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We address the problem of finding the range of the posterior ex-
pectation of an arbitrary function of the parameters when the prior
distribution varies in an ε-contamination class and the resulting pri-
ors have specified marginals. This problem, which is an example of
the Monge-Kantorovich problem has not yet received a complete so-
lution. We provide an accurate approximation, by considering, as the
contamination class, the set of priors with one specified marginal and
an arbitrary number n of specified quantiles on the other coordinate.
We show that, by using Moment Problem Theory, this problem can
be restated in a more tractable form, and provide some interesting
illustrations in which posterior robustness is achieved.

1. Introduction and problem setting. In problems involving vec-
tor valued parameters, the elicitation of multivariate prior distributions is
extremely challenging and any choice should be carefully investigated from
the sensitivity viewpoint. Elicit ation often proceeds by eliciting the one di-
mensional marginal distributions, and it is then natural to consider the class
of all joint prior distributions with that given set of univariate marginals,
namely the Frechet class Q.

As already discussed in Lavine, Wasserman and Wolpert (1991) and
Moreno and Cano (1995), the use of Q as the class of plausible priors will
typically give uselessly large ranges for the posterior expectation of a given
quantity of interest, due to the extremely huge size of Q [see Walley (1991)
p.298, for an example].

However the class Q is particularly useful as the contaminating class
when using an ε-contaminated neighbourhood of priors

(1) Γ(Q,ε) = {Π : Π(dθudθ2) = (1 - ε)ΠQ(dθudθ2) + εQ(dθudθ2),Q e Q}

where Πo is the base elicited prior (usually Πo G Q), (1 - ε) quantifies the
confidence in 77O and Q is the class of allowed contaminations.

The class Γ(Q,ε) would model those situations where one is rather con-
fident in the marginals elicitation, but a sensitivity analysis is still necessary,
with respect to departures from ΠQ which preserve the marginals.
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Finding the range of the posterior expectation of a given measurable func-
tion when the prior probability measure varies over Γ(Q,ε) reduces (once
appropriately linearized) to the so called Monge-Kantorovich mass transfer-
ence problem [see for example Rachev (1985)]. Its role in robust Bayesian
inference was first addressed in Lavine, Wasserman and Wolpert (1991).
They proposed an approximation of the contaminating class Q based on a
discretization of the marginals. Moreno and Cano (1995) provided a more
accurate approximation in the bivariate case: one of the marginals is com-
pletely specified and a rough approximation of the other is assumed. Namely
they consider the contaminating class

(2) Qa = ^Q(dθudθ2) : Q2(dθ2) fixed, j( Qi(d0i) = α | ,

where a and A are given and Q\ and Q2 denote the marginal measures of
Q for θι and θ2 respectively. This only specifies the prior probability of
two subsets of Θi, i.e. A and Θi — A. The mass transference problem that
naturally arises with the computation of the extrema of the posterior expec-
tation of a function ψ(θι,θ2) when the prior varies over Γ(Qα, ε) is solved
in Moreno and Cano (1995) using arguments which represent an extension
of the usual methodology for quantile classes [Moreno and Cano (1991)].

Unfortunately this approach does not seem to work when a more refined
partition of Θi, say (At, A2, , An), is considered, that is when we consider
the class of contaminations

(3) Qi = ^Q(dθudθ2) : Q2(dθ2) fixed, jf = ai,i = 1, ,n

In this paper we address the problem of finding the range of a posterior
functional over the class Γ(Qi, ε) using the general Moment Problem Theory.

Let θ = {θι,θ2) be a vector of real parameters, with θ G Θ = Θ1XΘ2. The
likelihood function of the data x will be denoted f(θ\,θ2) while ψ(θι,θ2) is a
measurable function which represents our quantity of interest. The symbol
EP(Y) will denote the expected value of Y with respect to P.

The problem consists in finding

!Φ(θ)f(θ)π(dθ) 1
1 ( C l f

 Ί

(1 - ε) / φ(θ)f(θ)Π0(dθ) + ε f φ(θ)f(θ)Q(dθ)
(l-ε)ff(θ)Π0(dθ) +

(of course the supremum of the same quantity will be treated in a similar
way); here Q\ is as in (3), the sets A{ are given and the probabilities α; are
fixed coherently with the i7o-marginal on Θi.



Bidimensional Priors 103

We show that problem (4) can be restated in a more tractable form,
namely a linear n — l dimensional optimization problem and a standard root-
finding operation, through a direct application of Moment Problem Theory
(MPT, henceforth). The approximation approach here proposed moves along
the lines of Lavine, Wasserman and Wolpert (1991) and Moreno and Cano
(1995), extending Moreno and Cano (1995). The results, possibly comple-
mented with convergence and error analyses, could also be used to guide the
refinement of the partition towards better approximations.

Kemperman (1987) will be used as a reference for the MPT. The rel-
evance of this theory to solve variational problems in Robust Bayesian in-
ference was first noticed in Sivaganesan and Berger (1989) for several con-
strained contamination classes. Salinetti (1994) discussed the use of MPT
for most of the usual classes of priors and combinations thereof. It is rele-
vant to observe that, in this proposed approximation of the fixed marginals
problem, the MPT approach is not only powerful from the operational point
of view: also, it helps to clarify "how" the solution to the mass transfer-
ence problem actually works (see Section 2 for details). Section 4 deals with
some particular choices of the function of interest, where substantial com-
putational simplifications are obtained. Illustrations and discussion of the
results are given in the last section.

2. Preliminary results: linear robustness and M P T . Let QQ be
the class of all probability measures with marginal Q2 fixed. Minimizing a
linear functional over <2o is easy, as it can be directly derived or obtained as
a particular case of Lemma 1 in Moreno and Cano (1995):

LEMMA 1. Let φ : Θ —> R be a measurable function. To avoid trivial
degenerate cases assume that, for every Q £ Qo, f φ(θι,θ2) Q(dθι,dθ2) and

φ(θι,θ2)Q2(dθ2) exist, possibly infinite. Then

(5) ^nf U ψ(θuθ2)Q(dθudθ2)} = J înf ^ {Φ(θuθ2)}Q2(dθ2).

The class Q1 given in (3) with fixed marginal Q2 = Π02 can be expressed

as a subclass of Qo, in the form

G Q 0 : / Q(dθ1,dθ2) = ai; i= l , . . . , n l ,
JAiXΘ2 )

where α, = 77Oi(Λ), 0 < α t < 1, i = 1,. . . , n, (Λi, A 2 , . . . , An) is a partition
of Θi, and ΠQJ denotes the Πo marginal distribution over 0j, j = 1,2.

Consider the following linear minimization problem over Q\:

φ= inf {ίφdθ\= inf I [ φdQ; f ICιdQ = α t ,t = 1,.. . , n - l l
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where d = A{ X ©2, i = 1,. . . , n - 1, and 7^ is the indicator function of a
set Aj and ^ is assumed to be finite.

In this form φ is a generalized moment problem. According to MPT
[Kemperman (1987), specifically Theorem 2.20 restricted to the single prob-
lem φj, since Qo is a convex class, the subclass Q\ is non empty, the con-
straints are linearly independent and, as a consequence of the assumptions,
the vector α = ( α i , . . . , θίn-i) is an interior point of the set

y = [y = (2/1, . ,yn-i) e Έ?-χ , jlOidQ = y, = Q(C, );Q e Qo} ,

where i = 1,. . . , n — 1, we obtain

φ= sup

Then, by (5),

V>= sup ( Σ />

or, equivalently,

(6) ^ = sup
dR4=0

L(θl9θ2) - JΓdilcλθ^θΛ Q2(dθ2)\ ,

The presence of the indicator functions in the integrand of (6) allows a

considerable simplification. For each θ2 and for each A{ set

φi(θ2)= mi
θiβAi

and, for fixed d = (rfi,..., dn_i, 0) let

Sij = S K , d,-) = {02 : ^ ( 0 2 ) - φj(θ2) < di - dj}.

Set

( ) ( π
where 5 | t denotes the complement of Sji in ©2- Also we will adopt the

convention that Πj=i $ij = Π?=n+i S*j = ®2 K c a n be shown that the sets

{5i,. . . , Sn} form a partition of ©2 (see the Appendix).
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Then the integrand in (6), as a function of θ2, can be written as

(7) inf U{θx,θ2) -ΣMciViΛ))

Using this in (6) allows one to conclude

THEOREM 1. The minimum value, φ, is

φ = J6

sup

n=0 (/ = 1 ^ J

sup { ίj2φi(θ2)Isι(θ2)Q2(dθ2) + j2(di - dn)(ai - Q2(S
j

PROOF. The first expression directly follows from using (7) in (6). The

second expression is derived observing that Σ t α t

 = ΣiQ2(Si) = l π

REMARK 1. Theorem 1 shows how the solution to the mass transference
problem operates. First, curves are determined over Ci, C2,..., Cn through
the functions ψι, φ2,..., φn. Second, pieces of these curves are chosen, taking
into account the differences φi(θ2) — φj(θ2). The selection is optimal as a
consequence of the MPT. Thus, the extremal prior Q*(dθι,dθ2) will put all
its mass on these pieces of curves.

3. Ratio-linear robustness on /"(Qi, ε). Consider the problem stated

in Section 1 of determining

<R\ λ i i i f ί!Φ(θ1,θ2)f(θ1,θ2)π(dθ1,dθ2)(8) A = m f l
where φ(θχ,θ2) is the function of interest, and f(θι,θ2) is the likelihood func-

tion. We assume that / fdΠo > 0 and the likelihood function is bounded,

so that

inf [ f fdΠ,Π6Γ(Quε)\ >0 and sup j [ fdΠ,Π G Γ(Quε)\ <+00.

This makes the linearization technique [Wasserman, Lavine and Wolpert

(1993)] applicable in solving (8) and the value λ is the unique solution of the

equation

G(X) = inf U(φ(θuθ2) - \)f(θljθ2)Π(dθ1,dθ2)i Π G Γ ( Q ! , ε ) | = 0,
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or, equivalently,

G(λ) = (l-ε)Eπ°(φ(θuθ2)-X\x)m(x\Π0)

(9) + ε inf [E<* [(φ(θuθ2) - λ)/(01?02)] Q e Qi} - 0,

where m(x\Πo) = Eπ°f(θι,θ2). In accordance with Theorem 1 the equation
(9) can be expressed as

G(\) = (l-ε)Eπ°(φ(θuθ2)-λ\x)m(x\IIo)

+ ε sup <

n

+

where, for i = 1,.. .,ra,

φ.(θ2,λ) = inf

while

and

Sn = Si3{d,λ) = {θ2 : φ.(θ2,λ) - ψ.(θ2,λ) < df. - d3) .

4. Some particular cases. The proposed approach is quite general
and it can be applied to any function φ : Θ —> R such that its posterior
mean is a linear functional or a ratio of linear functionals of Π.

Neverthless there are particular cases which deserve special attention for

several different reasons, specifically:

1. φ(θι,θ2) = IB(ΘI ,Θ2). In this case we are interested in the posterior
probability of a given set i?, with B G B(®\ X Θ2), the Borel σ-field
of subsets of the parameter space. We will show that, in this case, the
computional effort is considerably reduced. Important choices of B are

la) B = {θ : 0i < θ2} which arises in, say, the hypotheses testing
settings.

lb) B = B(tut2) = {θ : 0i < tuθ2 < ί2}, which is the case of

the posterior range of the joint posterior cumulative distribution

function of (0i,02).
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2. ψ(θ\,θ2) — φ(θι) or ψ(θ2). In this case we are actually interested in a
function of one parameter only, the other being a nuisance parameter.
This case is very common in statistical applications and turns out to be
very important in our context because the elicitation of the marginals
is typically much more informative here than in the general case. We
will discuss this case in Examples 2 and 3.

In this section we discuss detailed solutions of the particular cases la
and 16. It should be noted that the major computational simplifications are
obtained when we are able to write, in a closed form, the functions ^(02? λ),
Ψi(θ2, λ), and the sets Si(d, λ).

Consider now the general case where the function of interest ψ(θ\,θ2) is
the indicator function of some set 5, and suppose one chooses, as a quantile
partition on Θi, the sets

(10) Ai = (-oo,αα), A2 = [aua2),..., An = [αn_i,+oo).

We define the following sets: for each i = 1,..., n, let

and its A{-complementary set

A (ύ D\ ίύ r~ A . ίύ ύ \ /

i\ "i9 -*-^ ) — I ^ 1 ^ -*̂ -z v " l 9 ™Ί ) i

Then, for each λ £ R, it can be shown that

I "~λ/j (#2) if AA
ψ.(θ2iΛ)=< ιnf —

—ι I (1 - λ ) / J ( β 2 ) if Ai{

where
7Γ(Θ2)= sup f(θl9θ2)

and

Similar results hold in the supremum case, and

where

f"f(θ2)= inf /(βi,β2)
0iGΛt(02,£)
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and

fΓ(θ2)= sup f(θuθ2).

We now give the explicit form of the ^.'s in the case B = {(#i, θ2) : θ1 < 02}

Similar results hold for the t/ '̂s and they will therefore be omitted.

THEOREM 2. For each real value λ one has

Φ (θo X)-ί ^ P W a . α i ) / ^ ' ^ ) ifθ2 < Ol .
ΨiW>*)-\ (l-λ)infθ 6 ΛM02) ifθ2>aι '

for 1 < i < n,

{ 4 . f(θi,θ2) ifθ2 < α, _i
-Asup e i € ( e 2 i O i ) f(θι,θ2) i/α f_i < 02

if θ? < an-!
ifθ2>an.ι

As a second application, consider the case B — B{t\,t<ι) =

THEOREM 3. For any (^1,̂ 2) £ R 2 and for each real value λ,
partition (10), one has

i) for each index i such that a{ < t\

Θ2) θ2 > t2

ii) if αz _i < ίi < α«

«2 A) -
2' J "

^ ^ ) Θ2<t2

, f(θuθ2) Θ2>t2

iii) for each index i such that α^-i > tι

ψ.(θ2i λ) = —λ sup
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5. Examples. EXAMPLE 1. Let (Xi,X2) be a bivariate normal ran-

dom variable N ((0i,02),/2)), where Ik is a k x k identity matrix, and sup-

pose the base prior Π0(θuθ2) is the standard normal bivariate distribution

N ((0,0), / 2 ) . We are interested in the robustness of the posterior probability

of Ho : θι < θ2 to departures from Πo which preserve the marginals. We

will consider several nested contamination classes, namely Γ(V,ε), Γ(Q0,ε),

Γ(Qχ,ε)and Γ(Q 3 ,ε), where

• V = {All the distributions over #(θi ,θ 2 )}

• Qo = {Q EV : the Θ2-marginal Q2(dθ2) = Π02(dθ2)}

• Qi = {QeQo: O i ( - o o , 0 ) = | }

• Q3={QeQι: Qi(-oo,-i/) = Q 1 ( i / J o o ) = | ;

here v — .3186 is the .625-percentile of a standard normal distribution.

Tables 1,2 and 3 shows the results for different representative data sets,

(£i,z 2 ) = (0,0),(0,3)and(3,0), respectively, and several values of ε. Note

that i70 (5|(0,0)) = .5, 77O (5|(3,0)) = .933 and Πo {B\{0,3)) = .067.

TABLE 1. Posterior bounds for the four classes when {x\,x2) = (0,0).
Values of ε

II o.i
infΓ(V,ε)
infΓ(Q0,ε)
infΓ(Qltε)
infΓ(Q3,ε)
supΓ(Q3,ε)
supΓ(Quε)
supΓ(Q0,ε)
supΓ(V,ε)

.409

.437

.437

.439

.561

.563

.563

.590

0.2

.333

.378

.378

.378

.621

.621

.621

.666

0.3

.270

.322

.322

.322

.677

.677

.678

.730

0.4

.214

.268

.268

.269

.730

.731

.731

.785

0.5

.166

.218

.218

.219

.780

.781

.781

.833

0.6

.125

.170

.170

.171

.828

.829

.829

.875

0.7

.089

.125

.125

.127

.872

.874

.874

.911

0.8

.050

.081

.081

.082

.918

.919

.919

.944

0.9

.026

.039

.039

.040

.959
.96
.96

.973

1

0
0
0
0
1
1
1
1

TABLE 2. Posterior bounds for the four classes when (x\,x2) = (0, 3).
Values of ε

II o.i
infΓ(T,ε)
infΓ(Q0,ε)
infΓ(Quε)
infΓ(Q3,ε)
supΓ(Q3,ε)
supΓ(Quε)
supΓ(Q0,ε)
supΓ(V,ε)

.764

.880

.880

.880

.941

.941

.942

.978

0.2

.623

.821

.821

.821

.948

.948

.950

.988

0.3

.503

.756

.756

.756

.956

.956

.958

.992

0.4

.401

.684

.684

.684

.963

.963

.965

.995

0.5

.312

.604

.604

.604

.970

.970

.972

.996

0.6

.234

.514

.516

.516

.976

.976

.978

.997

0.7

.165

.411

.414

.414

.982

.982

.984

.998

0.8

.104

.294

.296

.296

.987

.987

.989

.999

0.9

.049

.158

.160

.160

.992

.992

.995

.999

1

0
0

0
0
1
1
1
1

The tables show a sensible reduction in the posterior range when we

reduce the contaminating class from V to Qo, that is, when we fix a marginal.
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Also, improvements are significant only for small to moderate values of ε.
When ε = 1 the range is always, hopelessly, (0,1).

This is an example where knowledge of the marginals need not dramati-
cally reduce the posterior range: it depends on the shape of B. Consider, for
example, the case (xι = 0,z 2 = 0): roughly speaking the situation is that,
for each value of θ2, there are points (β\,θ2) £ B and points (θι,θ2) £ B
with similar likelihood values and it is thus possible to construct two priors,
Ql and Qu, with the prescribed marginals, such that QL(B\X) — 0 and
Qu(B\x) = 1. With different shapes of the set of interest, the behaviour can
be quite different. We will show examples where the posterior range of the
probability of a set is substantially less than one, even in the case ε = 1 (i.e.
no base prior).

TABLE 3. Posterior bounds for the four classes when (x\, X2) — (3, 0).

II 0 . 1
infΓ(P,ε)
infΓ(Q0,ε)
infΓ{Quε)
infΓ(Q3,ε)
supΓ(Q3,ε)

supΓ(Quε)
supΓ(Q0,ε)
supΓ(V,ε)

.021

.026

.033

.038

.114

.119

.120

.230

0.2

.011

.015

.020

.025

.174

.178

.180

.370

0.3

.007

.010

.013

.017

.234

.240

.242

.500

Values

0.4

.005

.006

.010

.013

.309

.315

.309

.600

ofε
0.5

.003

.004

.006

.009

.390

.395

.390

.688

0.6

.002

.003

.005

.007

.482

.486

.482

.766

0.7

.001

.002

.003

.005

.584

.589

.584

.835

0.8

.0008
.001
.002

.0023
.700
.706
.700
.896

0.9

.0003

.0005

.0008

.0011
.835
.841
.841
.950

1

0
0
0
0
1
1

1
1

EXAMPLE 2. Let (Xι,X2) be a bivariate Cauchy distribution with den-

sity

f(xux2\θuθ2) =
1

and suppose the base prior is a product of Cauchy(0,l) distributions, with

density

We are now interested in the posterior robustness of the probability of

B = {(θι,θ2) : θι > 0}. Also in this case we will consider four possible

classes of contaminations, namely

• V = {All the distributions on #(Θi,θ 2 )}

• Qo = {Q e V : the θ 2 -marginal Q2(dθ2) = Π02(dθ2)}

• Qi = {QeQo' Oi(-oo,0) = .5}

• Q3 = {Q e Qi : <2i(-oo, -1/) = Qi(-ι/, 0) = Qi(0,1/) = Qi(i/, 00) = .25}
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here v — 1 is the .75-percentile of a Cauchy(0,l) distribution. We show the
results (Table 4 and 5) for the data sets {x\ — 0, x<ι = 0) and (x\ — 2, x2 = 0).
Note that Πo (5|(0,0)) = .5 and Πo (5|(2,0)) = .804

TABLE 4. Posterior bounds for the four classes,
in the Cauchy example, when (#1,2:2) = (0,0).

Values of ε

II 0 . 1
infΓ(V,ε)
infΓ(Q0,ε)
infΓ(Quε)
infΓ(Q3,ε)
supΓ(Q3,ε)
supΓ(Quε)
supΓ(Q0,ε)
supΓ(V,ε)

.346

.409

.423

.450

.550

.577

.591

.653

0.2

.250

.333

.355

.400

.600

.645

.667

.750

0.3

.184

.269

.294

.350

.650

.706

.731

.816

0.4

.136

.214

.240

.300

.700

.760

.786

.864

0.5

.100

.166

.190

.250

.750

.810

.837

.900

0.6

.072

.125

.145

.200

.800

.855

.875

.928

0.7

.048

.088

.104

.150

.850

.896

.912

.952

0.8

.030

.055

.066

.100

.900

.934

.945

.970

0.9

.014

.026

.032

.050

.950

.968

.974

.986

1

0
0
0
0
1
1
1
1

Improvements in terms of posterior ranges through the classes are dramati-

cally more significant in this example, especially in the case {x\,X2) = (2,0)

(see Table 5). Note that, in this case, the posterior range has been reduced

even for ε = l .

TABLE 5. Posterior bounds for the four classes,
in the Cauchy example, when (#1,2:2) = (2,0).

II 0 . 1
infΓ(V,ε)
infΓ(Qo,ε)
infΓ(Quε)
infΓ(Q3,ε)
supΓ(Q3,ε)
supΓ(Quε)
supΓ(Q0,ε)
supΓ(V,ε)

.682

.738

.749

.760

.824

.856

.864

.895

0.2

.574

.670

.691

.710

.846

.892

.902

.934

0.3

.477

.598

.628

.664

.868

.918

.927

.955

Values
0.4

.389

.524

.560

.607

.888

.938

.946

.969

of ε
0.5

.309

.446

.486

.544

.908

.954

.960

.978

0.6

.236

.365

.406

.472

.926

.967

.972

.985

0.7

.169

.280

.318

.390

.944

.977

.981

.990

0.8

.108

.191

.222

.295

.961

.986

.988

.994

0.9

.052

.098

.117

.185

.978

.993

.994

.997

1

0
0
0

.117

.994
1
1
1

The reason of this phenomenon is relatively clear. If the indicator func-

tion of interest /β(0i,#2) does not depend (or weakly depends) on Θ2 and

the bulk of the likelihood function is contained in B, then the degree of

eϋcitation over θ\ becomes critical.

In other words, the role of the marginal priors can be more or less effective

according to:

• the shape of the set of interest B; typically, if B depends on one co-

ordinate only, then the marginal elicitation is important. This is not

the only case, however.
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• the relative weights of the likelihood function on B and B

• the shape of the marginals priors.

According to different combinations of the above scenarios the effect of
adding more prior constraints can be less or more dramatic. For example,
the use of a thin-tailed distribution like the Normal instead of a thick-tailed
one like a Cauchy (either as likelihood function or as marginal priors) can
sensibly modify the posterior ranges. For a thorough discussion of the tail
effects on reported inference see O'Hagan (1988). We analyze this aspect by
considering the following simple modifications of Example 2.

EXAMPLE 3. Suppose we observe a random variable {X±,X2) whose den-

sity function is either a bivariate normal N ((#i, 02), 2.19/2) or the product of

two Cauchy (0t , 1), i = 1,2, as in Example 2. Suppose further that the base

prior is either J7OΛΓ, a bivariate Normal distribution with vector mean zero

and covariance matrix 2.19I2 or ΠQC, the product of two standard Cauchy

distributions. In this example the value 2.19 for the normal variances is

chosen in order to match the quartiles of a standard Cauchy distribution

[Berger (1985),p.l95]. Assume that we observe (#i ,£ 2 ) = (2,0) and that we

are interested, as in Example 2, in the range of the posterior probability of

the set B = {(θuθ2) : θ1 > 0}.

We already discussed the case where both the marginal priors and the

likelihood function were Cauchy distributions (CC case). Now we compare

those results with the ones obtained by using the other 3 possible combi-

nations (CW, NC and TViV, respectively) of marginal priors and likelihood,

when the class of allowed contaminations is either QZN, when using 77OAΓ, or

Q3C, when using ΠQC

Q3N = {Q

and Q2(

V : Q has the same Q\-marginal as

= .25}

and

Q3C = {Q ς V : Q has the same Q\-marginal as Πoc

and Q 2 (-oo, -1) - Q 2 ( - l , 0) = Q2(0,1) = Q 2 ( l , +00) = .25}

TABLE 6. Posterior bounds when using Γ(Q3N,ε) with α normal likelihood.

II 0 . 1
infΓ(Q3N,ε)
supΓ(Q3N,ε)

.805

.847

0.2 j

.777

.859

0.3

.747

.873

Values

0.4

.706

.888

ofε
0.5

.659

.902

0.6

.608

.917

0.7

.532

.932

0.8

.450

.944

0.9

.328

.945

1

.322

.946
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TABLE 7. Posterior bounds when using Γ(Q3c,ε) with a normal likelihood.

II o.i
infΓ(Q3C,ε)
supΓ(Q3c,ε)

.774

.821

0.2

.742

.842

0.3

.705

.861

Values
0.4

.663

.881

ofε

0.5

.612

.900

0.6

.550

.919

0.7^

.472

.938

0.8

.393

.956

0.9

.249

.979

1

.078

.982

TABLE 8. Posterior bounds when using Γ(QsN,ε) with a Cauchy likelihood.

II o . i
infΓ(Q3N,ε) II .816
supΓ(Q3N,ε) || .848

0.2

.801

.863

0.3

.772

.879

Values
0.4

.742

.894

ofε

0.5

.705

.908

0.6

.651

.925

0.7

.591

.941

0.8

.498

.957

0.9

.330

.973

1

.112

.979

Both in the CN and in the CC cases the posterior probability of B under
the base prior is approximately equal to .801. From Table 7 and the 4th and
5th rows of Table 5 we see that the ranges in the CC case are larger than in
the CN case for small to moderate values of ε. That means that, as long as
the confidence on the base prior is strong, the results shows a behaviour sim-
ilar to that described in OΉagan (1988): the normal tails of the likelihood
dominate the Cauchy prior and the ranges are smaller. However, for ε — 1
the results are reversed: here the role of the prior assumptions is weaker and
the ranges are typically very large. Both in the NC and in the NN cases the
posterior probability of B under the base prior is approximately .83; from
Table 6 and Table 8 we see that the ranges in the NC case are shifted to the
right with respect to those obtained in the NN case and they are smaller
for ε < .9. Even in this case the relation is reversed when ε = 1.

We can summarize the results by saying that, given the same class of
priors, comparisons of ranges depend on ε. For small to moderate values
of ε the conflicts between prior and likelihood are resolved according to the
thickness of the tails. When ε gets large, the sizes of the classes of priors
become huge and the ranges are typically very large. On the other hand, it
is worthwhile to note that, given the same class of priors, the "conjugate"
analyses (CC and NN) provide larger ranges compared with the "non con-
jugate" analyses (CN and 7VC, respectively), for small to moderate values
of ε. It is also interesting to compare the ranges, given the same likelihood,
taking into account the different values of the base posterior probabilities of
5, (« .801 with a Cauchy prior and « .830 with a Normal prior). From this
point of view the use of Normal marginal priors sensibly reduces the ranges
for any values of ε. We did calculations also for larger values of xχi the
behaviour was consistent with the other results. When x\ gets larger and ε
is not too large the results reflect OΉagan conclusions even more closely.

6. Final remarks. The approximation of classes with given marginals,
illustrated here, could be improved, actually it should be complemented, by
monitoring the error. This aspect is particularly challenging in the general
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case, mainly when the parameter space is not compact. A guideline in this
direction could be to adopt strong quantiles assessments on the tails of the
marginal distribution of θ\, in. such a way that tightness could recover the
non compactness of the parameter space.

Also, it is important to stress that the approach described here depends
on the chosen partition of Θi, where the marginal distribution is actually
known. This information allows, and the authors are working in this direc-
tion, to choose an appropriate initial partition, and to drive the refinement
procedure taking into account the "degree of sensitivity" of the sets of the
partition. Details of this approach are in Liseo, Moreno and Salinetti (1996).

Acknowledgements. The authors are grateful to two anonymous refer-
ees for their helpful comments and suggestions. We are particularly indebted
to one of the referees for pointing out the importance of error and conver-
gence analyses for the approximation procedure.

APPENDIX

We now show that, for any fixed d, the sets {SΊ, £2, > Sn} form a partition
of 02- In fact, by construction, they are pairwise disjoint. Moreover, for any
2̂ G Θ2, there exists an index k such that θ2 £ S*. For, let θ2 £ Θ2 and

k = max < i : Φi(θ2) — ώ = min \φj(θ2) — dΛ > .
I ψty Δ) i<j<n ι r n Δ) JJ J

Then for j < k we have that ^j(02) - dj > ^(^2) - 4 , i.e. 02 G 5^.
For j > k we have φkiβ2) - dk < Φj(θ2) - dj, i.e. θ2 £ £fcj; it follows that

fcί ^ ) n (πsu+i ̂ ) = Λ.
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Bayesian Robustness for Classes of Bidimensional Priors
with Given Marginals

discussion by
SANDRA FORTINI

Universitά Bocconi, Milano.

Relevance of MPT, in solving variational problems, connected with ro-
bust Bayesian inference, was not fully explored yet, although its first sugges-
tion dates back to 1989; the present paper constitutes a step forward in this
direction, in that it gives approximate solutions to minimization problems,
over classes of bidimensional priors, based on a direct application of MPT.

My comments will focus on two points, namely the lack of accuracy in

the approximation which can occur in particular cases and the choice of

ε-contamination classes of priors in multivariate robustness analysis.

Lack of accuracy in particular cases. Suppose that the problem of finding
the range of some posterior quantity of interest reduces to that of minimizing

Φ(θ1,θ2)Q{dθ1dθ2),

over the class Q of the probability measures on Θ with specified marginals

Qι and Q2. The authors suggest approximating

(1) MQj φ(θ1,θ2)Q(dθ1dθ2)

by

inf I φ(θ1,θ2)Q(dθιdθ2),
£Q\ JQ£Q\

where Q\ is the class of the probability measures on Θ with Q\ as first
marginal and some quantiles of the second marginal fixed according to Q 2 .
It may happen (e.g. when φ is not bounded, as a function of θ2 and Θ is
not compact) that

inf / ψ(θuθ2)Q(dθxdθ2) = -oo

while

inf lψ(θuθ2)Q(dθ1dθ2)>-oo.

Although the use of numerical methods results in a finite bound for (1), the

accuracy of the approximation might be strongly compromised, in this case.

116
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The choice of ε-contamination classes of priors in multivariate rubust-
ness analysis. In problems involving vector valued parameters it is usually
difficult to assign the prior law, even when the opinion on the marginal dis-
tributions is quite precise. There can be practical situations where a specific
prior distribution τro is suggested by the knowledge of the connections be-
tween θι and Θ2, deriving from the empirical meaning of the parameters in
the concrete context. This typically occurs when, for some reasons, 0\ and
02 are thought to be independent. More often the idea on the way that
the different hypotheses on 0\ influence one's prior opinion on the law of θ2

is too vague to be translated into a precise mathematical form, so that it
would be arbitrary to fix one prior probability law and it is not clear how
this could be actually done. In this second case ε-contamination classes are
not appropriate and a different choice should be made. In particular, if the
class can be specified through generalized moment conditions, then the ap-
proximation method based on MPT can still be applied. As an example,
suppose that some information on the concordance of θ\ and 02 is available,
in addition to the marginal laws Q\ and Q2 of θ\ and 02. Typically, such
information can be expressed through the inequality

ci < C(Q) < c2,

where ci and c2 are real numbers and C{Q) = /k(0i,02)Q(d0id02) is a
concordance index, k being a quasi-monotone function (cfr. Cambanis et ai.
(1976), Tchen (1980)). In this situation

QQ = {Q £ Q : c\ < C(Q) < c2}

is a sensible choice for the class of prior distributions and, for any function

φ on Θ,

inf ίφ(θuθ2)Q(dθ1dθ2)
QeQc J

can be approximated by

inf / φ(θι,02)Q(dθ1 dθ2)

which, because of the linearity of C, can be obtained by a direct application

of MPT.
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Let us thank Sandra Fortini for her interesting discussion of the paper.
She emphasized two points. The first one is related to the accuracy of the
approximation we used and the second to the choice of the e-contamination
class of priors.

The approximation of the class Q with the class Q\ can certainly result
in an enlargement of the range of posterior quantities of interest up to the
extreme case where the inf over Q is finite and the inf over Qi is infinite,
compromising the accuracy of the approximation. This extreme fact could
actually be taken into account, for example, with an appropriate choice of
the quantiles on the tails of Θi However it seems to us that the major fact
to stress is that the class Q itself will typically give a vacuous posterior range
even when, as emphasized in our paper and in Walley (1985), the parameter
space is compact and the quantity of interest is bounded.

Different conclusions are obtained when Q is a contamination class: here,
with reasonable choices of £, robustness is achieved. It is true, however, that
the possible lack of robustness of Γ(Qi,6) will require more information on
Qι compatible with Q: not only quantiles but possibly shape constraints,
which could be suggested by the marginal Q\. This latter analysis is being
considered in Liseo, Moreno and Salinetti (1995).

In this direction, the information on the concordance structure, as sug-
gested by Fortini in the second part of her discussion is indeed interest-
ing; certainly it might be accessible from the experts; technically, it simply
requires to add one more linear constraint over the class Qι and, as the
discussant noticed, MPT still applies.

However it seems that this is not enough to alleviate the lack of robust-
ness of Q. Bayesian robustness reduces the elicitation effort indeed, but if
very weak information is processed (as Q does, even with the concordance
constraint), very weak (or vacuous) posterior answers will be obtained.

Thus, when confidence on the one dimensional marginals is assumed, it is
still necessary to elicit a base prior πo which matches the given marginals and
to allow a certain degree of uncertainty on any other features of the priors,
as the 6-contamination classes do. It is clear that if a given concordance or
covariance structure is deemed elicitable, then τro should be chosen according
this new input.
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