s) = sθ φ/(s + θ).

Here G(T \S) is empty (in view of completeness of Γ, given s, for (/> with

fixed θ. We have lθ(s) = n(s - θ)/θ{s + θ). But there exists g = g{s,t]θ) =

t(s-θ)/θ2s = b(s, t; θ)lθ(s) where 6(5, t; 0) = t{s+θ)/nθs so that E f̂tls = 20.

5 OPTIMALITY OF ESTIMATING FUNCTIONS

A RUEF g* = #*(s, t; θ) in G is said to be optimal (Godambe and Thompson,

1974) for estimating the one-dimensional parameter θ, in the presence of

unknown 0, if Ig*(θ;ω) > Ig(θ\ω) for all g G G, where Ig is the information

concerning 0, defined by (2.3). The matrix analog of (2.3) is given by (2.6)

for the case of multi-dimensional θ.

Now we wish to consider the marginal score function of 5, when the

distribution of S is free of the nuisance parameter φ. The general form of

j G G has been shown to be (4.1) in this case.

For simplicity of proofs here we consider the case of one-dimensional θ.

We now show that go{s;θ) is the non-informative part of g in (4.1) in

the sense that the information Igo(θ;ω) is zero; also if g(s, t\ θ) = g*(s, t; θ) +

go(s-, θ) in (4.1), then Ig(θ; ω) < Ig* (0; ω) with strict inequality unless go(s; θ)

ΞΞO.

In view of Theorem 4.1, g0 is a RUEF belonging to G(5), and it is un-

correlated with IΘ(S). Differentiating /go(s; θ) f (s; θ)dιy(s) = 0 with respect

to θ under the integral sign we have

Hence Igo(θ;ω) = 0 in view of (2.3).
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More generally, for g = g* + g0, where Eω[g*g0] = 0, we have Eω[g2] =
Eω[g*2] + Eω[g2]. Also

Eω[dg/dθ] = Eω[dg*/dθ] + Eω[dg0/dθ] = Eω[dg*/dθ].

Hence

(ΘΛ > τ ( a λ
IAΘM~ Eω[g*2] * K^ΪTEM)=l9iθ;ω)

Thus we have proved

Proposition 5.1 If g(s,t\θ) = g*(s,t',θ)+go{s 1θ), where go(s;θ) is uncor-
related with IΘ{S), and also with g*, then Ig(θ;ω) < Ig+(θ;ω), with strict
inequality unless go{s]θ) = 0.

Now we consider the case where G(T\S) is empty.

First suppose that S and T are independent. We plan then to show that
Ig{θ;ω) < Iιθ{s){θ\ω) for any g G G.

If G(T\S) is empty, then we may assume g = 6(s, ί; Θ)IQ{S) where £?α;[6|5] =
a(ω) φ 0, in view of (4.1) and Proposition 5.1. But b(s,t]θ) = b*(t;θ) for
some b* in view of independence of S and T. Thus, g — b*(T',θ)lβ(S), so
that Eω{g2) = Eω(b*2)Eθ(l2

θ{S)) = Eω{b*2)l(s\θ), where I^{θ) is the usual
Fisher information in S. Also, dg/dθ = {db*/dθ)lθ(s) + b*{dlθ/dθ) so that

d2 log f(S-,θ)
£ = Eω[b*(T;θ)}Eθ θθ2

Hence, from (2.3),

Since jEg(6*) < ^ ( ^ * 2 ) , we have

Proposition 5.2 7/5 αndT are independent, the distribution of S depends

only on θ and G(T\S) is empty, then Ig(θ;ω) <

The matrix analogs of Propositions 5.1 and 5.2 can be developed for the

general case of vector θ in terms of the information matrix Ig(θ;ω), given

by (2.6).

Thus the marginal score function of 5, viz. IΘ{S), is the optimal RUEF for

θ (uniquely except for multiplication by functions of θ alone), when G(T\S)

is empty, if S and T are independent.
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If the family of conditional distributions {P^ \φ G Φ} of T, given s

foτφeΦ is complete for every fixed 0, a.e. (Pω ), then G(T \S) is empty.

Is then IQ(S) an optimal RUEF if the distribution of S depends only on 0?

Proposition 5.2 requires the additional assumption of independence of S and

T to prove optimality of lβ(s).

Lloyd (1987) asserted optimality of IΘ(S), without requiring indepen-

dence, in the case of one-dimensional 0; a similar assertion was made by

Bhapkar and Srinivasan (1993) for the general case. Both these assertions

are now seen to be invalid in view of the following counter-example (Bhapkar,

1995).

Example 5.1. (continuation of Example 4.1) In Example 4.1, for given 0

and 5, T is complete for φ and hence G(T\S) is empty. However /^(5)(0; ω) =

n2/02(2n + 1), while Ig(θ;ω) = n/202 > I^s\θ) = Ilθ{s)(θ;ω), for g =

g(s,t θ) =t{s-θ)/θ2s.

Note that although, here, both le(s) and g produce the same estimate,
viz. θ = S,IQ and g are distinct functions, i.e., g is not of the type k(θ)lo(s),
and these distinct functions lead to different information functions.

6 PARTIAL SUFFICIENCY OF S FOR θ

If the marginal distribution of S depends on ω only through 0, S has been

termed partially sufficient (p-sufficient) for 0 if

I{

G

X\θ',ω) = lW(θ). (6.1)

Thus, it has been shown by Bhapkar (Theorem 3.3, 1991) that 5 is p-

sufficient for 0 if the following condition holds:

(i) The conditional pdf of T, given s, depends on ω = (0, φ) only through

a parametric function δ = δ(ω), which is differentiate and is such that ω is

a one-to-one function of η = (0,5), for almost all (PQ )S.

Earlier the term partial sufficiency had been used by some authors to

describe the property of statistic Γ when δ(ω) in (i) is φ itself. The property

of partial sufficiency of Γ was, then, also referred to as S-sufficiency by Basu

(1977), among others.

There is another situation where the property (6.1) holds; in this situa-

tion, condition (i) is replaced by the following condition:

(ii) The family of conditional probability distributions {Pω : φ E Φ}

of T, given s, for φ G Φ is complete for each 0 a.e. {PQ ) , and (5,T) are

independent.

The proof that the equality (6.1) holds, under the regularity conditions

R*,RG and the additional condition (ii), when S has pdf depending only
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on 0, follows essentially from Proposition 5.2, in view of inequality (2.4).

A direct proof has been given by Bhapkar (1990) under a condition (ii'),

which is equivalent to (ii). In condition (ii7) T has been termed a complete

p-ancillary statistic for θ.

The independence of (5, T) in the completeness condition (ii) is crucial, as

shown by Example 5.1, and thus the assertions in Lloyd (1987) and Bhapkar

and Srinivasan (1993) appear to be invalid.

If T is complete for 0, given s and 0, then the second terms on the right

hand sides of both (3.11) and (3.12) are seen to vanish in view of (3.7) and

(3.9). However, it does not follow that Ic{θ\ω) = IQ\0',UJ), in view of

comment (d) after Theorem (3.1). Thus the equality (6.1) is not necessarily

true when S-distribution depends on ω only through 0, and Γ is complete

for </>, given s and 0.

When the relation (6.1) holds, i.e. when S is p-sufficient for 0, then the

marginal score function of 5, viz. Zfl(s), is the optimal RUEF for 0, in the

sense that

Ig(θ;ω)<Ilθ{s)(θ;ω) (6.2)

for all RUEF g, in view of relations (2.4), or its matrix version (2.7), and
(6.1).

Incidentally, example 5.1 provides a counter-example to the assertion
in Corollary 3.2 in Bhapkar (1991). Although the statement of Theorem
3.1 in the 1991-paper is correct, as verified by the proof of Theorem 3.1
in the present paper, Corollary 3.2 was based on the relation (3.14) in the
1991-paper, which is in error. Thus, Example 5.1 has served as a counter-
example to both Theorems 3.1 and 3.2 in Bhapkar and Srinivasan (1993). 5
in Example 5.1, thus, does not satisfy the p-sufficiency property (6.1), but
rather the q-sufficiency property in the next section.

7 Q-SUFFICIENCY OF S FOR θ

If T is complete for </>, given s and 0, then G(T\S) is empty. Lemma A.7

shows that all RUEF's for 0 can be represented in the form g(sjt θ) =

bf{s,t;θ)lθ(s) +go{s), where Eω[b(s,T;θ)\s] = a(ω). Operationally, a dλ-

vector g = g(s, ί; θ) can be considered an estimating function for d\-dimensional

θ if the equation g{s,t\θ) = 0 can be solved to produce an estimate θ =

θ(s,t). Thus, if Γ is complete for φ, given s and 0.

g(8, t; θ) = B(8, t; θ)lθ(s) + go(s), (7.1)

where all the elements of gr0 belong to Qo{S) and Eω[B(SjT;θ\s] — A(ω). In

order to find the optimal g, which maximizes the information matrix Ig(θ\ ω)
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given by (2.6), one may assume without any loss of generality that g0 — 0,
in view of Proposition 5.2.

Now solving the estimating equation

B(s,t',θ)lθ(s) = 0 (7.2)

for producing an estimator θ = θ(s,t) is operationally equivalent, in fact, to
solving the regular unbiased estimating equation IΘ{S) = 0. For instance,
in the case d\ = l,b(s,t\θ) is not an unbiased estimating function since
Eω[b(s,T',θ)\s] = a{ω) implies Eωb(S,T\θ) = a{ω) and a{ω) Φ 0 in view of
the assumption that G(T\S) is empty.

One can then define a weaker concept (or property) of sufficiency for
the parameters of interest, viz, q-sufficiency, if there exists statistic S with
distribution depending on ω only through θ such that the inequality

Ig{θ;ω)<Ig.{θ;ω) (7.3)

for all RUEF g holds for some g* of the form (7.2), which are operationally
equivalent to IΘ{S), in the sense that the estimator θ = θ(s,t) is produced
by the Z#(s) part. Note that in (7.2) the part 6(s,t;0), in the case d\ = 1, is
not a RUEF itself in the sense that Eωb Φ 0. In the d\-dimensional case no
row of B($, t\ θ) in (7.2) can be a RUEF itself.

Thus, if T is complete for φ, given s and 0, then S is at least q-sufficient.
If S and T happen to be independent, then S enjoys the stronger property
of p-sufficiency.

If S happens to be q-sufficient, one could then define the q-information
matrix

IQ{θ;ω) = mmEω[lθ(S,T) - u][lθ(S,T) - u]f], (7.4)

where now u = u(S,T;ω) is permitted to have elements in U* which is
the space of functions in C orthogonal to 5*, which is obtained from Q
by excluding g(s,t;θ) = b'(s,t\θ) lθ{s) such that Eω[b(s,T;θ)\s] = a(ω),
which is not of the form a*(θ). Thus Q* is the sub-space of functions g* =
a'{θ)lθ{s) +go{s-,θ), where g0 e Go{S); hence Q* = G{S). Since Q* C Q, we
have W D U, so that

IQ(θ]ω)<IG(θ]ω) (7.5)

The property (6.1) is now replaced by the weaker property

^ (7.6)

we then have

Ig(θ;ω) < / | # ( f )(0;ω) = I ( S )(θ) - IQ(θ;ω) (7.7)
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for all g with elements in G*
Another situation where S happens to be q-sufficient, but not necessarily

p-sufficient, is somewhat similar to the one covered by condition (i) in Section
6 with the difference that the parametric function δ = δ(ω) does depend on
s as well. Specifically, for the statistic (5,T), which is sufficient for ω, we
have S-distribution depending on ω only through 0, and

(iii) the conditional pdf of T, given 5, depends o n ω = {θ,φ) only through
δs = δ(ω; s), which is differentiate such that ω is a one-to-one function
of (0, £s), given s, for almost all s.

Under condition (iii), the conditional pdf h(t;ω\s) = h*(t;δs\s). Then
for the case d\ — 1 we have

dθ = ί dφ J d ( ω ; S)' (7'8)

for a suitable function d( ; s), arguing as in Theorem 2.2 of Bhapkar (1991).
In view of regularity assumption R* (ii) every element of dlogh/dφ

belongs to the space ys, given s. The same is true oΐdlogh/dθ, i.e. IQ(T\S),

because of the relation (7.8).
Since Gs®ys is the orthogonal decomposition of C5, for every gs{t\ 0) E Gs

we have
Eθ[lθ(T\s)gs(T',θ)\s} = 0. (7.9)

We have, thus,
Eω[dgs(T',θ)/dθ\s} = 01 (7.10)

again in view of R* (ii); thus

Eω[dg(a,T',θ)/dθ\8]=0

for every g eG(T\S). It then follows that

Eω[dg(S,T;θ)/dθ]=0 (7.11)

for every g eG{T\S).
Therefore, under assumption (iii), Ig(θ;ω) = 0 for g e G{T\S). Hence g is

optimal only if g has the form 3(5, t; 0) = 6(s, t; Θ)IQ(S), in view of Proposition
5.1, where Eωb{S,T;θ) = α(ω) φ 0.

Thus, arguing as in the complete case, S happens to be q-sufficient for 0
in the sense that the optimal g*(s,t;θ) is a RUEF operationally equivalent
to lθ{s), and the property (7.7) holds, when assumption (iii) is satisfied.
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Appendix

Proposition A.I Let (X,A,ψ) be a σ-finite measure space and L2{X
the set of all real-valued functions f for which j f2(x)dφ(x) < oo; then
is a Hilbert space.
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The inner product < /i,/2 > is then given by / fιf2dψ and the norm
is defined by | | / | | 2 = J72ώ/>
The proof is given in mathematical texts (see, e.g., p. 81, Rudin, 1974).
Such a proof can be modified, as appropriate, to establish

Lemma A.I Let L(X,ψ) be the set of all real-valued functions f for which
f f(x)dψ(x) = 0 and f f2(x)dψ(x) < oo. Then L(X,φ) is a Hilbert space
with the inner product and norm defined as before.

Lemma A.2 Let C = C(X x Ω,μ x π) be the space of real-valued functions
c = c(x\ω) satisfying E(c) = /c(x;ω)p(x;ω)dμ(x)dπ(ω) = 0 and E(c2) =
f c2pdμdπ < oo, where p(x;ω) is the conditional pdf of X, given ω £ Ω,
with respect to a σ-finite measure μ, and π an arbitrary probability measure
over Ω. Then C is a Hilbert space with the inner product < ci,C2 > defined
as E(c\C2).
Proof. The set C forms a linear space over the field R of real numbers. It
remains to prove that C is complete, i.e. to show that every Cauchy sequence
{cn} in C converges to an element c in C with respect to the norm ||c|| defined
by

| |c | | 2 = E(c2) = ίc2pdμdπ = ί d2{χ-,ω)d<ψ{χ ω), (A.I)

where d(x\ω) = c{x',ω)\p{x\ω)]ιl2 and ψ = μ x π.
If {en} is Cauchy, there exists a subsequence {cnk},rtι < n 2 < . . . such that

1-cnk\\<2-\k = \χ... (A.2)

Let
oo

' a =

In view of the triangle inequality, and (A.2), we have

k

Applying Fatou's lemma to {α^},

/ liminf \ liminf

k { 1/

/ hminf \ liminf r

I k -> oo a{ 1 pdφ <k -> oo / a{pdφ < 1,

i.e. ||α|| < 1. Thus a{x\ω) < oo a.e. (Ψ), and the series

oo

ii+i(α;ω) - c n i ( ^ ; ω ) }
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converges absolutely, say to c{x\ω) a.e^). Thus for cnk(x;ω) = cnι(x\ω) +

lim cnk (x ω) = c(x; ω), α.e.(^). (A.3)

We now show that c£C, and \\cn — c\\ -> 0 as n -> oo.
For any e > 0 there exists N such that ||cn — cm \\ < e for m,n greater than
N. Applying Fatou's lemma, for m > N we have

/

r liminf 2

(c - Cm) pdφ = / k -> oo (cn i b - c m ) pdt/;
liminf /•

< fc -> oo y (cn, - cm) 2 p # < e2 . (A.4)

It follows that E(c2) = / c 2 p # < oo. Also

- Cm + Cm\ = \E{c - Cm)\ = \ J{c - Cm)pd<ψ\

Γ Γ

[J

1 / 2 Γ Γ 1 1 / 2

in view of Cauchy-Schwartz inequality. Since fpdψ = f pdμdπ = f dπ = 1,
we have |£7(c)| < e, in view of (A.4). Since e is arbitrary, this proves that
E(c) = 0. Thus c eC, and | |cm — c\\ -» 0 as m -> oo in view of (A.4). Thus
the lemma is established.
Assume the regularity conditions #*, in Section 2, for the joint distribution
of (5,T), given ω. Consider now the probability distribution π = πi x π2 of
CJ = {β, φ) over θ x Φ.
C is the Hubert space of real-valued functions c = c(s,£;ω), which satisfy

E(c) = / c(s, ί; ω)p(5, ί; ω)dμ(s, t)dπ(ω) = 0

E(c2) = / c2pdμdπ < oo .

See Lemma A.2 for the proof of assertion that C is a Hubert space.
The subspaces (and their closures in C, as needed) considered later on are
defined below:

g is differentiable with respect to elements of θ }

g = G

U = g1- so that C = G®U

C(S) = {c:c = φ ; ω) and ceC}

G{S) = {g:g

G(S) = G(S)

V(S) = ±
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For a given value s of 5, define

Cs = {cs : cs = c5(£;ω) ,-Eα,(cs |s)

= / csh(t; ω \s )dηs (ί) = 0, a.e. (π)

E(<ξ \s) = ίc2

shdηsdπ{ω) < oo} . (A.5)

The proof that Cs is itself a Hubert space, given 5, is very similar to that of
Lemma A.2; first we have

Proposition A.2 Every Cauchy sequence {cs,nk},nι < n^ < . . . in Cs con-
verges to an element in Cs; hence Cs is a Hilbert space.
Proof. Arguing as in the proof of Lemma A.2, we have

lim cSiTlk (t; ω) = cs(t; ω), a.e. (ηs x π) (A.6)
>oo

in view of (A.3). It remains to verify that Eω[cs(T;ω) \s] = 0, a.e.(π); the
remainder of the proof goes along the lines of Lemma A.2 proof. Now

Eω[cs \s] = J(cs - c s , m + ca,m)dPW8) = J(cs - cs,

(cs,nk -J(
by applying Fatou's lemma to {cs,njc} as k -> oo. Hence JSω[cθ|s] < 0, in
view of (A.6), noting that (A.6) holds a.e.(π). A similar argument applied
to — cs gives the inequality — J E ^ C ^ S ] < 0. Thus, E^jcsls] = 0, a.e.(π). The
proposition is established by arguing as in the proof of Lemma A.2.
In C5, we define the subspaces Qs and ys as given below.

Gs = {9s : 9s = 9s (*; θ), gs G Cs and

gs is differentiate with respect to θ}

Gs = Gs

ys = Gs

LmCs,i.e.cs = gs®ys

Finally we define in C

C(T\S) = {c:c = φ , ί ; w ) , c 6 C and

c(s,t;ω) = cs(t;ω),cs e Cs a.e.(z/ x π)}

G(T\S) = {g: g = g(s,t;θ),geG and

g{s,t;θ) =gs{t',θ),gs e Gs a.e.(i/ x π)}

y(s,P,ω) = ys(t;ω),ys 6 ^ 5 a.e.(ι/ x π)

Lemma A.3 C = C{S) Θ C(T\S).
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PROOF Let c* = c*(s;ω) G C(S) and c = c(s,t;ω) G C(T\S). Then

E{cc*) = Jc*(s;ω) [|' c(a,t;u>)dP™] dP^dπ(ω) = 0

and thus C(S) ± C{T\S). Now we show that C(S)1 is C(T\S).

Suppose now c J_ C(S), and let c*{s;ω) = Eω(c\s). Since c* G C(5), E{cc*) =
0. But

Hence c*(s;ω) = 0, a.e.(z/ x π). Thus c G C(T|5), and the lemma is proved.

Lemma A.4 C(T\S) = C?(T|5) ®y(T\S).
PROOF. If y G y(T\S) and 5 G ί?(Γ|5), then

E(gy) = J gydP^dPWdπiω) = J [ | 5 ίy sdPf Is)] dP^WM = 0

Thus £(T|S) j . y(T|5).
Suppose now c G CCΠS) and c ± ̂ (Γ|5). Since c G C(T\S), c = c(s,t;ω) =
cs(t;ω), where cs G Cs, a.e.(^ x π). Consider the orthogonal decomposition
of cs in Cs, viz

cs(t;ω)=g*s(t;θ) + y*s(t;ω).

Consider now g*(s,t;θ) = gl(t;θ); then 3* G G(T\S) and, hence, c ± g*, i.e.
£?(<#*) = 0. But

E(cg*) = J'cg*dP^dP^d-κ{ω) = J [J'cs(t;ω)g*s(t;θ)dP

Hence g*(s,t;θ) = 0, a.e.(μ x TΓI). Then gζ(t]θ) = 0 a.e.(^ x TΓI), which
implies cs = y* a.e.(v x π) so that c(s,t;ω) = y*(s,t;ω), where y*(s,t;ω) =
y*(t;ω). Thus c G ̂ (Γ |5), and the lemma is proved.

Lemma A.5 Suppose that the distribution of S, given ω, depends on ω only
through θ,

Gι(S) = {gι:gi=gi(s;θ) = α'(θ)lθ(s)eg(S) (A.7)

for some α(θ)},

and £o(#) is the sub-space in £(S) orthogonal to Gi(S). Then

G*(S,T), (A.8)
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where

G*(S,T) = {g*:g*=g*(s,t;θ)eg<md

k*(s;θ) = Jg*(s,t;θ)dP™dπ2(φ)eGι(S), a.e. (1/x πi)}.(A.9)

PROOF. When the distribution of 5, given ω, depends only on 0, then
each component of IQ(S) belongs to G(S) in view of regularity condition
R* (i). Since Q(S) is complete, it is a Hubert space with decomposition

We also note that Q is a complete subspace of C and, hence, Q is a Hubert
space. G*(S,T) is seen to be orthogonal to Go(S). It remains to show that
G*(S,T) is the orthogonal complement of Go(S) in G>
Let then g € G and suppose g ± Go{S). Then for all go G Go(S)

0 = E[gog] = J

= E\gok*].

Thus k* JL ̂ 0(5). Since k* <Ξ G(S), it follows that k* G £i(S). Thus the
lemma is established.

Lemma A.6 Under the assumptions of Lemma A.5, let

g{S,T) = {g:g = g{s,t;θ) = b'{sΛθ)lθ{s) such

that JBw[6(β,T;0)|s] = α(ω), and g e G} . (A.10)

(i) If there is a 5* e G*(S,T) orthogonal to £(S,T), then fc*(5,6>) = 0, a.e.
( ) , and (ii) for every j G ? ( 5 , T ) , we have the orthogonal decomposition

g = a*'(θ)lθ(s) + [b'(8,t;θ) - a*'(θ)]lθ(s), (A.ll)

where Eω[b{s ,T;θ\s)] = α(ω), and /α(ω)cίπ2(<£) = a*{θ).
Furthermore, (iii) if π is a one-point distribution at ω, then ^ has the or-
thogonal decomposition

G = Go(S)®G(S,T).

PROOF. Note first that G(S,T) C 0*(S,T). Also observe that ^i(5) C
G{S,T). Hence if there is a g* G ζ?*(5,T) orthogonal to 5(5,T), then we
have for all ̂ 1 € ( )

0 = E\gιg*] = Jg1(s,θ)k^s]θ)dP{

θ

S)dπι(θ)

in view of (A.9). However fc* G £1(5) in view of lemma A.5 and (i) follows.
To prove (ii), note that the two components of g in (A.ll) are orthogonal.
We need to show that the subspace spanned by the second component is
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the orthogonal complement of Gi{S) in G(S,T). Let then g G G(S,T) and
suppose g ± Gι(S). Then for all gx G Gι(S)

0 = E\gιg] = Jgi(s;θ)af(ω)lθ(s)dP{

Θ

S)dπ(ω)

= J a[(θ)lθ(s)ϊθ(s)a(ω)dP{

θ

S)dπ(ω)

= ίa[(θ)I^(θ)a{ω)dπ{ω),

in view of (A.7) and (A. 10). Since this is true for all αi(0), we have
Ja(ω)dπ2{φ) = 0. Thus (ii) follows.
Finally, if π is a one-point distribution at ω, then ^[ff*^] = 0 and, thus,
g* G G(T\S), which is a subset of G{S,T). Since 3* is orthogonal to £(S,T),
it follows that g* — 0. Thus we have assertion (iii).

Lemma A.7. Under the assumptions of Lemma A.5 and A.6, suppose π is
a one-point distribution at ω. If now G{T\S) is empty, every g G G has a
representation

where 50 e (zoOS) and £„[&($,T;0)|s] = α(ω) 7̂  0.

Remark. Although (A. 12) gives the general representation of Q for the case
where G{T\S) is empty and π is a one-point distribution at ω, the decomposi-
tion (A.ll) shows that g in <?(S,T) belongs to Gi(S) only if Eω[b{s,Γ; θ)\s] =
o*(0) for some α*, i.e. 6(s,ί;θ) = α*(θ) in view of assumption that (?(T|S)
is empty. Then g is outside Q(S) only if J5w[6(s,T;0)|3] = a*(ω) for some
function α* which depends also on φ in a non-trivial manner. The orthog-
onal decomposition of Q(S,T) into Gi{S) and its complement in G(S,T) as
given in (A.ll) is now possible only as

g(s, t; 0) = a'(ω)lθ(s) + [b'(s, t; 0) - α'(ω)]I,(*)

where α(α ), for the given ω, depends non-trivially on co-ordinates φ of given
ω.




