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Unlike traditional approaches, Bayesian methods enable formal com-
bination of expert opinion and objective information into interim and
final analyses of clinical trials data. However, in cases where a broad
group must be convinced by the results, a practical approach for study-
ing and communicating the robustness of conclusions to prior specifica-
tion is required. Rather than adopt the traditional method of modify-
ing a single, initial prior and repeating the posterior calculation, in this
paper we give a partial characterization of the class of priors leading
to a given decision (such as stopping the trial and rejecting the null
hypothesis) conditional on the observed data. We employ an interval
null hypothesis based on the indifference zone approach of Freedman
and Spiegelhalter, and restrict attention to priors having certain pre-
specified quantiles. We illustrate the application of our approach to
interim monitoring using data from a recent AIDS clinical trial. We
also indicate the method’s usefulness in the design of future trials, cre-
ating simulation-based Bayesian analogues of the classical sample size
table.

1. Introduction. Recently, Bayesian methods have seen increasing
usage in the design, interim monitoring, and final analysis of clinical trials
data. They allow for greatly simplified designs, due to the independence
of the inference from the stopping rule, as well as more realistic sample size
determination based on the full range of the experimenter’s prior beliefs. Ad-
vanced Monte Carlo integration algorithms such as the Gibbs sampler enable
fast and accurate computation of relevant posterior distributions, providing
a more informative estimate of the treatment effect and the associated un-
certainty. Moreover, Bayesian methods free the user from prespecifying the
number of looks at the data or the form of an “a-spending function” (see
e.g. Carlin et al., 1993). Finally, the Bayesian methodology is easily blended
with formal decision-theoretic tools in settings where policymakers must do
more than simply summarize a trial’s results (e.g., in determining whether
it is ethical to run a given trial in the first place). Thorough reviews of the
use of Bayesian methodology in clinical trials are provided by Berry (1993)
and Spiegelhalter, Freedman and Parmar (1994).

Despite these potential advantages, many practitioners are either skepti-
cal of Bayesian methods or reluctant to use them. This apprehension is often
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due to the dependence of conclusions on the particular form chosen for the
prior distribution of the parameters in the model. The usual response to this
problem is to repeat the analysis using a different (but still plausible) prior,
and check to see if this produces a noticeable change in conclusions. Spiegel-
halter et al. (1994) implement this approach for clinical trials by performing
the analysis using a collection of priors chosen to reflect a broad range of
opinions as to the potential benefit of the treatment. More specifically, they
suggest investigating the results under a “clinical” prior, representing the
(typically optimistic) prior feelings of the trial’s investigators, a “skeptical”
prior, reflecting the opinion of a person or regulatory agency that doubts the
treatment’s effectiveness, and a “noninformative” prior, a neutral position
that leads to posterior summaries formally equivalent to those produced by
standard maximum likelihood techniques. Agreement among the inferences
drawn under all three of these priors suggests that the data are strongly
informative and the precise form of prior distribution is irrelevant. Dis-
agreement precludes a single “correct” summary of the trial, but still serves
to quantify the range of plausible treatment effects and the sensitivity of
the conclusions to the prior. A similar but broader approach is advocated
by Greenhouse and Wasserman (1995), who compute bounds on posterior
expectations over an e-contaminated class of prior distributions.

An alternative to this “forward” approach to prior robustness (where one
respecifies the prior and recomputes the result) is the “backward” approach
of Carlin and Louis (1995). These authors start with a dataset, and then
attempt to characterize the class of priors that lead to a particular conclusion
(e.g., stopping the trial and deciding in favor of the treatment). Since this
class can be quite large, they suggest restricting attention to “plausible”
priors, such as those having a certain mean, a certain mean and variance, or
certain quantiles (e.g. median, or 5** and 95 percentiles).

Carlin and Louis (1995) refer to this approach as prior partitioning, and
obtain fairly specific results for some of the restricted nonparametric prior
classes mentioned above. Their investigation applies to the case of a point
null hypothesis and a two-sided alternative for the treatment effect 6, i.e.,
Hy : 0 = 6 versus Hy : 6 # 6y. As such, their calculations are reminiscent of
those often done in studies of Bayesian robustness, an area pioneered by Ed-
wards, Lindman, and Savage (1963). More recently, Berger and Sellke (1987)
and Berger and Delampady (1987) showed that the minimum of P(# = 0|z)
over all conditional priors G for 6 # 6, is attained when G places all of its
mass at 6, the maximum likelihood estimate of . Even in this case, where G
is working with the data against Hyp, these authors showed that the resulting
P(6 = 0|z) values are typically still larger than the corresponding two-sided
p-value, suggesting that the standard frequentist approach is biased against
Hg in this case.
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A somewhat more realistic approach to clinical trials would involve an
interval null hypothesis Hy : 6 € (6L, 0], where [fL,0y] is some prespecified
indifference zone, within which we are indifferent as to the use of treatment
or placebo. For example, we might take 6y > 0 if there were increased costs
or toxicities associated with the treatment. Here, prior partitioning would
have more in common with the work of O’Hagan and Berger (1988), who
obtain bounds on the posterior probability content of each of a collection
of intervals which form the support of a univariate parameter, under the
restriction that the prior probability assignment to these intervals is in a
certain sense unimodal.

The remainder of this paper is organized as follows. In Section 2 we
review the specifics of prior partitioning for clinical trial monitoring under
point null hypotheses, and then extend the methodology to handle interval
null hypotheses. The technology is applied to the interim analysis of a par-
ticular AIDS clinical trial dataset in Section 3, while Section 4 investigates
its usefulness in the design of future trials of this type. Finally, Section 5
discusses our findings and suggests avenues for further research.

2. Prior partitioning. Consider first the point null testing scenario de-
scribed in the previous section and investigated by Carlin and Louis (1995).
Without loss of generality we set 8p = 0. Suppose we are given an observa-
tion z having density f(z|@), where € is an unknown scalar treatment effect
parameter. Let m represent the prior probability of Hy, and G(6) the prior
cumulative distribution function (cdf) of 6 conditional on {6 # 0}. Then the
complete prior cdf for 6 is given by F(6) = 7l[g «)(8) + (1 — 7)G(8), where
Ig is the indicator function of the set 5. The posterior probability of the
null hypothesis is therefore

7 f(«|0)
7 f(2]0) + (1 — ) [ f(z|6)dG(6) -

For a given prior distribution G’ and some p € (0,1), we will stop the ex-
periment and reject the null hypothesis if Pg(6 = 0|z) < p. Elementary
calculations show that characterizing this class of priors {G} is equivalent
to characterizing the set H,, defined as

Pg(6 = 0lz) =

H. = {G: /f($|0)dG(0) >c= 1__;__1) T

T 1Gel0)} -

Carlin and Louis (1995) establish results regarding the features of H., and

then use these results to obtain sufficient conditions for H, to be nonempty

for classes of priors satisfying various moment and percentile restrictions.
Turning to the interval null hypotheses Hy : 6 € [01,0y) and Hy : 0 ¢

[0L,6u), let ™ again be the prior probability of Ho, and let G(8) now cor-

respond to the prior cdf of 8 given 6 ¢ [0r,60y]. Making the simplifying
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assumption of a uniform prior over the indifference zone, the complete prior
density function for § may be written as

p(0) = - 0 2 dl6,,601(0) + (1 —)g(0) .
Using Bayes rule, the posterior probability of Hy is then

132 1(216) (55557 Ti0,.001(8) + (1~ m)g(6)] dB

(1) Pe(6 € [0, bulle) = .
ST Hel) [ Los.a0(w) + (1 - Mg(w)] du

We want to describe the priors G' that lead to rejecting Hp, i.e., those for
which (1) is less than or equal to some prespecified probability p. Since g()
has no support on the interval [fr,80y], this is equivalent to describing the
set

l—-p w

2%
2) ch{G: /f(w|0)dG(0)2c= . 1—7r0U10L /0L f(z|0)d0}.

To restrict the class of candidate G’s somewhat, suppose we consider
only those for which Pg(0 < &) = ar and Pg(0 > &y) = ay for some
fixed &1, and &y, where ay, and ay lie in the unit simplex. That is, the only
restriction on our prior cdf G is that it must pass through the points (£1,ar,)
and (éy,1 — a,). We further assume that max(¢y,6r) < min(éy, 6yv), and
that f(z|@) is a unimodal function of @ for fixed z that vanishes in both
tails. Due to the asymptotic normality of the observed likelihood function,
this final assumption will be at least approximately true for large datasets.

We can then derive supg [ f(2|0)dG(8) and infg [ f(z]0)dG(0), where
the sup and inf are over the restricted class of G’s described in the preceding
paragraph. (These expressions are fairly complicated for the general case,
and hence are relegated to the appendix.) Since H. is empty if the sup does
not exceed ¢, the supremum expression can be used to determine whether
there are any G satisfying equation (2), i.e., whether any priors G exist
that enable stopping to reject the null hypothesis. Similarly, the infimum
expression may be useful in determining whether any G enable stopping
to reject the alternative hypothesis, H;. Note that in either case, we may
view as fixed the (ér,&y) pair, the (ar,ay) pair, or both. For example,
suppose we seek the G consistent with rejection of Ho for a fixed (fL,EU)
pair. Given values of f(z|¢1), f(z|€v), f(z]d), and f f(z|6)d8, where 8
is the maximum likelihood estimate of , this amounts to determining the
(ar,ay) pairs compatible with (2). The following two sections illustrate
these ideas in the context of interim monitoring and experimental design,
respectively.
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3. Application to interim analysis. We apply the methodology of
the preceding section to a clinical trial dataset originally analyzed by Jacob-
son et al. (1994), and also considered by Carlin et al. (1993) and Carlin and
Louis (1995). The data are from a double-blind randomized trial comparing
the drug pyrimethamine with placebo for preventing toxoplasmic encephali-
tis (TE), a major cause of morbidity and mortality among people with AIDS.
For the likelihood, we adopt the proportional hazards model where the re-
sponse variable is the time from randomization until development of TE or
- death. We use a Cox model having two covariates for each patient: baseline
CD4 cell count, and a treatment effect indicator (1 for active drug, 0 for
placebo). Denoting the parameters corresponding to these two covariates as
B and 6, respectively, we obtain a marginal partial likelihood for 6 by nu-
merically integrating 3 out of the Cox partial likelihood. Following Section
2, we denote this marginal likelihood as f(z|f).

3.1. Searching over (ar,ay) for fized (€L,€u). Suppose that we wish to
find pairs (ar,ay) for which ‘H, is non-empty given a fixed region (&L, £&r).
Since the problem formulation provides us with the indifference zone (61, 67),
it seems most natural to set £, = 61, and £y = fy. Note that this automati-
cally implies that ay, + ay = 1, since G has no support over the indifference
zone.

In our Cox model, negative values of 6 correspond to an efficacious treat-
ment, so for this illustration we take §y = 0and 0, = log(.75) = —.288. That
is, any positive value for 6 favors the placebo. However, due to its increased
cost and toxicity the treatment will be preferred only for # values smaller
than log(.75), i.e., only if it reduces the placebo hazard rate by at least 25%.
At the trial’s fourth monitoring point, by which time n = 60 persons have
been observed to die or contract TE, we obtain the values f(z|{r) = .02,
f(z|€y) = .18, and f(z|f) = 1.28 where f = .62. Since 8 > £y, from the fifth
row of appendix expression (8) we have that the (ar,ay) pairs that satisfy
the condition supg [ f(¢|6)dG(6) > c are

R - 1374
{(aL,aU) anf(elen) + awflh) 2 =2 [ f(xle)do} .
3)

Note that under the Cox model, exact evaluation of the integral in the above
expression requires numerical methods. But our dataset is large, and so
f(z]0) viewed as a function of # is well-approximated by a normal distri-
bution with mean § and standard deviation .312. Thus the integral in (3)
reduces to a difference of two normal cdf values.

If we select p = .1 and m = .25, the inequality in (3) becomes ay >
—.0156ar, + .176. But recall that ar, + ay = 1, so the set of (ar,ay) pairs
for which at least one prior exists that leads to the rejection of Hy can be
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represented as the line segment defined by {(ar,ay): ar +ay = 1, ay >
.163}. The usefulness of this fact is best seen by inverting it: There are no
priors having ay < .163 that enable rejection of the null hypothesis. This is
a plausible outcome for this dataset: using a prior with very little support
for positive @ values, the data (which do support these values) are not yet
sufficiently convincing, and the trial must be continued. For all other ay
values, stopping to reject Hy is at least possible.

To expand the scope of our analysis, we might replace ay, by 1 — ay in
(3), and solve for ay as a function of 7. This produces the inequality

(4) ay > 536 —— — .016 .
l—-7

Combining (4) with the constraints 0 < ay <1 and 0 < 7 < 1 produces the
regions determined by the solid curve in Figure 1(a). For (7, ay) combina-
tions above and to the left of this curve, there exist priors consistent with
that combination which permit stopping to reject Hg, while for combinations
below and to the right of the curve, no such priors exist. That is, no prior
with a (7, ay) combination lying below the curve would lead to rejection of
the null hypothesis.

Figure 1(a) also shows the boundaries obtained in the same manner as
formula (4) for monitoring points two (n = 11 events, § = .02) and three
(n = 38 events, 6 = .49). In the first case, all but the most extreme priors
(those having m < .104) preclude stopping to reject Hg. As the number of
observed events n and 6 increase over time, the potential stopping regions
lying to the left of the curves also increase in size. This emerging superiority
of the placebo was not anticipated by any of the five subject area experts
consulted for this trial (Chaloner et al., 1993), so our prior partitioning anal-
ysis seems an especially useful complement to traditional Bayesian analysis
in this problem.

To ease the interpretability of our results, we might replace the condi-
tional upper tail probability ay with the corresponding unconditional prob-
ability, pr = ay(1 — 7). This converts (4) into a linear inequality, but with
the added constraint that py+7 < 1. Figure 1(b) plots the (7, pry) pairs and
their status relative to stopping and rejecting Hy for the same three moni-
toring points shown in Figure 1(a). This plot may be easier for a clinician to
interpret, since it avoids the notion of ay, a probability that is conditional
on the null hypothesis being false. Again, no prior corresponding to a region
to the right of a boundary enables stopping to reject the null hypothesis at
this monitoring point. Hence if a clinician had a relatively small py (low cre-
dence on large values for  that suggest superiority of the placebo) coupled
with a relatively large 7 (high credence on 6 values in the indifference zone),
Hy could not be rejected even at the fourth monitoring point. But note
also that no point below the solid line has py = .5, which for this problem
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Figure 1: Prior tail area regions at three monitoring points, TFE trial data.
For combinations to the left of each curve, priors ezist that permit stopping
to reject Hy.

defines the class of priors that are “skeptical” (symmetric about 0). Hence
for each potential value of 7, there is at least one skeptical prior that would
be convinced as to the placebo’s superiority by monitoring point four.

From equation (4), rejection of Hy is always possible for 7 < .029, while
it is never possible for * > .655. These are sensible results, since low prior
weight on the null should encourage rejection, while sufficiently high prior
weight on the null should prevent it. For comparison, the analysis of Carlin
and Louis (1995) based on the point null prior Hp : § = 0 produces the
cutoffs .014 and .410, respectively. These numbers are also plausible, since
the maximum likelihood estimate (MLE) 6 = .62 > 0, and so it should be
more difficult to reject a null hypothesis that concentrates all its mass at 0
than one which distributes the same mass uniformly across an interval with
upper boundary 0. Of course, in practice one might well use a smaller value
of  with the point null than with the interval null, so the two approaches

suggest similar stopping patterns.
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One of the advantages of a Bayesian approach is that it enables formal
rejection of the alternative hypothesis, should the data support such a move.
We would take such action if Pg(8 ¢ [0r,0u]|z) < p, or equivalently if

p T 1 bu
l—pl—mby -0 Jo,

() [ f(alo)iGo) < ¢ = f(2|6)d6 .

Hence we are now interested in appendix formula (7), which gives the infi-
mum of [ f(z]0)dG(0). But since (1 — ar, — ay) = 0, this infimum will also
be 0. Thus there is at least one G such that rejection of the alternative is
possible for all 7 and ay. Hence we can say little about the evidence against
the alternative in the case where £1, = 67, and &y = 6.

As a possible remedy for this poor resolution, we might instead fix
(ér,&u) such that £ < 0L < Oy < &y. In this case we do not have
the constraint that ar + ay = 1, enabling the same sort of analysis as
above, but with a nondegenerate solution to equation (7). Suppose we take
&, =0 — .5=—-.788 and &y = Oy + .5 = .5. Since we will no longer have
that ar, = 1 — ay, we again fix 7 and seek (ar,ay) pairs that lead to stop-
ping. Inserting the infimum from equation (7) into inequality (5), we obtain
that stopping to reject the alternative is possible if

(6) av > (1= /M) -ay,

where M = min(f(z|€L), f(z|éy)). This means that (ar,ay) pairs that
enable stopping will lie above and to the right of a line having slope —1.
While this approach may prove useful for a given dataset, there remains a
problem that limits its application in general. For many families f (including
the normal), when 8 is large it will often be the case that ¢/ > M, and so
equation (6) will be vacuous. Then for every (ar,ay) pair there will be at
least one prior that enables rejection of Hy, even though the data support
this hypothesis. The explanation for this counterintuitive behavior is that
the prior corresponding to the infimum in (7) places all its mass at only 3
support points, none of which are supported by the data. In Section 5 we
suggest several modifications to this approach to improve its utility.

3.2. Searching over (L, €&u) for fized (ar,,ay). As an alternative method
of partitioning the prior space, we might reverse the procedure of the pre-
vious subsection and search over prior quantiles (£r,&y) corresponding to
prespecified tail areas (ar,ay). Here, ar, and ay would typically be fixed at
small values, say, a, = ay = .025. Then it would likely be the case that
&1, << 01, < By << &y, for otherwise, with so much prior mass concentrated
near the indifference zone, we would have ethical doubts regarding whether
the trial should be conducted at all.



Prior Partitioning 183

The question arising in this case then is for this fixed pair (ar,ay), do
there exist any priors that lead to rejection of the null hypothesis? The an-
swer is again governed by the inequality in (2). As in the previous subsection
it is reasonable to look for the supremum of [ f(z|60)dG(6) over G, but such
a solution will be complicated in general, for as {7, and £y range across their
set of possible values, the supremum will range over all five cases listed in
appendix equation (8).

In specific applications, however, 87, 6y, and 6 will be known, so with
the assumption that max({r,0r) < min(éy,fy), many of these five cases
will become impossible. For our TE dataset with p, 7, ar, and ay as pre-
viously specified, solving for the supremum at the fourth monitoring point
involves the cases on lines 4 and 5 of appendix equation (8). Line 4 yields
no constraints on £y, as long as &y > = .62, while line 5 produces the equa-
tion f(z|€y) > .204 — .024 f(z| min(ér,0r)) when £y < .62. These equations
imply that there exist priors that will allow rejection of the null hypothesis
depending on the values of &1, and &y as follows:

1. For &£ — —oo, we must have £y > .0219
2. For &1, > —.288, we must have £y > .0215

3. For oo < €1, < —.288, we must have f(z|€y) > .204—.024 f(z|€L), that
is, éy > w where w ranges from .0219 to .0215.

So for this dataset, any prior having 97.5* percentile smaller than .0215
precludes stopping to reject the null hypothesis; the value of such a prior’s
2.5th percentile is virtually arbitrary in this decision.

4. Application to design. Sample size determination is one of the
most difficult problems faced by the designers of a clinical trial. The usual
approach is to prepare a “sample size table” having a range of power levels
(say, 80, 90, and 95 percent) as its column headings, and likely treatment
effect magnitudes as its row headings. The table entries then give the sample
sizes required to detect the various treatment effects at the various power
levels. While these calculations are exact, they must be used cautiously as
they involve guesses for important characteristics of the errors involved in
the measurement process.

The necessity of subjectively assessing the uncertainty associated with
the true treatment effect makes trial design an inherently Bayesian proce-
dure. Indeed, such methods have a longer history of use in the design of
clinical trials than in their monitoring or final analysis (see e.g. Freedman
and Spiegelhalter, 1983). In this section we show how prior partitioning
can be used in a trial’s design stage by determining which combinations
of true treatment effect and trial sample size are likely to lead to definite
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conclusions (i.e., conclusions that hold for a broad range of prior distribu-
tions on the treatment effect). Consider again a treatment effect parameter
9 having MLE 6, which for convenience we assume has a distribution that
can be reasonably well approximated as N(#,0?%). For a postulated (6, 0?)
pair, we could draw independent samples {ék, k=1,...,K}, and apply our
prior partitioning approach using each simulated MLE. A suitable numerical
or graphical summary of the results could inform as to whether successful
stopping of the trial was likely for this (6, 0?) pair.

As a concrete illustration, consider again the TE trial setting investigated
in Subsection 3.1, where we search over (ar,ay) pairs having {y = 0y = 0
and &, = 0 = log(.75) = —.288. Appendix expression (8) then deter-
mines three possible cases depending on whether the generated 6 falls in
(—00,&L], (€r,&u], or (€u,00). Recalling that ay, = 1 — ay in this case, and
again fixing p = .1 and m© = .25, each replication produces a (possibly empty)
interval of ay values, for each of which there exists at least one prior that
leads to stopping and rejecting Hy.

Table 1: Summaries of ay intervals for which there exists a prior that enables
stopping to reject Ho; 0, = €1, = —.288,0y = &y =0, p=0.1, and 7 = 0.25.

n = 250 n = 1000 n = 2000
true prop avg prop avg prop avg
0 nonempty length | nonempty length | nonempty length
-0.144 0.14 0.06 0.12 0.06 0.11 0.04
0.0 0.16 0.08 0.18 0.09 0.26 0.14
0.5 0.48 0.31 0.91 0.76 1.00 0.96
1.0 0.86 0.71 1.00 1.00 1.00 1.00

Table 1 summarizes our results in a way intended to mimic a traditional
sample size table. As usual, the row headings are potential values of the
true treatment effect 6, beginning with § = —.144, the midpoint of the indif-
ference zone. But the column headings now correspond to possible sample
sizes n in each treatment arm, which for the purpose of this illustration we
convert to a likelihood variance using the formula 02 = 50/n. (This would
be the appropriate formula for Var(é) if instead of the Cox model we simply
assumed the observations X; in each group to be independent normal vari-
ables with variance 25, and we took 6 = X'd,.ug - Xplacebo.) For each (6,n)
combination, the table provides the proportion of nonempty ay intervals and
the average length of these intervals over K = 1000 simulated replications.
As we would expect, using either summary measure, the likelihood of the
trial stopping and rejecting the null hypothesis increases as § moves away
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Figure 2: Simulated regions for stopping and rejecting Hy, where 0, = {1, =
—0.288, gy = 6y = 0, and p = 0.1. For (7,py) combinations above and to
the left of the solid lines and below and to the left of the dashed lines, priors
ezist that permit stopping to reject Hy.

from the indifference zone. Larger sample sizes lead to a similar increase for
6 values not in the center of the indifference zone. While this table could be
reduced to a single pair of numbers by placing hyperpriors on § and =, this
sort of tabular display is likely to be more popular among practitioners.

In addition to these ay interval summaries for fixed m, we might also
consider plots of py versus 7, as in Figure 1(b). Figure 2 plots the boundaries
obtained over K = 100 replications from each possible combination of the
four sample sizes and four true treatment effects investigated in Table 1.
That is, there are 100 lines plotted in each of the 16 graphs, though many
of these lines are not visible in the lower-right graphs because they coincide
with the w-axis. The (7, py) pairs for which there exists a prior that permits
stopping to reject Ho are located above and to the left of the boundaries
having positive slope (plotted as solid lines), but below and to the left of
those boundaries having negative slope (plotted as dashed lines). Thus for
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a given graph, the intersection of these regions gives the (7, py) pairs for
which stopping to reject Ho was possible in every simulated replication. In
most of the 16 cases shown this is only a small convex area on the left side of
the graph, but it is larger for larger true treatment effects and sample sizes
(for @ = 1 and n = 2000, it is the entire region). Conversely, the intersection
of the complements of the regions describes the (7, py) pairs for which no
prior enabled stopping to reject Hg in any of the replications. Note that this
is a fairly large region on the right side of the graph in which § = —.144 and
n = 2000, a situation where we are very likely to have strong evidence of no
treatment effect.

While the purpose of Figure 2 is primarily to convey a rough visual
impression of the variability in the strength of evidence likely to be ob-
tained from various (6,n) combinations, the intersection regions described
in the previous paragraph could be interpreted more formally in the con-
text of randomization tests (Barnard, 1963). That is, since we have used
K = 100, these regions are essentially areas wherein we are just over 99%
confident as to the outcome (ability to reject Hg for some prior or for no
prior, respectively). Of course different sets of random numbers will lead to
different confidence regions, but these differences should be small in the cases
wherein we would actually contemplate running a trial (i.e., those like the
(6 = 1,n = 1000) and (@ = 1,n = 2000) cases in Figure 2, where virtually
the entire region permits stopping to reject the null).

5. Discussion. While our methods do not constitute a replacement for
formal Bayesian methods based on careful prior elicitation, they do offer a
useful way of “scoping” the prior class and identifying those that are in sharp
conflict with the data. We anticipate their forming a useful first step in a
Bayesian analysis, to determine whether there exists a prior that would lead
to rejection of the null (or the alternative) given some very vaguely specified
prior beliefs, as quantified by a particular combination of 7, &1, év, ar,, and
ay. An unambigious answer may be helpful to a data safety and monitoring
board in determining that a clinical trial should be stopped. An ambiguous
answer requires more careful prior specification, a continuation of the trial
to accumulate more data, or both.

In the context of experimental design, the results in this paper are based
on approximate normality. This is a fairly common assumption in practice,
and with good reason: besides the asymptotic normality of the MLE, Tsiatis
(1981) shows that 4L/n ~ N(§,4/n) in the vicinity of the null hypothesis,
where L is the usual log-rank test statistic and é is the log-relative haz-
ard between the two treatment groups. Still, the assumption of normality
may be too restrictive in practice. However, note that we assumed nor-
mality only for computational convenience; in principle, prior partitioning
applies equally well to nonnormal likelihoods, including proportional hazards
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models. Another worthwhile extension would be to consider multivariate 6,
which would be required to analyze multi-arm trials or study effectiveness
and toxicity simultaneously.

The priors corresponding to the boundaries in Figures 1 and 2 are “ex-
treme,” in the sense that they consist of point masses placed at only three
values on the real line. Besides being unrealistic as representations of any
individual’s beliefs, these extremal priors lead to difficulties in using equa-
tion (5) to determine prior partitions for rejecting H; (i.e., accepting Hp),
as described near the end of Subsection 3.1. A natural solution to this prob-
lem would be to further restrict the class of candidate priors, screening out
those which are too extreme. For example, we could limit our attention
to e-contamination priors. Alternatively, we might consider only continuous
priors for @ that satisfy some smoothness condition(s), imposed by constrain-
ing the derivative(s) of g(6). Most drastically, we could restrict attention to
priors having a certain parametric form (e.g., the normal family). While this
would likely lead to fairly precise results at little computational expense, it
would also eliminate a large number of plausible priors (e.g., the Student’s
t family). We hope to report on many of these approaches in a subsequent

paper.
Acknowledgements. The authors thank Profs. Jim Hodges, Tom Louis,

and Larry Wasserman for several suggestions that greatly improved the
manuscript.

APPENDIX

As described in Section 2, suppose we have specified an indifference zone
(0,0u), and we restrict our attention to conditional priors G' satisfying
Ps(0 < &) = af, and P (6 > €v) = ay. Assuming that max({r,0r) <
min({y,0y), and that the likelihood f(z|f) is unimodal and approaches 0
for z — +o00, we have that

e~ el

. _ : v —0u)f(zl¢v),

1réf/f(z|0)dG(0) = (1—ar—ay)Xmin 6(6r, €)6(Ev — 00V (=161), |
(8 — €L)6(év — Ou) f(z|0v)

(7) _

where 6(2) = I(g,00)(2), and §(z) = 1 = 6(z) = I(~o,0)(%). Further, we have
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that

f(=18) f(z| max(&v, fur))
f(z| max(¢r,, 6r)) f(z| max(&v, 0v))
supg [ f(2]0)dG(0) = ar, { f(z|max(ér,01)) ¢ + av { f(z| max(év, 6v))
f(z| max(&r,,60r)) f(z| max(éU,BU))
f(z| max({L,6L)) f(=|0)
f(=léL)
] (19)
+(1—ar, —ay) [6(0r — €L)6(Ev — ) < f(=|0L)
f(=|6L)
f(z|0r)
(f(z|6u)
_ f(z|6v)
+6(0 — £1)8(&v — 0u) | f(=|6y)
f(z|9)
f(z]€v)
f(zléL)
f(z]0)
+6(60r, — €1)6(&v — Ou) < max(f(:z:|0L)2f(w|0U)) ,
f(z]0)
\ f(z|€v)

(8)

where 6 is the MLE of 8, and the five options in the braces are for 8 falling
in the intervals (—oo, min(ér,01)], (min(éz,0), max(ér,0r)], (max(ér,0L),
min(éU, GU)]? (min(va GU)’ ma‘x(fUa 0U)]7 and (ma‘x(é.U, OU)a OO), respectively.
These two expressions are easy, if somewhat tedious, to obtain. Broadly
speaking, equation (7) arises from placing the prior mass of G as far from
the MLE as allowed by the percentile constraints, while for equation (8) we
place the prior mass as close to the MLE as possible. Notice that at most
one of the three terms within the brackets in equation (8) will be present
for any given ordering of £1,,&y,0r, and fy. In particular, if £, > 67, and
&u < Oy then (1—ar—ay) = 0, and so all three of these terms are irrelevant.
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Robust Design and Analysis of Clinical Trials via Prior
Partitioning

discussion by
JoserH B. KADANE
Carnegie Mellon University

The central idea of “prior partitioning” is as follows: given a set of deci-
sions D, fixed data z, parameter space w, and known likelihood f(z | #), one
supposes that the class of priors on w is restricted to some subset FPy. Then
the question is asked, for each deD, is there a prior in Py such that d is opti-
mal? If not, the suggestion is that d can be eliminated as a possible decision.
In this respect, prior partitioning works a bit like admissibility. Perhaps a
better name would be “posterior partitioning of prior distributions”, since
the partitioning depends on the observed data z.

Sargent and Carlin (SC) apply this general scheme to interval hypothesis
testing of Ho : 6 € [0L,60y] against the alternative 8 ¢ [6L,60y], taking the
restricted class Py of priors to be those that put probability 7 uniformly
on [0r,0y], and (1 — 7) on G, outside [0, 0y] with two quantiles fixed, i.e.
G(&L) = ar, and G(&y) = 1 — ay. They then ask whether there are priors
G, for fixed 7,&y,ar,ay and p, such that P[0 € [0L,00] | 2] < p.

As an illustration, SC apply this idea to a Cox proportional hazards
model with two covariates, baseline C'D4 count and treatment. They in-
tegrate out the parameter for C' D4 count, yielding a marginal Cox partial
likelihood, which they take to be their likelihood f(z | 8). It seems to me
that this introduces two unexamined possible sources of non-robustness: the
partial likelihood, and the marginalization. In particular, I would give up
some robustness in the treatment parameter to be better protected against
possible non-robustness in the C'Dy4 count.

My major concern is whether it is useful to restrict attention to the
posterior probability content of [f1,6y]. In their example, small values of 8
favor the treatment, while large values favor the placebo. Consider situation
1 in which half the posterior probability outside [0r,0y] is at 8y + € while
half is at 6, — 1/€. Then for small positive €, choosing the treatment will be
well advised because the loss of choosing the treatment will be dominated
by the lump of probability at 6y + €, just outside the indifference zone.
Now consider situation 2, with half the posterior probability outside [6y,, 6i/]
at 07, — € while half is at 8y + 1/e. Now it would be best to choose the
placebo, for symmetric reasons. Nonetheless, the SC analysis, concentrating
on the posterior probability of [fr,,0y] would evaluate these two situations
identically.

SC, perhaps inadvertently, raise an issue about the appropriateness of
the structure they propose, writing “Negative values of 8 correspond to effi-
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cacious treatment, so... we take fy = 0 and 0, = log(.75) = —2.88... Due
to increased cost and toxicity the treatment will be preferred only for values
of  smaller than log (.75), i.e. only if it reduces the hazard rate by at least
25%”. This suggests to me that they would use the treatment if § < —2.88
and the placebo otherwise. Perhaps it is necessary to use a hypothesis-testing
framework for the problem, i.e. a 0-1 loss, in which case it would seem that
the relevant hypotheses are Hy < —2.88 versus H; : § > —2.88. Perhaps a
more realistic loss would penalize the use of the placebo if § < —2.88 in a
way that increases as 6 decreases, and penalize the use of the treatment if
0 > —2.88 in a way that likewise increases as 6 increases.

There are difficulties in the interpretation of prior partitioning. If there
are no priors in Py such that d is optimal, should I discard d? In problems
with more available decisions, d might be a good compromise, and might be
robust, although never optimal. If there are such priors in Py, should I care
what they look like, and whether they are in some sense reasonable?

In conclusion, I find that the strengths of this paper are its use of real
data, and that it is aimed at applications to decisions real people have, in
clinical monitoring and design. I believe that the principal area for further
growth is that more attention should be paid to the decision aspect of the
problem: what are the available decisions, what is a reasonable loss or util-
ity structure. Finally, I believe that more attention should be paid to the
robustness of the expected utility, not of the decision.



REJOINDER

DANIEL J. SARGENT AND BRADLEY P. CARLIN

We thank Prof. Kadane for his thoughtful comments. We agree that the
name “prior partitioning” does obscure the fact that the partitions are made
in light of the data, and that a more descriptive name for the technique may
be in order. Indeed, the title of an early version of Carlin and Louis (1995)
included the phrase, “data and decision based prior partitions,” which led
to our current abbreviated moniker.

Regarding the two sources of possible nonrobustness in our data exam-
ple, first, a theoretical justification for our use of the Cox partial likelihood
as a likelihood is given in Kalbfleisch (1978). This paper places a gamma
process prior on the baseline hazard function (independent of the prior for
the regression parameters), and shows that the marginal posterior density
for the regression parameters approaches a form proportional to the Cox
partial likelihood as this gamma process prior becomes arbitrarily diffuse.

From a more practical viewpoint, the overwhelming popularity of the
Cox model among biostatistical practitioners helps to justify its use as a
base model. Second, the CD4 count parameter 8 is only a nuisance pa-
rameter in our model, included to calibrate the likelihood for the baseline
health status of the patients in our study. Since the treatment effect pa-
rameter @ forms the basis for subsequent decisions and is the only model
quantity about which data monitoring board members are likely to have
strong opinions, marginalizing # out of the Cox likelihood under a flat prior
before beginning our investigation seems justified. Of course in principle,
prior partitioning applies to multivariate parameters as well, but not with-
out substantial complications to the analysis and graphical display of results.

We agree that there is a possible oversimplification inherent in our two-
sided testing scenario. Our methods could be adapted to consider rejection
of Hy, : 8 < 0, or Hy : 8 > Oy, instead of Hp : § € [0,60y]. Fortunately,
the extreme scenario Prof. Kadane describes using a small positive € is rare
in practice under our Cox model. Still, the value judgement he finds lurking
in the indifference zone is real, and warrants a more complete investigation
via formal decision-theoretic tools under appropriate loss functions. In the
present paper we have deliberately concentrated solely on the probability
aspect of such a model, but we hope to report tangible results on the more
complete project in a subsequent paper.

Finally, the shape of the priors that allow stopping is clearly an important
issue, especially given the breadth of our prior class. Carlin and Sargent
(1995) consider the imposition of stronger restrictions on the prior (such as
continuity, unimodality, and specific parametric and semiparametric forms),
and investigate their impact on the size of the resulting prior partitions.
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