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Abstract

In his last work on inductive logic, Carnap listed three outstanding
problems for future research: inductive logic for a value continuum,
inductive logic sensitive to “analogy by proximity” and inductive logic
sensitive to “analogy by similarity”. The first problem is completely
solved by work of Ferguson and Blackwell and MacQueen. Bayesian
statistics also throws light on Carnap’s two problems of analogy.

1. Introduction. In 1941, at the age of 50, Rudolf Carnap embarked
on the project of developing inductive logic. In the early days of the Vienna
Circle the logical positivists, heavily influenced by Hilbert, looked to deduc-
tive logic and the axiomatic method to analyze the scientific method. Over
the years Carnap, Hempel, Reichenbach and others came to the conclusion
that important aspects of scientific method were irreducibly inductive. The
analysis of inductive inference thus became central to the development of
scientific philosophy.

While Reichenbach focused on relative frequency and the consistency
of statistical estimators, Carnap investigated probability as rational degree
of belief. He started with Bayes and progressed to Laplace. By the end
of his life, he had moved from a logical conception of probability inspired
by Keynes and a unique inductive rule based on a flat prior for an IID
process to a subjective conception of probability and a class of inductive
rules corresponding to the Dirichlet priors.

Carnap hoped that after his death coworkers would carry forward the
construction of inductive logic. In his last (posthumous) work (1980) he lists
three major tasks for future research. One is the construction of confirmation
functions for the case where the outcome can take on a continuum of possible
values. The others have to do with the construction of confirmation functions
sensitive to two kinds of analogy, which he calls “analogy by proximity” and
“analogy by similarity”.

Within three years of his death, Carnap’s first problem had been com-
pletely solved in a way quite consonant with Carnapian techniques, by Fer-
guson(1973) and Blackwell and MacQueen (1973). Carnap’s “coworkers”
have turned out, in large measure, to be Bayesian statisticians rather than
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philosophers. In addition to the solution to the problem of a value contin-
uum, Bayesian statistics can throw some light on Carnap’s two problems of
analogy.

2. Carnap’s Continua. Suppose that we have an exhaustive family
of k mutually exclusive categories, and a sample of size N of which n are of
category F. Carnap (1950) originally proposed the following inductive rule,
C*, to give the probability that a new sampled individual, a, would be in F
on the basis of the given sample evidence, e.

14+n
k+N

On the basis of no sample evidence, each category gets equal probability
of 1/k. As the sample grows larger, the effect of the initial equiprobable
assignment shrinks and the probability attaching to a category approaches
the empirical average in the sample, n/N. Soon Carnap (1952) shifted from
this method to a class of inductive methods of which it is a member, the
A-continuum of inductive methods.

pr(Fale) =

A+n
M+ N

Here again, we have initial equiprobability of categories and predomi-
nance of the empirical average in the limit with the parameter, A(A > 0),
controlling the rate at which the sample evidence swamps the prior probabil-
ities. In his posthumous (1980) paper, Carnap introduced the more general
A — 7y continuum:

pr(Fale) =

Ai+n

A+n
The new parameters, v; > 0, allow unequal a priori probabilities for dif-
ferent categories. For Carnap these are intended to reflect different “logical
widths” of the categories. The parameter, )\, again determines how quickly
the empirical average swamps the prior probability of an outcome. One
could equivalently formulate Carnap’s A — -y rules as follows. Take any k

pr(Fiale) =

positive numbers, by, ..., bk, and let the rule be:
bi+n
Fiale) = ———

where A = 37, b; and v; = b; /A.)

We can think about the problem addressed by Carnap’s inductive rules
in the following way. The experiment is represented by a discrete random
variable, taking as possible numerical values the integers 1 through k, ac-
cording to whether the experimental result is Fi,..., Fx. This experimental
result generates a measurable space, S =< W, A >, where the points in W
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are the k possible outcomes and the propositions (measurable sets) in A are
gotten by closing the atoms under Boolean combination.

Induction takes place when the experiment is iterated and a general
analysis does not place any finite upper bound on the number of possible
iterations. Thus we are led to consider an infinite sequence of such random
variables, indexed by the positive integers. The relevant measurable space
is a product of an infinite number of copies of the one shot probability
space,S1 X S2 X S3 X .... The points in the infinite product space are infinite
sequences, wp, Ws,..., of integers from 1 through k. In this setting we can
give a fairly general definition of an inductive rule.

An inductive rule, R, takes as input any finite initial sequence of results,
< wy,...,w; > and any proposition about the experimental outcome the
next time around, a;4; in A;4; and outputs a numerical prediction in [0,1]
such that: (i) for any finite outcome sequence, < wy,...,w; >, the rule gives
a probability, R(< wy,...,w; >,) on the space for the next moment of time,
< Wjt1,Aj4+1 > and (ii) For every proposition about the next outcome, a;1,
R(-,aj41) is measurable on the space of histories up until then, Sy x - -+ x Sj.

Note on (i): This includes empty sequences, so the rule must specify a
prior probability on S;. Note on (ii): This technical regularity requirement
is automatically satisfied in the finite case considered in this section, but is
required for a definition which will generalize.

Then an inductive rule determines a unique probability on the infinite
product space, S; X Sz X ---, according to which the probabilities given by
the inductive rules are conditional probabilities (Neveu, 1965, Ch. V). Thus,
the properties of an inductive rule can be studied at either the “operational”
level of a predictive rule or at the “metaphysical” level of a prior probability
on an infinite product space.

The rules in Carnap’s A — 7y continuum are all inductive rules in the
foregoing sense. For each of these rules the corresponding probability on
the infinite product space is exchangeable: that is, invariant under finite
permutations of outcomes. By de Finetti’s theorem, any such probability has
a unique representation as a mixture of probabilities which make the outcome
random variables independent and identically distributed. That is to say
that the Carnapian inductive logician behaves as if she were multinomial
sampling. The examples of throwing a die with unknown bias or sampling
with replacement from an urn of unknown composition are canonical.

3. The Classical Bayesian Parametric View of Carnap’s A — v
Continuum. One way of thinking about Carnap’s rules is to take this
representation at face value. There is a fixed statistical model of the chance
mechanism with subjective prior uncertainty as to the true values of the
parameters of the model. There is a chance setup (the die and the throwing
mechanism) generating a sequence of independent and identically distributed
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random variables, but the distribution of the random variables (the bias of
the die) is initially unknown. Inductive inference depends on this prior
uncertainty via Bayes’ theorem. The goal of inductive inference is to learn
the true bias of the coin. This is the parametric Bayesian conceptualization
of the problem.

From this point of view, Carnap’s postulate that inductive methods
should satisfy the Reichenbach Aziom — that the probabilities given by the
inductive rule converge to the empirical average as the number of trials goes
to infinity — is well-motivated. By the strong law of large numbers, this is
just the requirement that with chance equal to one, the inductive rule learns
in the limit true bias of the die, no matter what the true bias is. That is
to say that Carnap’s methods correspond to priors on the bias which are
Bayesian consistent with respect to the multinomial statistical model.

Not every consistent prior for multinomial sampling generates an in-
ductive rule which is a member of Carnap’s A —+ continuum. Carnap’s rules
correspond to the class of natural conjugate priors for multinomial sampling:
the Dirichlet priors. As the predictive rules which are generated by Dirich-
let priors, Carnap’s A — v methods are well-known to Bayesian statisticians,
Good (1965), DeGroot (1970) Ch. 5. Carnap’s (1942) A continuum is gener-
ated by the symmetric Dirichlet priors and his (1950) confirmation function,
c*, by the uniform prior.

4. The Subjective Bayesian View of Carnap’s A —+ continuum.
For pure subjective Bayesians talk of objective chances is strictly meaningless
and the multinomial statistical model discussed in the last section is only
an artifact of the de Finetti representation. Exchangeability is consistent
with degrees of belief which give rise to inductive rules outside Carnap’s
continuum. Is there any subjective characterization of the A — vy continuum?

There is. It is due to the Cambridge logician W. E. Johnson. Johnson
introduced the concept of exchangeability or symmetry in 1924 (before de
Finetti.) We defined exchangeability in terms of the infinite product space
induced by an inductive rule, as invariance under finite permutations of
trials. There is an equivalent formulation in terms of the inductive rule
itself. That is that the vector of frequency counts of the possible outcomes is
sufficient to determine the probabilities for the next trial: R(< wy,...,w; >
y) = R(< wiy,...,wj >,-) if the outcome sequences < wy,...,w; > and
< wy,...,w; > have the same frequency counts. For example, in rolling a
die, the outcome sequences 1234561 and 1135264 would lead to the same
probabilities for the eighth trial; order is presumed not to be relevant.

Johnson was led to postulate a stronger kind of sufficiency. That is
that (i) The probability of an outcome on the next trial should only depend
on the frequency that it has occurred in the preceding trials (for each fixed
number of trials) and not on the relative frequencies of the other trials, and



Carnapian Inductive Logic 325

(ii) The dependence should be the same for all categories. In the example of
the die, (i) says that the probability of a one on the eighth trial given initial
outcome sequences 1213654 and 1155555 should be the same; (ii) adds that
this probability should be equal to the probability of a 2 on the eighth trial
given the initial sequence 1253266. Taken together (i) and (ii) are Johnson’s
sufficientness postulate.

If we have (1) exchangeability but not independence (2) sufficientness
in Johnson’s sense (3) the number of categories is at least three and (4) the
relevant conditional probabilities are all well-defined, then we get Carnap’s
1952 A-continuum of inductive methods. If Johnson’s (ii) is dropped from
the foregoing, we get Carnap’s A — v continuum. (Zabell, 1982) Thus, from
a purely subjective point of view, Carnap’s continua correspond to strong
symmetries in a predictor’s degrees of belief.

5. Blackwell-MacQueen Inductive Rules. Carnap was interested
in developing inductive logic to the point where it could make contact with
mathematical physics. He saw the first important step to be to generalize
his methods so that they could deal with the case where the outcome of
an experiment could take on a continuum of values. We will accordingly
change our canonical example from that of a die to that of a wheel of fortune
with unit circumference. Repeated spins of the wheel produce as (ideal)
outcomes, real numbers in the interval [0,1). We equip this outcome space
with the metric corresponding to the shortest distance measured around the
circumference of the circle. We will take as our problem, the specification of
an inductive rule in this setting. The techniques which solve this problem,
however, will apply very generally.

One could approach this problem by thinking about how a Carnapian in
possession only of Carnap’s A — 7 continuum for finite numbers of outcomes
could approximate a solution. The natural thing to try might be to partition
the unit interval into a finite number of subintervals, and apply a method
from the A — 7 continuum taking the elements of the partition as outcomes.
Finer and finer partitions might be thought of as giving better and better
approximations. Recall the reformulation of Carnap’s A — 7 continuum of

section 2. Take any k positive numbers, by, ..., bk, and let the rule be:
b;+n
pr(Fiale) = IES

where A = 37, b; and y; = b;/A. Thus, for a partition into k subintervals, we
have a class of Carnapian inductive rules whose members are specified by k&
parameters, by, ..., bg.

In the case of a continuum of possible outcomes, the appropriate pa-
rameter will be a nonnegative bounded measure, «, defined on the Borel
algebra of the unit interval. As a generalization of Carnap’s condition that
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the b;s should be positive in the finite case, we will require that the measure,
a, be absolutely continuous with respect to Lebesgue measure on the unit
interval. For any Borel set, O, in the unit interval and evidence, e, consisting
of n points in O in N trials, we will take the inductive rule with parameter,
a, to give the probability of an outcome in O in the next trial as:

a(O)+n
a([0,1)) + N

We will call this the Blackwell-MacQueen inductive rule, since Blackwell
and MacQueen used this formula in generalizing Polya urn models for what
philosophers know as Carnap’s A — v inductive rules, to more general Polya
urn models for non-parametric Bayesian inference.

It can be seen that the Blackwell-MacQueen rules are consistent with
Carnap’s A — v continuum in the following sense: For a Blackwell-MacQueen
rule and a ”coarse-graining” of outcomes according to which member of
a finite partition they fall into, the induced inductive rule for the finite
partition is a member of Carnap’s A —+ continuum. For a simple illustration,
let the parameter, o, for the Blackwell-MacQueen rule just be Lebesgue
measure. In particular, if I is a subinterval of [0,1), then a(I) is just the
length of I. Partition the unit interval into k£ equal subintervals. Then for
some fixed one of these subintervals, I, let n be the number of sample points
in I and N be the total number of sample points. Then the Blackwell-
MacQueen rule gives the probability that the next point will fall into I as:

pr(Ole) =

715"'“
1+N

which is a member of Carnap’s A-continuum. (Notice that as the partitions
get finer the value of A gets proportionately smaller to preserve consistency
with the Blackwell-MacQueen rule.) It should be clear that this class of
inductive rules is the natural generalization of Carnapian rules to problems
where the outcomes can be represented as real numbers in the unit interval.

Blackwell-MacQueen rules are Inductive Rules in the sense made pre-
cise in section 2. Thus they induce a probability measure on the infinite
product space. This probability measure makes the random variables which
represent the experimental outcomes exchangeable. By de Finetti’s theorem,
it can be represented as a mixture of probabilities which make the trials in-
dependent and identically distributed. From a classical Bayesian viewpoint,
the mixing measure is the ignorance prior over the true chances governing
the IID process. The IID probabilities correspond to a distribution on [0,1).
The prior corresponds to a distribution on the distributions on [0,1).

Pr(Ile) =

6. The Classical Bayesian Non-Parametric View: Ferguson
Distributions. One might try to generalize Carnap’s inductive methods
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in a different way — by working at the level of the de Finetti priors rather
than at the level of inductive rules. As noted in section 3, the members of
Carnap’s A — 7 continuum are just those rules which arise from multinomial
sampling with Dirichlet priors. The natural generalization of a Dirichlet
prior is a Ferguson distribution (called by Ferguson, and also known as, the
Dirichlet process). A Ferguson distribution with parameter o is a distri-
bution which for every k member partition of the interval, Pi,..., P, is
distributed as Dirichlet with parameters, a(P,),...,a(P,). A Ferguson dis-
tribution is a distribution over random chance distributions for a random
chance probability, p. The parameter, o, of the Ferguson distribution can
be any finite, non-null measure on [0,1). Thus for any finite measurable
partition, {Py,..., P,} of [0,1), there is a corresponding vector of numbers,
< aj,...,on > where a; = a(P;). The requirement is then that for any
such partition, the random chance probability vector for members of the
partition, < p(Py),...,p(Pn) >, has a Dirichlet distribution with parameter
< Ayy...,0n >.

The good news for Carnap’s program is that both roads lead to the same
place. The de Finetti prior distribution corresponding to the probability on
the infinite product space induced by a Blackwell-MacQueen inductive rule
with parameter a is a Ferguson distribution with parameter a. In fact, the
paper of Blackwell and MacQueen was written to give a simple proof of the
existence of Ferguson distributions.

Furthermore, just as the class of Dirichlet probabilities is closed under
multinomial sampling, the class of Ferguson distributions is closed under IID
sampling of points in [0,1). Consider a finite sample sequence consisting of
data points z1,...,z,, and let 6;,. .., 6, be probability measures giving mass
one to the points zi,...,z,, respectively. Let the prior be given by a Fer-
guson distribution with parameter o.. Then conditioning on the data points
takes one to a posterior which is a Ferguson distribution with parameter ¢/,
where:

n
o =a+ Z 6
=1
From the classical Bayesian viewpoint, Ferguson distributions are nat-
ural conjugate priors for this non-parametric sampling problem in just the
same way that Dirichlet priors are natural conjugate priors for multinomial
sampling.

Blackwell-MacQueen Inductive Rules satisfy a version of Reichenbach’s
aziom. Freedman (1963), Fabius (1964), Diaconis and Freedman (1986). As
evidence accumulates the probability for the next trial is a weighted average
of the a priori probability and the empirical relative frequency probability,
with all weight concentrating on the empirical relative frequency probability
as the number of data points goes to infinity. Can we say in the classical
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Bayesian setting that Blackwell-MacQueen inductive rules will with chance
one - learn the true chances?

In this case “learning the true chances” is not just learning the values of
a finite number of parameters as in the multinomial case, but rather learning
the true chance probability on [0,1). Thus we need a sense of convergence
for the space of all probability measures on [0,1). A sequence of probabilities
measures, i,,, converges weak* to measure u iff for every bounded continuous
function of [0,1), its expectation with respect to the measures p, converges
to its expectation with respect to p.

A prior (or alternatively the corresponding inductive rule) is Bayesian
consistent with respect to a chance probability u, if with probability one
in u, the posterior under IID (in u) sampling will converge weak* to pu.
A prior is Bayesian consistent if it is Bayesian consistent for all possible
chance probabilities. In the multinomial case, all the rules of Carnap’s A —v
continuum (alternatively, the corresponding Dirichlet priors) are Bayesian
consistent.

The Blackwell-MacQueen rules as defined in section 5 are also Bayesian
consistent in this sense. It should be noted that this is a consequence of a
restriction that I put on the parameter, a, of those rules; that a be absolutely
continuous with respect to Lebesgue measure on the unit interval. I take this
to be a natural generalization of Carnap’s requirement of regularity (or strict
coherence) in the finite case. Likewise, Bayesian consistency is a natural
generalization of Reichenbach’s axiom.

7. Subjective Bayesian Analysis of Blackwell-MacQueen In-
ductive Rules. In this section we return to the subjective point of view.
The notion of random variables which are independent and identically dis-
tributed according to the true unknown chances gives way to the subjective
symmetry of exchangeability. In the case where the random variables take
on a finite number of values, an additional symmetry assumption - W.E.
Johnson’s sufficientness postulate — (together with a few other technical as-
sumptions) get us Carnap’s A\-y continuum. In the case under consideration,
where our random variables can take on a continuum of values in [0,1), we
have the analogous result. That is — roughly speaking — that Exchangeability
+ Sufficientness gives the Blackwell-MacQueen inductive rules.

Let us first review the case of random variables taking a finite number
of values discussed in Section 4 in a little more detail. This is based on
Zabell (1982). Suppose that we an infinite sequence of random variables,
Xi1,Xa,..., each taking values in a finite set O = {1,...,k}. And suppose
that the number of possible outcome values, k, is at least three. We con-
sider a number of conditions on our probabilities: (1) Ezchangeability: This
guarantees by de Finetti’s theorem that our (degree of belief) probability
can be uniquely represented as a mixture of probabilities which make the
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outcomes independent and identically distributed. (2) Non-Independence: If
our beliefs make the outcomes independent then we will not learn from expe-
rience. (3) Strict Coherence: The probability of any finite outcome sequence
is non-zero. This is a kind of open-mindedness condition. It guarantees that
all the conditional probabilities in the next condition are well-defined. (4)
Generalized Sufficientness Let n; be the frequency count of outcomes in
category 1 in the trials X;,...,X,. Then:

PT(XN+1 = iIXh'")XN) = fi(ni)

That is, for each category, ¢, the probability of the next outcome being in that
category is a function only of the frequency count for that category in the
preceding sequence of observations. (Johnson assumed that these functions
would be the same for all categories, but that is not assumed here.) Zabell
shows that under assumptions 1-4, the predictive conditional probabilities:

PT(XN+1 = iIXh "'aXN)

are just those given by the inductive rules of Carnap’s A-y continuum.

Now consider the case of the wheel of fortune, where an infinite sequence
of random variables takes on values in the interval [0,1). We assume (1)
Ezchangeability and (2) Nonindependence as before. As (3*) Regularity we
assume that for any measurable set, B, which has non-zero Lebesgue measure
and for any finite sequence of observations, X,..., X,:

Pr(Xy41 € Bi|Xy,...,Xn) = fi(ni)

As (4*) Generalized Sufficientness we require that for any measurable
set, B;, and any finite sequence of observations, the probability that the
next observation fall in B; is a function only of the count, n;, of previous
observations that have fallen in B;:

Pr(Xn41 € Bi|X1,...,Xn) = fi(n:)

If 1, 2, 3%, and 4* are fulfilled, then our predictive conditional probabilities
are Blackwell-MacQueen inductive rules.

This is almost immediate from the finite case. Here is a sketch of
an argument. If 1,2,3* and 4* are fulfilled then for any finite partition of
the unit interval whose members have non-zero Lebesgue measure, 1,2,3,4
hold. Then for any such partition with three or more members, Zabell’s
version of W.E. Johnson’s result holds. Thus the probabilities of falling in
members of the partition update according to Carnap A-7y rules. This must
also be the case for even partitions of only two members, which can be seen
by subdividing them into partitions of four members. Then the de Finetti
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priors for all these partitions must be distributed as Dirichlet, and the de
Finetti prior for [0,1) must be a Ferguson distribution. Thus the inductive
rules induced by the prior must be Blackwell-MacQueen inductive rules.

Carnap would not have thought that inductive logic for a value contin-
uum ended with the class of Blackwell-MacQueen inductive rules but rather
that it started there. These rules are just right for those settings which
characterize them — where 1,2,3* and 4* hold. But in some contexts they
will not all hold.

8. Analogy by Similarity. Ferguson (1974) considers 4* as a

drawback of the use of Dirichlet Processes (Ferguson distributions):

One would like to have a prior distribution for P with the prop-
erty that if X is a sample from P and X = z, then the posterior
guess at P gives more weight to values close to z than the prior
guess at P does. For the Dirichlet process prior, the posterior
guess at P gives more weight to the point z itself, but it treats
all other points equally. In particular, the posterior guess at
P actually gives less weight to points near £ but not equal to
z. (Ferguson, 1974 p.622). (Note that in Ferguson’s character-
ization 3 on that page, T1, T2, and T3 are eliminated by my
nonindependence and regularity conditions.)

Carnap makes exactly the same point in his last writings on inductive logic
under the heading of the problem of analogy by similarity. Carnap raises
the question in the context of his current system where there are only a finite
number of possible outcomes.

Where it is desirable that sample x gives more weight to values close to
x, W. E. Johnson’s Sufficientness postulate must be given up. Sufficientness
is just the statement that we do not have analogy by similarity. Thus we
must move outside Carnap’s continuum of inductive methods. The most
conservative move outside Carnap’s A~y continuum would be to consider fi-
nite mixtures of methods that are themselves in the A-y continuum. One
could think of this as putting a “hyperprior” probability on a finite number
of metahypotheses as to the values of the A and 7; hyperparameters. Con-
ditional on each metahypothesis, one calculates the predictive probabilities
according to the Carnapian method specified by that metahypothesis. The
probabilities of the metahypotheses are updated using Bayes’ theorem. We
will call these hyperCarnapian Methods.

The hierarchical gloss, however, is inessential. The model just described
is mathematically equivalent to using a prior on the multinomial parameters
which is not Dirichlet but rather a finite mixture of Dirichlet priors. It is
evident that if the number of Carnapian methods in the mixture is not too
great, the computational tractability of Carnapian methods is not severely
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compromised. Furthermore, Bayesian consistency is retained. Finite mix-
tures of Dirichlet priors are consistent (Diaconis and Freedman, 1986).

Furthermore, they can exhibit the kind of analogy by similarity that
Carnap wished to model (Skyrms, 1993a). We can illustrate this by means
of a simple example: A wheel of fortune is divided into four quadrants: N,
E, S, W. There are four “metahypotheses” which are initially equiprobable.
Each requires updating by a different Carnapian rule as indicated in the
following table:

N E S w

Hi: 54+n 24n 14n 24n
°  10+N 10+N 10+N 10+N
H2: 24n 5+4n 24n 14n
° 10+N 10+N 10+N 10+N
H 3: 1+n 24n 54n 24n
*  10+N 10+N 10+N 104N
H 4: 24n 14n 24+n 5+n
*  10+N 104N 10+N 10+N

where n is the number of successes in N trials.

Since the hypotheses are initially equiprobable, the possible outcomes,
N, E, S, W, are also initially equiprobable. Suppose that we have one trial
whose outcome is N. Then updating the probabilities of our hypotheses by
Bayes’ Theorem, the probabilities of H1, H2, H3, H4 respectively become .5,
.2, .1, .2. Applying the Carnapian rule of each hypothesis and mixing with
the new weights gives probabilities:

pr(N) = 44/110
pr(E) = 24/110
pr(S) = 18/110
pr(W) = 24/110

The outcome, N, has affected the probabilities of the non-outcomes E,
S, W differentially even though each Carnapian rule treats them the same.
The outcome N has reduced the probability of the distant outcome, S, much
more than that of the close outcomes, E and W, just as Carnap thought it
should.

In a certain sense, this is the only solution to Carnap’s problem. Carnap
clearly was interested in sensitivity to analogy by similarity in the presence
of exchangeability. For this problem we are, in effect, restricted to choosing
a prior over IID processes. But every prior can be approximated arbitrarily
well by finite mixtures of Dirichlet priors. (Diaconis and Freedman, 1986).
HyperCarnapian inductive methods are the general solution to Carnap’s
problem of analogy by similarity.
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There is an investigation of HyperCarnapian inductive methods at the
level of Blackwell-MacQueen rules in Antoniak (1972). Of course, analogy
by similarity may also be important in other domains where exchangeability
fails to hold.

9. Analogy by Proximity. Carnap also discussed a different kind
of analogy which his methods could not represent as the problem of analogy
by prozimity. This is the problem of taking into account temporal patterns
in the data, for instance in inference about Markov chains. How should one
treat Markov chains in the spirit of Carnap’s original inductive logic? Car-
nap never addressed this question in his published work. I believe that the
question would fall somewhere on Carnap’s agenda for the future develop-
ment of inductive logic but it was not one which he actively tried to answer.
In response to an inquiry, John Kemeny replied that Carnap never discussed
Markov chains with him, and in fact that when he worked as Carnap’s re-
search assistant he had not yet heard of a Markov chain. Richard Jeffrey
and Haim Gaifman, who also worked with Carnap, confirm that Carnap did
not actively investigate this problem.

There is, however, a natural treatment of inductive logic for finite
Markov chains, which fits neatly into Carnap’s program. It is put forward
by Theo Kuipers in Kuipers (1988). The leading idea is this: Carnap already
has an inductive logic suitable for sampling from an urn with replacement.
Just apply this inductive logic to the natural urn model of a Markov chain,
under the assumption that transitions originating in one state give us no
information about transitions originating in a different state. Parametric
Bayesians, such as Martin (1967), operating in a somewhat different tradi-
tion, have followed the same path. We have a Markov chain with finite state
space and known initial state, but unknown transition probabilities and we
observe the successive states. Our inductive problem is to predict future
states from history. The Carnapian solution is to apply Carnapian inductive
rules to transition probabilities.

From a parametric Bayesian point of view, we can raise Reichenbach’s
question of consistency. A state of a Markov chain is called recurrent if
the probability that it is visited an infinite number of times is one. The
chain is recurrent if all its states are recurrent. Carnapian inductive logic
for Markov chains is consistent for recurrent Markov chains. Here is a quick
sketch of a proof. Suppose that the true state of nature is a recurrent
Markov chain (with a finite number of states). Then the set of sample
sequences in which some state does not recur has probability zero. Delete
these sequences and restrict the chance measure to get a new probability
space. In this space define the random variables f[ni] as having the value
j if the nth occurrence of state i is followed by state j. For each fixed
i, the sequence f(17), f(2i),..., is an infinite sequence of independent and
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identically distributed random variables so the strong law of large numbers
applies. This means that the limiting transition relative frequencies from 7 to
j equal the true transition probabilities with chance 1. Thus if the true state
of nature is a recurrent Markov chain, then there are only a finite number of
ways in which Carnapian inductive logic for Markov chains can fail to learn
the true transition matrix, and each of these has a chance of zero.

From the subjective Bayesian point of view, the treatment is again
parallel to that of Carnapian inductive methods, as long as we have a re-
current stochastic process. In dealing with Markov chains we do not have
exchangeability, but rather a weaker kind of symmetry condition which can
play a role with respect to Markov processes analogous to that played by
exchangeability with respect to Bernoulli processes. The analysis is devel-
oped in Freedman (1962), de Finetti (1974), Diaconis and Freedman (1980).
A stochastic process is Markov ezchangeable if the vector of initial state
and transition counts is a sufficient statistic for all finite sequences of given
length generated by the process. That is to say that sequences of the same
length having the same transition counts and the same initial state, are
equiprobable. Markov exchangeability, like ordinary exchangeability, can
also be given an equivalent formulation in terms of invariance (Diaconis and
Freedman, 1980). A primitive block-switch transformation of a sequence
takes two disjoint blocks of the sequence with the same starting and ending
states and switches them. A block switch transformation is the composition
of a finite number of primitive block switch transformations. A probabil-
ity is then Markov exchangeable just in case it is invariant under all block
switch transformations. Diaconis and Freedman (1980) show that recur-
rent stochastic processes of this type which are Markov exchangeable have
a unique representation as a mixture of Markov chains.

Zabell (1995) shows that the subjective condition which guarantees that
the de Finetti prior for a recurrent Markov exchangeable stochastic process is
of the type that induces Carnapian inductive logic for Markov chains is again
a form of W. E. Johnson’s sufficientness postulate that Pr(S;|S;) depend
only on 4,3, N[S;,S;] and Y, N[Sm,Si], where N[S;, S;] is the transition
count. Notice that this automatically gets us the independence that Mar-
tin and Kuipers assume. If our beliefs satisfy the postulate then transition
counts from one state are not taken as giving any evidence about transi-
tions from another state. Since a recurrent Markov exchangeable process
is a mixture of recurrent Markov chains, for each i the embedded process
f(13), f(27),... discussed above is mixture of IID processes and thus ex-
changeable. The sufficientness postulate for Markov chains gives the original
sufficientness postulate for these embedded processes, and the application of
the original sufficientness argument (Zabell, 1982) to them gives the desired
result.
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As before, W. E. Johnson’s sufficientness postulate has no logical status.
It merely serves to characterize cases in which degrees of belief have certain
interesting and computationally tractable symmetries.

10. Conclusion. At the beginning of his investigations his investi-
gations in inductive logic Carnap hoped that all of scientific inference could
be based on one inductive rule. That rule would have a necessary status.
The logical character of inductive logic would derive from the logical status
of this rule and of the prior which led to it. He soon started down the road
that leads from Keynes to de Finetti. Ever larger classes of inductive rules
were seen as part of inductive logic. In the end he saw a need for further
expansion, in particular to deal with the three problems discussed here, and
in general to arrive at an adequate treatment of scientific inference.

In posthumous Basic System (1971), (1980), Carnap realizes somewhat
reluctantly that he has become a subjective Bayesian. The logic in inductive
logic is now the logic of coherence. From this point of view, it is not just
that Bayesian statistics has useful things to contribute to inductive logic.
From the most general convergence theorems, such as that of Blackwell and
Dubins (1962), to the analysis of particular problems — Bayesian statistics
is inductive logic.
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