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SUMMARY

We consider the problem of comparing treatment effects among two or more
groups when the responses of the individuals within groups can be modeled as
curves. The curves considered in this study are monotone and the principal
application will be to growth curves. The method of analysis involves defining a
functional of the curves, then applying standard (possibly robust) one-way
ANOVA methods to its values. The functional represents a "generalized" rate of
change for the curves. Specifically, the functional values are the slopes of least-
squares fitted lines after the curves have been mutually straightened by a power
transformation. Thus, in the case of growth curves, the groups are distinguished
on the basis of group differences in growth rates. The index of the power
transformation is also fitted to the data. Consequently, the small sample
properties of the procedure are examined using Monte Carlo simulation.

1. INTRODUCTION

A standard experimental design in biomedical studies involves the
application of two or more treatments, each to a separate treatment group, then
monitoring the subjects' responses over time. The biological process will be
viewed as continuous, so the subjects1 responses can be modeled as curves. The
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measured responses will then be sequences of (not necessarily equally spaced)
points from the curves, displaced by random error.

In this paper, we focus on the special case of curves that are monotone
and pass through the origin. Growth curves for entities, such as tumors, that can
be viewed as having size 0 at time 0 are covered by this theory. A functional of
the curves is formed by straightening the curves by a power transformation. The
functional is then taken to be the slope of the straightened curves. This method is
based on the empirical observation that, while the different curves may have
different rates of increase or decrease, they will often be of the same general
shape. Thus, a common power transformation will lead to (nearly) straight lines
that differ only in their slopes. (This observation is originally due to Tukey,
1977) These slopes reflect the rates of change of the original curves, and
similarities within and differences between groups are reflected in corresponding
similarities and differences in the location properties of the slopes. Because of
this, the problem of comparing rates of change among groups is reduced to a
simple one-way analysis of variance problem for the slopes. We will
demonstrate the effectiveness of the methodology by applying it to the data for
the comparison of tumor growth rates in rats considered by Koziol and
Maxwell(1981).

We will also demonstrate that the methodology can be extended to other
types of problems by pre-transforming the data. As an example, we will apply
the theory to a medical experiment for comparing the rates of removal of insulin
from a perfused fluid by the hepatic cells of rats for a variety of chemical
environments. Here, the original curves represent the proportion of remaining
insulin as a function of time - a measurement often modeled by a logistic curve.
We will introduce a family of curves for modeling this sort of data, of which the
logistic curve is a member, then show that a different member of the family fits
the data better. By a transformation of variables, both the fitting process and the
comparison of rates will be carried out by the same methodology as used for the
tumor growth rate study.

Multivariate analysis of variance has been applied to the growth rate
problem by several investigators (Pottoff and Roy 1964, Rao 1965, Church
1966, Khatri 1966, Grizzle and Allen 1969, Snee and Acuff 1979). These
methods are not altogether appropriate for the study of tumor growth rates,
however, because they require information on each subject for the entire study
period. Unfortunately, because of the death of some subjects or the remission of
tumors, observations will often be missing or unusable for several subjects after
a point in time that can depend both on the subject and on the size of the tumor.
Where complete information is required, these subjects would have to be
omitted from the study. For biomedical experiments, in which the sizes of
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groups are typically rather modest, this is undesirable; it is important to be able
to use the information available on all subjects, however incomplete it may be.
The methodology we develop makes this possible. It will be shown that
randomly censored observations lead to functional values from contaminated
distributions, which tend to produce outliers. These distributions are
accommodated in the analysis by the use of a robust ANOVA (Koopmans 1987).

2. THE MODEL AND SOME OF ITS CONSEQUENCES.

Our model is motivated by the random effects model given by Graybill

(1975, pg. 458). Observations on all subjects are assumed to be made at times

tk,k= 1,2, ..., K. If yijk is the response of theyth subject in the fth group at the

Ath time, then it is assumed that

for j = 1, 2, ..., ni and i = 1, 2, ...,/. The set of random variables {βy9εyk} is

assumed to be independently, normally distributed. The slopes βϋ have the same

means, βi, within groups, and common standard deviation σβ, while the ε fs

are identically distributed with common mean 0 and standard deviation σ. The
parameter p (which is not an integer multiple of 2) is the power that straightens
the data.

The strategy will be to estimate p from the data and use this estimate to
straighten the sample curves. The data that will then be used in the ANOVA are
the least squares estimates of the random slopes.

If the parameter p were known, the estimated slopes, which have the

form 4 = Σy^h / Σ'ί? = A + Σ^iβ IΣ*l > w o u l d b e normally

distributed with mean βi and standard deviation \σ2

β +σ2 / Σ ** • ̂
V k

that the appropriate test for the equality of group means, βi, is the standard One-

Way Analysis of Variance applied to the βy fs.

We will allow the possibility that the data are randomly censored. Let

Ty be the time that the yth subject from the fth group is lost to the study. It is

assumed that the Ttj are independent and identically distributed, and are
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independent of the random errors, eijk9 but it is not assumed that they are

independent of the random slopes, βy. Thus it is possible for, say, the rate of

increase in tumor size to influence the censoring time.

Let V be a non-degenerate, positive random variable with finite 4th
moment, and let Z be a standard normal variable which is independent of V.
Then W = VZ is said to have a contaminated normal distribution. It is easy to
show (e.g. Rivest, 1981) that contaminated normal variables have kurtosis
greater than 3, thus tend to have distributions with long tails (relative to normal
distributions). In Appendix 1, we will show that if censoring takes place after the
first observation time, tl9 with probability 1, then the estimated slopes can be

written in the form β.. = βi} + δi}, where the δy

 fs are independent random

variables with 0 means and contaminated normal distributions. It follows that a

robust ANOVA is appropriate to test for the equality of group means, βt. We use

the trimmed mean procedure detailed in (Koopmans, 1987) for our analyses.

It has been assumed that the power index, p, is known in the above
discussion. This will not be the case in practice, of course. However, we will see,
through Monte Carlo simulations, that a stable estimate of p is obtained by
pooling data from all groups, and that the straightening process, thus the
estimated slopes, are reasonably insensitive to modest variations in the value of
p. It follows that the distribution theory based on an estimated power index is
very close to that for a fixed index. Thus, using the analyses appropriate for a
fixed index will lead to tests of about the correct size but with slightly reduced
power.

3. ESTIMATION OF THE POWER INDEX.

A number of estimators of the power index, p, were derived and
evaluated by Monte Carlo simulation (Hong, 1987). The simulations were
carried out for the experimental designs of the two examples treated in this
paper. For the relatively modest sample sizes of these examples, a rather simple
estimator based on the coefficient of determination performed at least as well as
the others, including the maximum likelihood estimator, in terms of bias,
variability, and resistance to outliers. In addition, it was easier to compute.
Consequently, the discussion will be limited to this estimator, which we call the
maximum coefficient of determination estimator (MDE). Following the
discussion of Kvalseth (1985), the coefficient of determination for measuring the
simultaneous straightness of the curves for our model is taken to be



Experiments with Curve Responses 103

ΣΣΣ(M)2

' j k

ΣΣΣM'
i j

where βtj = ̂ tkyfjk l^t] . The estimated power index is the value ofp that
k k

maximizes R2(p).

Numerical investigation of the coefficient of determination shows it to
be a smooth function of/?. Consequently, the estimated power index can be
obtained using a rather simple maximization algorithm. The method used for the
computations reported in this paper was, essentially, the golden section search
method described in (Press, Flannery, et al, 1986). This algorithm was
incorporated in the program used for the simulations described in the next
section.

4. SIMULATION RESULTS

A 3 group simulation study was carried out as follows. Independent,

normally distributed variables εijk and βj were generated for the sample sizes

and parameter values given in the following table. The Syk

9s have mean 0 and

standard deviation σ, while the β^ 's have mean/5[ and standard deviation σβ.

The time points, tk, were taken to be 8, 10, 12, 14, 16, 18, and 20.

These values were then combined according to the expression

to obtain "raw" observations for the simulation with power index p= 1/3. Once
these observations were generated, the power index required to straighten the
curves was estimated and the estimated slopes were calculated. The one-way
ANOVA was then applied to these slopes, yielding an F statistic for testing the
equality-of-slopes null hypothesis. This process was repeated 1000 times for
significance level calculations, and 200 times for power calculations. The
estimated significance levels and power values are the proportions of generated
F values that exceed the critical value from a table of the F distribution for the
appropriate degrees of freedom.
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σ
.45
.10
.45
.45

σβ

.02

.02

.02

.01

β
.37
.37
1.00
1.00

.37

.37
1.00
1.00

β*
.37
.37
1.00
1.00

n , = 3

.049

.054

.051

.046

71, = 6

.042

.045

.054

.052

ii, =12

.041

.054

.050

.047

Estimated Significance Levels for the Test of Equal Means when the
Fixed Exponent Test Has Significance Level 5%. The Computations

are Made for a Selection of Parameter Values and Sample Sizes.

There appears to be no significant differences between the given
significance level of 5% and the values obtained from the estimation process.

Power values were also computed using the known index, p. These
quantities are given, for comparison, in the following table along with the
estimated powers from the simulation.

σ

.50

.45

.20

.45

σβ

.045

.020

.020

.040

ί\
.382
.384
.384
.500

.375

.378

.378

.450

.344

.356

.356

.400

ni = 3
.127(.14)
.177(.2O)
.237(.2O)
.497(.55)

Λ / = 6
.188(.25)
.347(.52)
.477(.52)
.899(.945)

Λ , = 1 2
.454(.45)
.771 (.87)
.861 (.87)
1.00(1.0)

Estimated and Computed (in parentheses) Powers for the Tests of
Equal Slopes for Selected Parameter Values and Sample Sizes.

Although the power values appear to be somewhat lower for the
estimation process, only one value differs significantly from the computed
power. Consequently, at least within the scope of this rather limited simulation
study, the conjecture that estimating the power index has little effect on the test
characteristics is borne out.
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5. AN APPLICATION

The nonparametric analysis of a particular set of tumor growth data was made by
Koziol and Maxwell, 1981. The data, repeated from their study in Appendix 2,
represent tumor sizes at selected times for 3 groups of rats subjected to different
immunotherapies.

Censoring due to the deaths of subjects, and nonstandard growth patterns
caused by the remission of tumors, are distinctive features of the data. Both
phenomena will lead to possible outliers in the estimated slope data, hence it will
be highly desirable to use a robust method of ANOVA in this problem.

The estimated power index for the data is 0.305. The fact that this
quantity is near 1/3 suggests that a linear dimension of tumor volume has a
growth rate that is nearly a linear function of time. A schematic diagram of the
estimated slopes is given in Figure 1.

Group 1 Group 2 Group 3

Figure 1. Schematic Diagram of Tumor Growth Rates for Three
Groups of Rats
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A trimmed mean ANOVA (Koopmans, 1987) with a 20% trimming
fraction yields a P-value of 0.0772 for the test of equal slope means. The P-
value achieved by the Koziol-Maxwell method for this data was 0.160.
Moreover, by applying a 10% Fisher Least Significant Difference analysis to the
data (Miller, 1966, or Koopmans, 1987), we can conclude that group 3 has a
significantly smaller mean tumor growth rate than do the other two groups.
These two groups are indistinguishable at the 10% level, suggesting that
treatment regimen 3 is superior to the others.

6. AN APPLICATION BASED ON THE USE OF TRANSFORMATIONS

A physician from the University of New Mexico School of Medicine
undertook an experiment to study the effects of various chemical environments
on the rate of removal of insulin by hepatic cells from a fluid perfused through
rats1 livers. Seven chemical environments were established and a varying number
of trials, each involving a single rat, was run for each environment. We will
designate the groups of rats exposed to these environments as groups 1 through
7.

A perfusate with a known amount of insulin was introduced into the
circulation system at time 0 and then fluid was removed for testing at times 5,
10, 15, 20, 30, 45, 60, 75, and 90 minutes. A substance was added to the
withdrawn fluid to precipitate out the degraded insulin by-products, and the
concentration of remaining insulin at each time was then determined by
subtraction. These concentrations, in percents, are given in Appendix 2.

A commonly used model for this kind of data (in decimal, rather than
percent form) is the following logistic model:

Note that this function has value 1, or 100%, at t = 0. This model can
also be represented in terms of the logistic transformation as

log -
r(t)

= bt

This expression has a useful interpretation from the viewpoint of this
paper. It suggests that, after carrying out the transformation f(x) = (l — x)/x9

the logarithm, which is the power transformation with index p = 0, has
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straightened the curve, f(r(t)), and produced a line through the origin. Moreover,
the parameter that determines the rate of change of the original function is
simply the slope of this line. Since this rate of change is the feature we are after,
the slope is, again, the appropriate functional to use to distinguish between
groups.

Because the perfusion system in this problem is a recirculating one, it is
not clear that the logistic model is appropriate. However, it is an easy step from
this interpretation to the extension of the logistic model to a two-parameter
family of models defined by the equation

where fp is the power transformation with index p. Our method then allows us

to fit the appropriate member of this family to the data and obtain the estimated
slopes by the simple expedient of pre-transforming the data with the transform
f(x) = (l-x)/ x before carrying out the straightening process.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Figure 2. Schematic Diagram of Slopes for Insulin Perfusion Data
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For the perfusion data, our procedure produced an estimated power
index of 0.881, which (solving for r(t)) suggests that the model

fits the data better than does the logistic model. A schematic diagram of the
estimated slopes for the 7 groups is given in Figure 2.

An outlier appears in group 7, and the data display unequal variation
from group to group. Group 4, consisting of two observations, was a control
group in which the effect of the apparatus alone was being tested. It is apparent
from Figure 2 that the apparatus had minimal influence on the experiment and
this group was eliminated before testing the differences among the remaining
groups. An ANOVA was carried out based on 10% trimmed means. The P-value
for this test was less than 0.00001, indicating considerable differences among
means for the 6 remaining chemical environments. Fisher's Least Significant
Difference Method at the 5% significance level produced the groupings

{group 3, group 6} < {group 2, group 5, group 7} < {group 1}

Thus, chemical environments 3 and 6 had the least influence on the rate
of insulin removal, environments 2, 5, and 7 a greater influence, and
environment 1 the greatest influence. Differences within groups are
indistinguishable at the 5% level.
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APPENDIX 1 - Some Distribution Theory.

In this appendix we show that if the curves produced by the individuals
in the various groups are randomly censored, then the estimated slopes have
heavy-tailed distributions. Specifically, it is assumed that if Ty represents the

censoring time for theyth individual in group /, then the Ttj

 fs are independent for

all i and j , and each TtJ exceeds the first observation time tλ, with probability 1.

It is also assumed that, whereas the TfJ

fs may depend on the random slopes/^-,

they are independent of the random errors εijk . This property is also shared by

the indicator variables Vjjk which have the value 1 if Ty > tk and are 0 otherwise.

Now, if βy is the estimated slope for theyth individual in the fth group,

then we will show that δi} = β(j - β- has a contaminated normal distribution,

and that E(βϋ ) = βi and Vαrφj ) = σ}+ c/E(l I ̂ ViJkt
2

k ) . (All sums are over

the index, k)

The proof is based on the following least squares representation for βy

with censoring:

We obtain from this expression the representation

where ε^k = εijk I σ. The €Jjk 's are independent standard normal variables, and
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Now, a result of Rivest (1981) shows that the distribution of δy is the

same as the distribution of the random variable s^Uy, where UfJ = Jχ^ Xfjk •

But, since Uy is a positive random variable with finite 4th moment, the result of

Rivest quoted in Section 2 establishes that δ& has a contaminated normal

distribution.

By the above least squares expression foryfiL and the independence of

Xijk and Syk, it is clear that βfj has the same expectation as βtj. Consequently,

only the expression for the variance of this variable remains to be established.

Write Var(β&) = Var(βi} ) + Var{δϋ ) + 2Cov{βy ,δ&). By Rivest's

result, Vartfy) = Var(ε\pj\ ) = E(ε£)E(Ufj ) . But a simple computation

establishes that

Consequently,

Finally,

βyX^) - E(βy

Σ [imχ>β) ° - EWj

= 0.

Thus, since Var(/3y ) = σj, the result is established.
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APPENDIX 2 - Data Tables.

Table 1. Tumor growth data (in mm3)

Group Mouse

1 1
2
3
4
5
6
7
8
9
10

2 1
2
3
4
5
6
7
8
9
10

3 1
2
3
4
5
6
7
8
9
10

7

35.3
10.0
27.0
55.0
24.6
12.6
35.2
29.8
70.0
29.5

48.6
66.7
24.5
14.4
10.8
11.3
18.0
60.0
29.4
41.1

12.5
23.4
22.2
11.2
66.6
11.4
22.1
40.5
32.0
10.0

11

157.1
152.2
122.4
95.0
168.8
85.0
129.8
157.0
129.7
156.9

115.3
289.0
143.7
84.7
70.0
15.0
56.7
166,6
152.1
186.2

108.0
129.0
65.0
52.9
147.0
115.2
55.0
156.8
44.6
118.3

12

122.5
129.6
196.1
205.9
135.3
70.1
180.0
126.8
196.0
176.7

90.8
215.6
115.0
135.2
80.0
205.8
115.3
166.7
122.4
176.6

96.8
176.5
176.4
70.0
260.1
65.1
115.2
65.0
108.9
166.6

13

217.6
176.6
196.1
205.9
196.0
225.1
274.7
202.5
205.8
225.0

176.5
268.8
90.7
191.2
118.3
289.0
96.8
324.0
186.3
274.6

186.2
196.6
191.3
129.6
420.0
32.0
55.0
84.7
258.8
176.4

14

340.3
213.9
332.2
270.0
340.2
225.1
420.1
225.0
375.7
289.0

317.9
388.8
194.3
176.4
156.8
346.8
177.5
420.0
186.3
361.0

202.5
320.0
213.8
152.1
460.0
10.8
93.6
191.2
247.5
186.2

Day
15

379.0
317.9
388.9
307.3
340.4
289.0
340.3
307.2
419.1
372.6

421.2
487.4
559.6
356.4
215.6
529.2
268.8
440.0
274.7
379.1

213.8
397.1
274.6
303.5
653.4
3.2
118.8
291.5
405.0
340.2

17

556.6
356.4
469.3
405.1
507.3
317.9
507.3
320.1
421.2
379.2

529.2
551.3
629.3
397.1
268.8
629.2
320.0
634.8
485.1
440.0

379.1
500.0
405.0
415.0
806.4
1.4
118.3
400.0
372.6
361.0

18

661.3
580.0
397.1
726.0
767.2
529.1
634.8

573.4
529.2

388.8
767.1
573.3
551.4
346.8
551.3
372.8
500.0
397.0
415.2

379.0
687.7
520.0
440.0

0.0
230.4

388.0
556.6

19

634.8
415.2
505.4
950.4
820.0
653.4
714.3

701.8
573.3

629.0
677.6
540.0
605.0
551.3
714.2
487.4
289.0

433.2
767.1
796.6
556.7

0.0
217.6

451.3
556.6

20

400.0
541.5
661.5
937.5
687.7
777.6

560.1

846.4

480.0
946.4
772.6
573.3
560.0

379.0
806.4
978.7
812.5

0.0
243.2

580.0
268.8

21

520.1

798.0

750.2
912.6

520.0

634.9

634.8
440.0
806.4
683.6
748.8

500.0
937.5
864.0
1014.0

0.0
217.6

573.3
346.8
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Table 2. Insulin perfiision data (in % )

Group Rat Observation Time(Min.)
5 10 15 20 30 45 60 75 90

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5

91
90
90
83
96
76
94
93
95
95
89

92
92
92
93
92

73
83
73
89
93
88
94
98
91
81
88

95
88
74
91
92

73
82
76
96
90
89
82
81
87
79
84

99
74
68
84
88

72
63
67
82
76
78
68
79
71
65
68

92
71
61
73
89

58
49
57
74
63
69
56
63
65
55
64

72
59
55
68
86

41
36
40
64
45
55
45
55
46
46
49

63
48
44
48
72

30
33
42
44
40
43
40
42
40
40
38

59
48
31
48
65

31
34
44
38
33
35
35
38
36
38
41

51
46
33
50
60

30
32
43
36
29
31
36
37
30
36
34

49
40
35
45
59

1 92 98 91 90 84 67 60 48 44
2 93 94 97 80 74 70 63 55 54
3 93 93 94 90 81 74 73 65 54
4 93 93 94 97 91 83 78 70 61

1 89 89 93 99 91 98 90 92 89
2 95 92 92 92 97 94 97 90 90

1 92 82 74 66 58 51 47 43 47
2 93 88 81 75 63 53 42 43 35
3 92 80 86 93 72 62 55 46 38
4 92 98 87 78 68 56 51 47 47

1 92 96 93 90 78 83 70 67 65
2 94 99 89 87 91 92 81 71 65
3 97 94 89 83 88 85 74 70 68
4 95 90 89 89 85 83 77 74 63

1 79 89 96 91
2 98 97 96 89
3 95 89 89 83
4 99 93 92 91
5 86 91 91 87

92
91
66
83
68

80
72
61
65
68

83
58
52
57
57

68
45
42
46
50

64
35
39
44
42






