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Abstract

We demonstrate that even in the classical experimental sit-
uation of a linear model the performance of the experiment can
be improved by applying the concept of adaptive designs.

1. Introduction. In the classical theory of optimum designs in
linear models planning and inference are regarded as two separate suc-
cessive steps of an experiment. After a design has been fixed all ob-
servations will be collected and afterwards the information will be ex-
tracted from the outcomes of the experiments [see, for example, the
monographs of Bandemer (1977), Fedorov (1972), Pazman (1986), and
Silvey (1980)]. If in contrast the experiments are realized successively,
the information obtained from the outcomes of the first experiments
can be used to design the following ones. Such a scheme will be called
an adaptive design.

The aim of this paper is to propose adaptive designs for linear prob-
lems in linear models where the corresponding experiments result in
more information than could be obtained from the experiments accord-
ing to any predetermined design.

So far adaptive designs have been considered in the literature for
nonlinear situations because there the performance of the estimator and
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hence the quality of a design depend on the unknown parameters [for
a recent survey we refer to Ford, Titterington, and Kitsos (1989)].

We will demonstrate, however, that even in linear situations and
for a fixed number of experiments the performance can be improved by
applying the concept of adaptive designs. In the last section we deal
with a different problem where the adaptation is necessary because of a
lack of knowledge about the underlying variance-covariance structure of
the observations. This situation includes for example the well-known
Behrens-Fisher problem. Some attempts have been made to attack
these problems sequentially and asymptotic results have been obtained
[see, for example, Robbins, Simons, and Starr (1967)]. Here we present
a two-stage procedure based on an idea of Stein (1945); in the first
stage the variances are estimated, and in the second stage, allocation
is arranged according to these estimates.

2. Classical design of experiments in linear models. We will
start with the formal description of a linear model:

(2.1)

X{t) = Σ * i θi(ί)A + Z = a(t)'β + Z,

where t 6 T is the value of the controlled factors in the design region T,
a = ( θ i , . . . , aκ)

f : T —>R^ is the vector of known regression functions,
β = (βij ,βκ)f £ IR K is a vector of unknown parameters, X(t) is
the observation, and Z = Z(i) is some random noise.

A (deterministic) design d of size N is given by

(2.2)

According to (2.1) the nth observation in a designed experiment is

If we denote by Xd = ( X i ^ 1 * ) , . . . , XN(t(N)))' and Zd = ( Z 1 ; . . . , ZN)'
the vectors of observations and random noise, respectively, the whole
experimental situation can be written in matrix notation:
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(2.3)

+ Zd9

where Ad = ( α ( ί ( 1 ) ) , . . . , α(ί ( 7 V )))' is the design matrix.

EXAMPLE 2.1. (One-way layout) For K different groups, the
mean effects β\,..., βκ are of interest. The observed responses can be
modeled by X(t) = βt + Z, t G T = {1, . . . , K}. This formula fits in
the general model (2.1) with indicators α^(ί) = l{z}(ί) (equal to 1 if
t = i and zero otherwise) as regression functions.

EXAMPLE 2.2. (Linear regression.) The expected response is
linear in the real explanatory variable X(t) = βι+ βit + Z , ί G T C R
and the regression function α is given by a(t) = (l,ί) 7 .

In what follows, we will assume that the random errors Z i , . . . , ZN

are independent with zero mean and common finite variance σ2 > 0.
If the design matrix Ad has full column rank, then A!dA<ι is non-

singular and β can be estimated by the least squares estimator

(2.4)

βd = Ά ' '

which is known to be the best linear unbiased estimator for β. The
mean squared error matrix

(2.5)
E ( ( β d - β ) ( β d - β)1) = σ ^ 1

equals the covariance matrix of βd and is independent of β.
For comparing different designs d we will be interested in the mean

squared Euclidean distance of their resulting least squares estimators
βd from β:

(2.6)

E(\\βd - β() = E((βd - β)'{βd - β)) = trace (E((βd - β)(βd - β)%
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or, alternatively, in the maximal mean squared deviation

of the components β^i of βa from the corresponding components βi of
β. In view of (2.5),

E{\βd - β\) and maxi=1,...,κ E{(βd>i - A) 2)

are constant in β for any (deterministic) design d.

3. Adaptive designs. If experiments are made successively
we may allow the choice T^ of the explanatory variables for the nth
experiment to depend on the previous observations (and on the previous
choices of the explanatory variables). Hence

(3.1)

T(n) = / n

is a random variable which is completely determined by the history of
the experimental situation up to time (n — 1). As in (2.2), we define
an adaptive design D of size N by

(3.2)

where the T ( n ) satisfies (3.1).
We may replace d by D in the definitions of section 2 to obtain a

notation that can handle both fixed and adaptive designs. In particular,
the whole experimental situation can be expressed in matrix notation
as

(3-3)
= ADβ + ZD.

But now the design matrix AD = (a(T^),..., a(T^))' may be random
and may depend on the observations. This dependence has crucial
effects on the properties of the "least squares estimator"

279



(3.4)

βD =

which is defined in accordance with (2.4).
In general, β& is no longer unbiased nor is it linear in the observa-

tions. Moreover the mean squared error matrix E((βo — β)(βo — β)1)
is dependent on /?, which implies that

is no longer constant in β. The results of the following sections will
justify the use of βD.

4. Local results. We investigate the situation where different
deterministic designs of size N exist for which the minimum of

is attained. This happens for example in the one-way layout if N is not
a multiple of the number K of groups and in the linear regression if N
is odd. We are now looking for a rule based on the outcomes of the
experiments already made which helps us to decide which one of this
equivalent designs to pick.

We begin with an initial deterministic design dw-i = (t^\..., ί^"1^)
of size (ΛΓ — 1) such that for any ί in a subset T* C T the designs
d(t) = ( ί ( 1 ) , . . . , ί^" 1), t) minimize

E{\βd-β2\)

within the class of all deterministic designs. The explanatory variable
T^ for the last experiment will be chosen adaptively out of T*. We
thus consider an adaptive design

(4.1)

By the Theorem in Schwabe (1990), we obtain for the present case:

THEOREM 4.1. Let dN-\ = (ί ( 1 ),. . . ,ΐ(JV~1)) be a deterministic
design such that ^ d ^ j AίN-i ^s regular and for allt E T* C T let

Al) α(ί)Ό(ί)=ci,
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for some C\ and c<ι. Then

is minimized within the class of all adaptive designs

with T(N) taking values in T* ifT^ satisfies

(4.2)

lαCTWyCft^ -β)\ = max t 6 T. ^'0^ - β)\.

This rule can be simply stated as

Choose for T^ that point in the design region (restricted to T*)
for which the predicted value a(t) βdN_1 of the response function differs
most from the true value a(t)'β.

In particular, if the number N of observations is small, the gain in
the efficiency for the whole experiment is quite large using the procedure
(4.2). Explicit formulae for the efficiency in the one-way layout are
given in Schwabe (1991).

5. Global results. The rule proposed in the previous section has
the main disadvantage that it depends on the unknown (!) parameter
β (similar to the locally optimum designs in nonlinear settings). We
may get around this problem by replacing the unknown parameter β
with an initial guess β^ which has to be fixed before the experiments
start. This means that the rule (4.2) is modified so that T^ is selected
according to

(5.1)

which can be paraphrased as:

Choose for T^ that point in the design region (restricted to T*)
for which the predicted value α(ί) / ^ i V _ 1 of the response function differs
most from the initial guess a(t)fβ(°\
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If the random noise Zn is symmetrically distributed it has been
shown by Schwabe (1991) that for the examples under consideration
the rule (5.1) results in an estimator βr>(τ(N)) which gives a smaller
value of the criterion function

E(\\βD-β()

than for an optimum deterministic design of size N uniformly in β.

EXAMPLE 5.1. (One-way layout.) lΐN-I = MK is & multiple
of the number of groups K we are able to allocate an equal number M
of experiments to each group in the initial design rf^-i- Then T* = T
and according to (4.2) we have to perform the last experiment in that
group for which the estimated mean βdN-lft differs most from the initial
guess β[0).

THEOREM 5.1 IfT^ is chosen according to (5.1) in the setting
of Example 5.1, and if the random errors are independent and identi-
cally distributed according to a symmetric distribution, then

Additionally, strict inequality holds for Gaussian random noise.
Similar results can be obtained for Example 2.2 [see Schwabe (1987)].
Unfortunately, these positive results are restricted to the situation in
which only the last observation is chosen according to the adaptive
rule (5.1). If more than one observation will be determined adaptively,
the local behaviour can be improved for β^ close to the true value β.
However, globally the performance will become much worse than for a
deterministic optimal design if

\\β(0) - β\

is large. For an example we refer to the simulation results of Gebhardt
and Heckendorff (1983).

6. Testing. While the choice of the initial guess β^ in estimation
problems seems to be rather arbitrary there is a natural choice in test
situations. Because the shrinkage effect of βr>(τ(N)) i n the direction of

282



is most evident for β^ = β, the initial guess should be chosen from
the null-hypothesis. In particular, if we want to test the hypothesis
β = β0 against the alternative β φ βo then set β^ = β0.

We illustrate this procedure using the example of the one-way layout
with observations from two groups because it is the most simple, and
also the most elucidating, non-trivial design problem [see, for instance,
Kiefer (1958)]. To keep the situation as easy as possible we look at
three observations. Without loss of generality, we may set ί^ = 1
and ί̂ 2) = 2 to ensure estimability. Additionally, there is no restriction
in assuming βo = 0. According to (5.1), the allocation of the third
observation can now be chosen adaptively: Γ ^ = 1 if |Xi( l) | > |

The interpretation of the allocation rule is self-evident: we are going
to make the next observation in that group where the largest deviation
from the hypothesis null β = βo occurs. If we assume independent
identically distributed Gaussian noise with known variance σ2 = 1,
then it is possible to determine the conditional and unconditional den-
sities of the distribution of β = βD(jiN)y The adaptive analysis of the
observations is based on conditional "χ2-statistics"

(6.1)

Since the unconditional distribution of β is symmetric under the hy-
pothesis one can consider alternatively the unconditional "χ2-statistics":

Both statistics do not follow a χ2-distribution (even not conditionally)
and the distributions cannot be given in closed form. Hence the critical
values and the power have to be calculated by means of numerical
integration on the basis of the conditional densities /gjT(3)=i

In Figure 1 we show the computed power of both tests with level a =
0.05 compared to the power of a χ2-test based on the usual randomized
design where the allocation of T^ is made with equal probability 1/2
independent of the observations. Similar pictures arise for a = 0.10.
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FIGURE 1: Power of 51 (—) and S2(—) compared to a χ2-test based on a
randomized design( ); a) β\ > 0, βη> = 0; b) β\ = β*ι > 0.

We notice that the conditional test based on the adaptive design (6.1)
is reasonably more powerful than the unconditional one (6.2) which is
still better than the χ2-test based on the randomized design.

7. Two-stage procedures. For the example of a one-way layout
with possibly different variances we indicate a two-stage approach. Let
Xij be the j-th observation in group i = 1,..., K and assume that
all observations are independent and that all the observation within a
group are identically distributed according to a Gaussian law with mean
βi and variance σ\ respectively. Our objective is to estimate βι,..
by the means

where Ni is the number of experiments in the ith group. To measure the
quality of our estimates, we consider again the mean squared Euclidean
distance

and alternatively, the maximal variance

If the total number N of experiments is fixed then

t - Pi) )
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is minimized if the numbers Ni of observations are proportional to the

standard deviations σ;, i.e.

In this case,

= Σ af

Alternatively, if iVi is proportional to σ2, i.e.

then the maximal variance is minimized and attains the value

βi - A)2) = 2 * ?

However, in general, the relative magnitude of the variances σ2 is
unknown such that the optimum allocation schemes cannot be con-
structed.

Let us now turn from the fixed sample size problem to the alterna-
tive design problem of a given prescribed accuracy, i.e. a prespecified
upper bound for

2^i=l^\\Pi — Pi) )

and for

In the case of a totally known variance structure, the solutions to these
design problems are proportional to the fixed sample size situation.
But already in the classical case of an unknown scaling factor σ2 a
prespecified accuracy cannot be attained by an experiment based on
a deterministic design. For sampling from one group, Stein's (1945)
two-stage procedure shows a way out of this problem. We will make
use of this idea for sampling from K groups in a one-way layout:

We start with a preliminary sample X^,..., X^No of equal size iVo >
2 in each group i = 1,. . . , K. The choice of an initial equal allocation
rule can be justified by the fact that it is minimax over all possible
combinations of variances σ\,..., σ2

κ with respect to relative efficiency
[for a more detailed description in a similar situation we refer to Page
(1990)]. Then we can estimate σ\ by the empirical variances

rτ2 — ^ΓN° (Y
σ i — jy _ Ύ 2-sj=i\Λιj — —
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and substitute σf for σ\ into the allocation rules.
In particular, for the design criterion of achieving a value of the

mean squared error

Σf=i

which is smaller than a prespecified bound, the sample sizes Ni are
determined according to

(7.1)
Ni = max([σi(σi + + σκ)/z] + 1,NO),

where [x] denotes the largest integer less than x and where z has to be
specified appropriately to guarantee the accuracy desired (see below).
Then

is an unbiased estimator of βi and Ni/Nk « &i/dk- When Ni is chosen
according to (7.1),

Σ £ i Varφi) < z(N0 - 1)2/(NO - 3)2,

and with an appropriate z, any prespecified accuracy can be achieved.
For the maximum-variance criterion

(7.2)

which ensures Ni/Nk w 5?/σ|. In this case,

φi) < z(N0 - 1)/(NO - 3)

and the accuracy can be predetermined by the choice of z.
As could be expected the equal allocation rule for obtaining the

same accuracy will result in a larger expected total number of observa-
tions. For example in case of the maximum-variance criterion the equal
allocation rule requires

^i,...,* σ2jz] + 1, No)

for attaining the same accuracy. In this situation the relative efficiency
with respect to the expected sample size

βf)
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Similar results can be obtained for the Behrens-Fisher problem of com-
paring the means of two populations with possible different variances
[see, for example, Schwabe (1993) and additional references given therein].
In case of multivariate observations it would be interesting to develop
analogous results based on the two-stage procedures proposed by Healy
(1956), Chatterjee (1959), and Dudewicz, Hyakutake and Taneja (1991).
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