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Procedures are developed and implemented for computing general saddlepoint approxima-
tions for statistics defined by estimating equations and functions of these. Our approach
is based on the fact that such statistics can be approximated as finite linear combinations
of products of centered, normalized averages, and that cumulants of such approximants
may be evaluated to any desired accuracy. The resulting approximations are useful in a
wide variety of applications and may be computed using computer algebra routines. The
application of these procedures to replace bootstrap sampling (in the case when the under-
lying distribution is an empirical cdf) is discussed. Mathematica code implementing these
procedures is available at: http: //www. utstat. utoronto. ca/david/expand. dist.nb

1. Introduction

This paper is concerned with the development and implementation of gen-
eral saddlepoint approximations to the distributions of statistics belonging
to a broad class, namely those which may be represented as smooth func-
tions of M-estimators of identically and independently distributed variables
leading to empirical versions related to bootstrap distributions. This work
follows the earlier developments of Young and Daniels (1991) and DiCic-
cio, Martin and Young (1992a,b). Symbolic and numerical implementation
of the procedures is carried out using Mathematica (Wolfram, 1988) and is
based on some extensions of the general saddlepoint approximation method
of Easton and Ronchetti (1986). See also Barndorίf-Nielsen and Cox (1989),
Wang (1992), Jing, Feuerverger and Robinson (1994) and Hu and Kalbfleisch
(2000). Our approach relies fundamentally on the fact that, in general, such
statistics can be approximated arbitrarily well as finite linear combinations
(of a certain form) of products of centered, normalized averages, and that in
turn, the cumulants of such approximants are straightforward to evaluate to
any desired accuracy.

In Sections 2-4, the main methodological and computational details are
presented. Specifically, in Section 2 it is shown firstly that a single M-
estimator may be approximated in the form (2.9)-(2.10) and consequently
that any smooth function of M-estimators may be approximated as in (2.13)-
(2.15). We then consider a typical approximation (2.14) of this type and
in Section 3 discuss how its cumulant structure may be estimated to any
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accuracy. These approximate cumulants are then used, in Section 4, as input
to the general saddlepoint approximation (4.1)-(4.2) and its extensions; it
turns out that only the first four cumulants are needed to achieve absolute
error of the required accuracies.

In Section 5 we show how these methods can be adapted to handle
the bootstrap distribution context, when the underlying distribution is not
known. This involves replacing the unknown distribution function of the data
by the empirical distribution when evaluating the cumulant expansions, and
making an appropriate pivotal adjustment for the statistic of interest. Fi-
nally in Section 6 some typical applications of our algorithms are illustrated;
specifically, we obtain the distributions associated with the t-like statistics
formed from location and scale M-estimates based on MLE's of the Gaussian
and Cauchy families under various distributional assumptions.

It is a key point of this paper that all of the methods described here are
easily implemented for machine computation, and in fact depend primarily
on only two key symbolic routines—one for computing expansions of gen-
eral cumulants for smooth statistics, and one for computing expansions of
roots of smooth functions. This has been carried out in Mathematica. In
particular, it turns out that the computations for any particular problem
require specification only of the functions defining the M-estimates and of
the function defining the statistic of interest which is formed from these.
Consequently our routines are extremely simple to apply to a wide range of
statistics and underlying distributions. The Mathematica code is available
at: http://www.utstat.utoronto.ca/david/expand.dist.nb

2. An approximation for functions of M-estimators

Suppose that XL,X2? ,Xn are iid from some distribution indexed by #,
with #o being the assumed true value, and consider first a single M-estimator
θ assumed to be the solution of the equation

(2.1) φn(θ) = ^
2 = 1

Denoting expectation with respect to θo by £Ό, we shall require that

(2.2) Eoψ(X,θo) = 0

and

in order that θ be y/n-consistent for #o (See, for example, Huber, 1977.)
We wish to develop a particular sequence of increasingly accurate approx-
imations to the root θ of the equation (2.1). To this end, we carry out a
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Taylor expansion of (2.1) up to fcth order:

k (0 - ft \j
(2.3) φn(θ) = ^2^—y^'

3=0 J'

which may also be written as

AC / s\ s\ \ A

3=1 3' 3=0

Ψn(θ) — / ~.—EOΦ^UX^ΘQ) + y — h Rb+i

where

(2.5) Zn(θ) = V^ [^ Σ{ψ(Xi,θ) - Eθψ(X,

and

(2.6)

Here the superscripts (j) on ψ represent differentiation with respect to θ,
and we have omitted the j = 0 term in the first sum of (2.4) in view of (2.2).
The remainder term appearing in (2.3) and (2.4) may be given as

for some 0* between θ and #o> and it is of the order indicated whenever

(9* = Θv + Op{n-1'2) provided only that ψ(k+ι\X,θ) is uniformly integrable

in a neighbourhood of #o F° r the development to follow, it is important

to note that the terms Zn (#o) appearing in (2.4) are normalized, centered

averages and hence are of precise order Op(l) provided E\φ^\2 < oo; i.e.,

they are of order Op (I) and are not of any lower order. (For a more exact

definition, see Hall, 1992, pp. xii-xiii.)

We now describe the particular sequence of approximate roots to (2.1)

which we require. Firstly, setting (2.4) equal to 0 and using k = 1 leads to

(2.7) (θ - θ0) • E0ψ'(X, ΘQ) + ^ ^ ^ ^

and then (upon ignoring the third and fourth terms here) to our first ap-

proximate root θ\ which we shall write as
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where

(o Q\ x —Zn(θp)
(2.8) do = F ,,(χ - v

Note that δo is an average (and therefore depends upon n) and is Op(l)
exactly. Further, since the M-estimator θ satisfies (2.7)— with the third
and fourth terms of (2.7) then being Op{n~ι)—and because (0χ — 0o)
EQΨ'(X, ΘQ) + Zn(θo)/\fn = 0we have (upon equating) that (0 — 0Q) EQΨ' +
Opin'1) = (0i - 0O) Eoψ' and therefore that θλ - θ = OP(n-1).

Now our sequence of approximate roots θι will be constructed inductively
to have the form

(2.9)
n

for Z = 1,2,..., where the δ^s are Op(l), depend upon n but not upon /,
and §ι — θ = Op(n~( / + 1)/ 2). Further each ^ will have the special form

(2.10)

i.e., a linear combination of products of exactly i + 1 normalized, centered

averages Zj of the type (2.5) and (2.6). Thus suppose that 0/ has been

determined and that we seek 0j+i. Then again setting (2.4) equal to 0, but

this time with k = I + 1 and 0 = 0/+i = 0/ + δi/n^1^2 we are led to

(2.11) d^

w ) t

where the Op(n (z+2)/2) term shown within the braces arose upon replacing
0/+i's with 0/'s in the j > 1 terms of both sums there. Note also that the two
sums within the braces then total to Op(n~( / + 1)/2) by virtue of the previous
iteration. Therefore, if we define

f
we will have δι = OP(1) and also θι+1 = 0, + δι/nι+1 = θ + O P (n-( / + 2 )/ 2 ) .
Note also from (2.8) and (2.12) that the δ^s, as defined here, will be linear
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combinations of products of i + 1 centered, normalized averages as in (2.10).
The above procedure is a symbolic analogue of a quasi Newton-Raphson
iteration; see Andrews and Stafford (1993, 2000).

Next suppose that we have a multivariate M-estimator whose components
0 1,..., θk, correspond to parameters 0 1,..., θk with true values 0Q, , ΘQ ,
and that this multivariate M-estimator is based on the ^-functions ψι =
ψi(Xi,θ\ ,0*), , φ k = φk(Xΰθ\ . . . , θ k ) . The methods of the previ-
ous paragraph extend directly to allow us to write each & in the form (2.9),
(2.10) where any of the terms Zj's appearing in (2.10) can now be any of the
terms (2.5), (2.6) corresponding to any of the ^-functions ψ\,... ,φk- Now
suppose further that we are interested in some smooth function, say #, of
these M-estimators. (By 'smooth' we mean that g has the number of deriva-
tives required for the expansion in equation (2.13) below to hold.) We shall
view g = g(θι,..., θk) as being the statistic of interest, and g = #(#Q, . . . , ΘQ)
as the quantity of inferential interest. Then by substituting approxima-
tions which are the vector analogues of (2.9) (for each component of the
M-estimator) into a straightforward Taylor expansion for g we are led to the
fact that

(2.13)

where

(2.14)
" « - ' " • n l/2 ' n ' ' ni/2

and the 7 '̂s are each Op(l) linear combinations of products of i +1 centered,
normalized averages as in (2.10):

(2.15) Ίi =
3=1

In this way we are led to consider the members of the sequence of truncated
expansions v\ as approximants to the quantity y/n (g — g). Further, the
distributions of the approximants v\ will themselves be approximated (in
Section 3) by means of general saddlepoint approximations.

Of course the Op(n~~^+1)/2) error term introduced when using (2.14)
to approximate y/n (g — g) will affect the order of approximation to the
distribution functions and their densities. To consider the relevant technical
issues, suppose Un = Vn + en. If en —> 0 in probability to some order, then
the cdf's of Vn will approximate those of Un absolutely and uniformly to the
same order provided the cdf's of Vn converge to a continuous cdf. This simple
result does not automatically carry over to density functions. However, if
for some a > 0 the (yn,n

a en)'s have densities which converge uniformly
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to a continuous bivariate density, then the densities of Vn may be used as
uniform approximants of order O(n~~a) to those of Un. Such conditions (and
their variants) are not very convenient to deal with, although clearly they
may often be expected to hold under the smoothness typical in situations of
practical interest. In any case, it should be noted that it is tail areas—and
therefore distribution functions—that are generally of greatest interest in
most applications.

3. Cumulant structure of the approximations.

To apply the general saddlepoint approximation methods of Section 4 to
statistics v\ of the form (2.14), it will be necessary to consider how their
cumulants may be evaluated, and how the number / of terms appearing
in (2.14) should be selected. Now in evaluating the fcth order cumulant
cum(z//, ••• ,i/|), we first make the substitutions (2.14) and (2.15) and apply
linearity; this leads to an expression of the form

n~m/2 Σ d j
m=k j

where each of the Y's here is a product of Z's arising from (2.15), and the
overall number of such Z's within the cumulant shown in (3.1) totals to m.
Following McCullagh (1987, Section 3.1), we refer to m as the degree and
to k as the order of this cumulant. In (3.1) note that the index m of the
first sum ranges over the degree, i.e., over the total number of Z's appearing
within the component cumulant shown there, and the second sum results
upon collecting those terms which are of degree m. Next observe that if the
λ th order cumulant of degree m shown in (3.1) is decomposed into sums of
products of ordinary cumulants of Z's in the usual way (as in McCullagh,
Section 3.2) then the sum of the orders of the ordinary cumulants in any such
product is always ra. Further, by standard arguments, any such ordinary
cumulant of Z's having order r can be seen to be O(n~(r~2^2), except of
course the order r = 1 cumulants, which will be zero. This is based on
the fact that our Z's are normalized averages of variables and assumes that
these variables possess the required number of cumulants, a condition which
is easily checked in any particular application. (Recall that our Z's derive
ultimately from (2.5) and (2.6).) Using such arguments, it may be seen
that to obtain the first cumulant of the approximating statistics (2.14) of
interest correct to some order Op(n~c/2) say, only requires that we maintain
the terms up to / = c in the approximation (2.14). Similarly, to obtain like
accuracy of the second cumulant also requires I = c, while for like accuracy
of the third and fourth cumulants will require I — c — 1 and I = c — 2
respectively. In particular, using v*ι, i.e., I = 2, allows us to obtain the first
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four cumulants correct to orders Op{n~1)^ and at this level of accuracy, these
evaluations would not change if we were to use υ\ with I > 2.

Some further results on the nature of the cumulants for statistics of the
form (2.14) will in fact be required. In this regard, we refer to Theorem 2.1
of Hall (1992) and its proof. Our statistics v\ are analogous to Hall's J7nr's,
except that the J7nr's are built up from a finite number of averages, while the
ι//'s are based not only on the ψj's but also on their derivatives, with the Ith
term in υ\ including terms up to the Zth derivative of the φj's. Nevertheless,
the method of Hall's proof remains applicable and, letting kj^n/n^~2^2 here
denote the j t h cumulant of z//, we are led to obtain the expansions

(3.2)

provided j > 1, where the Cjj are constants which are sums of products of
ordinary cumulants. For j = 1 the result is

n 1 /9 / c l 2 c l 3

( 3 3 ) ΓTT^ = n ' ci-i + -Γ- + T Γ +

Our notation here was selected to emphasize the typical orders of magnitude
of the cumulants of the vι, and the defined quantities k\iU, ^2^5 &3,n> &4,n>
etc., will all be 0(1) in n when the required cumulants exist. Note that the
values of the Cj^ depend upon /, but become constant for I > j . Note also
that for standardized statistics, we will have c\^ — 0 for % > 1, and C2,i = 1,
C24 — 0 for i > 1. Consider then the quantity v\ where I is considered now
to be fixed. Then as a consequence of the foregoing, we may write

(3.4) h 2lA

(3.5) cum(z/j, v\) = k2,n = c2,i + — + O(n~2)
ft

(3.6) cum(^, vu n) = ^ CM

(3.7) cumfa, n,n,n) = ^ = ^ +0(n" 2 ) .

Note that kιiTl/y/n is the bias in 5 viewed as an estimator of g. The relations

(3.4)-(3.7) will prove useful below.

4. General saddlepoint approximations

Now the general saddlepoint approximations that we make use of extend the
one of Easton and Ronchetti (1986) whose approximation may be deduced
formally from the usual saddlepoint approximation for X in a simple way.
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In fact by an obvious substitution of R(t/n)/n for the cumulant generating
function (and a variable change nt —> t) we obtain the following form of
a saddlepoint approximation for the density function of a general statistic
Y = Yn ~ Yn(Xι,..., Xn) based on an iid sample X\,..., Xn from some
density /:

/ 1 \i/2

(4.1) Mυ) ~ {^B^ήJ ' e x p [ m ~ty]

where the saddlepoint t is defined by

(4.2) R'(t) = y

and R(t) is the cumulant generating function of Y. For some general back-
ground, see for example Reid (1988) or Section 3.3 of Field and Ronchetti
(1990). Easton and Ronchetti (1986) give general conditions which ensure
that (4.1) will have uniform error of order O(n~1) when R(t) is suitably ap-
proximated; these conditions only require that Y possess a valid Edgeworth
expansion of the required order. Although this uniform approximation error
is absolute and not relative, we have found that in many situations these gen-
eral saddlepoint approximations are more accurate than the corresponding
Edgeworth expansions, likely because these saddlepoint approximations are
density-like objects; a similar finding was reported by Easton and Ronchetti.
See also Wang (1992). For some details concerning the nature of the er-
ror in Edgeworth approximation, see, for example, Theorem 2.2 of Field
and Ronchetti (1990) and Theorem 2.2 of Hall (1992) and references cited
therein.

For statistics of the form (2.14), it should be noted that the method
of Easton and Ronchetti may be readily extended to include the usual
1 + O(n~ι) correction factor to the saddlepoint approximation thus giving
an (absolute) approximation which is in fact correct to O(n~ι). The tech-
nical argument for this relies fundamentally on the nature of the cumulant
expansion (3.2) for the statistics v\ and the results that follow from this con-
cerning validity of the higher order Edgeworth expansions, as in Hall (1992,
Sections 2.3 and 2.4). With valid Edgeworth expansions thus established,
one may then argue as in Easton and Ronchetti, to conclude that if the
saddlepoint approximation (4.1) is multiplied by the first correction factor

I [ I f R{4)(t) ) 5 f R?"(t) Ί 2 1
O I 1 1 V / I J ^/TΓ I i t I 1/) \ ' I I

then the resulting approximation is improved so that the true density of Y
now equals

(4.4)
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(This correction factor is cited, for example, in Field and Ronchetti (1990).)
Further, when R(t) is not available (or does not exist) it may be replaced by
a polynomial involving the first four cumulants only—and this is sufficient
even in (4.3) for (4.4) to hold, provided y is restricted to lie within a nor-
mal range \y — EY\ < c/y/n. In fact these four cumulants may themselves
be estimated, and need only be accurate up to and including the O(n~1)
terms in order for (4.4) to hold in that range. (Analogous extensions of
these results which incorporate higher order correction factors, can also be
established in this way.) Alternatively, note that such results may be es-
tablished directly through term by term comparison of expansions of the
Edgeworth and saddlepoint approximations; this stems ultimately from the
fact that the saddlepoint approximation can be related to the Edgeworth
via tilting. These results will then hold for statistics of the form v\ provided
only that all moments (of the ^-functions and their derivatives) required for
the Edgeworth expansion to be valid exist.

Now using the notation of (3.2)—where the cumulants of Y are given by
fa,n/Vή, k2,n, fo^n/y/ή, k^n/n,..., we have

(4.5) Λ (t) t + fc+ +.t + fc2|fl.+ . + . +

so that the saddlepoint equation (4.2) then becomes

t2 t3 fci
(4.6) k2,n t + fc3,n TΓ + h,n ' T + ' ' ' = V ~ -ψ

2 Ό

and this may be solved iteratively for t in the manner of (2.12) to yield an
expression of the form (2.9) for t correct to any desired order. From (4.6)
and the fact that y is restricted to the normal range we see that t will have
order O(n~1^2) and therefore the first correction factor to the saddlepoint
approximation may be taken as

which has full O(n~ι) absolute accuracy. (Here the c^i are as in (3.2).) With
this correction factor, the general saddlepoint approximation discussed here
will typically be accurate to within O(n~3/2) uniformly on finite intervals of
the normal range. (For unrestricted uniform and absolute convergence, the
polynomial approximation to R(t) must be adjusted; see, for example, Wang
(1992).) Note that to take advantage of this level of accuracy requires that
the O(n~ι) term in y/n t be estimated correctly, and that v\ of equation
(2.14) be used with / > 2.
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5. The bootstrap application

Suppose now that the underlying distribution of the X's is not known, so

that the cumulants involving the Zn (#o)'s of (2.5), (2.6) cannot be evaluated

either analytically or numerically—a situation in which bootstrap Monte

Carlo would be entertained. In that case the "normalized" cumulant quanti-

ties fcijn, fc27n5 &3,n5 &4,n of (4.5) and (3.2) may be estimated empirically from

our sample to the usual Op{n~1/2) statistical accuracy by means of replac-

ing theoretical (i.e., population) moments in expansions of the cumulants by

their corresponding sample averages. Substitution of these empirical cumu-

lants directly into (4.1) is then seen to lead to an approximation having error

Op(n~1^2). This, of course, is not of sufficient accuracy to take advantage

of the saddlepoint approximation method.

In fact, in view of (3.4)-(3.7), an examination of (4.1), (4.2), (4.5) and

(4.7) reveals that for any fixed y, the second order saddlepoint approximation

fγ(y) = fγ(y) 7/i to a statistic of the type Y = v\ has the form

(5.1) fγ{y) = fγ(y)'m = h[ — ^ , c 2 , i , — , - 7 = , —

where h is a differentiate function. This computable function has an empir-
ical version:

ίKOΛ Tί \ * ( \ uί^lA - 32,2 C3I

(5-2) My) = Mv) • m - \ ^

in which the quantities θi^, £2,1, £2,2, £3,1, £4,1 are obtained from the same
expansions as those for ci?i, C2,i, C2,2> ̂ i , C45i, but by replacing the ordinary
cumulants appearing in these expansions by their empirical versions, each of
which have the usual Op(n~1^2) statistical error of estimation. It therefore
follows that

(5.3) h(y)-~My) = θp{n-1'2)

as was asserted.

On the other hand, suppose it were known that ci?i = 0 and C2,i = 1,
i.e., that

(5.4) knΛ = O(n~ι)

(5.5) *Vι,2 = l + O(n- 1 )

and suppose that these known values of 0 and 1 were used in place of θi;i
and Q2,i in (5.2). In that case we would clearly have

(5.6)



Saddlepoint Approximation for M-Estimates 327

Further, note that if the distribution of g was approximately symmetric so
that cs:ι = 0, i.e., ks = O(n~1) then the resulting error would be only
Op(n~3/2). The conditions (5.4) and (5.5) however may be attained, and
to achieve this we need only apply the saddlepoint approximations to our
statistic after it has been studentized to an adequate degree of approxima-
tion:

(5.7) m - ^

This result should be compared to the usual bootstrap result which states
that the sampling distribution of a quantity such as (Θ — Θ)/SQ differs from its
bootstrap distribution by Op(n~1). Note that in our case, the denominator
term C2,i has an explicitly specified form, while the centering term ci^/yjn
in our numerator automatically incorporates a bias correction; this may be
expected to result in a statistic which can be approximated more precisely
by its bootstrap analogue (i.e., by the plug-in estimate) than would be the
case in the ordinary bootstrap context.

6. A numerical example

As an example of the application of the methods that have been discussed
in this paper, in this section we show how they may be used to approximate
the distributions of the t-like statistics associated with two different location-
scale M-estimators—namely those arising from the MLE's in the Gaussian
and in the Cauchy location-scale families. Thus let μ and σ respectively
represent the location and scale parameters associated with a random vari-
able X and μ and σ be the corresponding M-estimators. The parameters
are considered as being defined via the functions ψi(Y) and ^ Q O J where
Y — {X — μ)/σ, by the equations E[ψi(Y)] = 0, while the estimates based
on a sample {XJ} are defined by the equations Avg[ψi(yj)} = 0 , i = 1,2,
where yj = (XJ — μ)/σ. Specifically, in the Gaussian case we use:

Ψ2{y) = y2 -

while in the Cauchy case we use:

For use in inference concerning the hypothesis μ = 0, the t-like statistic
associated with μ and σ is defined as T = n1//2μ/σ.
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The expansions for T involve expected values of the ψi(Y) and their
derivatives. If X is a random variable with a given density function, these ex-
pectations may be evaluated directly by one-dimensional, numerical, integra-
tion. If X arises from a discrete empirical cdf, the expectations are obtained
as averages involving the ψi(yj) and their derivatives where ίjj = (XJ — μ)/σ.

Now let T* denote the version of T that has been studentized in the
manner of (5.7). The approximate cumulants of T* were computed simply
using the approximate relation

Kτ .(μ) = KT(
^Var(Γ)

E(T) u

Var(Γ)
1/2

which is derived by a straightforward differential argument.
We considered three cases: the Gaussian MLE's with Gaussian data,

and the Cauchy MLE's with both Gaussian and Cauchy data. For each of
these cases the general saddlepoint approximation to the density—including
the correction factor (4.7)—was calculated for x = ±1,±2. The value 2
corresponds approximately to the 2% point of the distributions. Also, a
random sample of size n — 40 was generated for each of the three cases
considered, and used to approximate the ordinary cumulants, as in Section 5.

Table 1 summarizes the case of the Gaussian MLE with Gaussian data.
The t-like statistic based on the Gaussian MLE is just ((n — l^/n)1/2 times
the usual t-statistic; hence the known t-distribution was used to compute
the density of T* to assess the adequacy of the approximation here. The
table also gives the results of the general saddlepoint approximation and the
(left and right tail) bootstrap saddlepoint density approximations from the
sample of size n = 40.

Table 2 concerns the Cauchy MLE with Cauchy distributed data. Here,
in order to assess the adequacy of the approximation, the exact density of
the X* was approximated by a saddlepoint approximation. The cumulants of
T* for this approximation were estimated by means of a simple Monte Carlo
of size 10,000. The errors from this saddlepoint approximation and compu-
tation of the moments are negligible compared with the variation resulting
from the sample of size 40.

Table 1. Gaussian MLE, Gaussian Distribution

Exact
Density
0.4070
0.2387
0.0522

General
SP App
0.4064
0.2392
0.0533

Bootstrap SP
Left
0.4081

0.2337

0.0555

Right

0.4081

0.2439

0.0509
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Table 2. Cauchy MLE, Cauchy Distribution

Estimated
Density
0.2457
0.0463

General
SP App
0.2427
0.0545

Bootstrap SP
Left
0.2450
0.0453

Right
0.2219
0.0690

Table 3. Cauchy MLE, Gaussian Distribution

Estimated
Density
0.2349

0.0487

General
SP App
0.2374
0.0539

Bootstrap SP
Left
0.2378
0.0068

Right
0.1876
0.0798

Finally, Table 3 summarizes the case of the Cauchy MLE under Gaussian
data. The exact density and distribution of the Γ* statistic were estimated
by simple Monte Carlo of size 10,000.

The results of Tables 1-3 show that the general saddlepoint approxima-
tion based on approximated and estimated cumulants for sample size n = 40
is exceedingly good for the Gaussian MLE and Gaussian distribution. For
the Cauchy MLE and Cauchy distribution, the approximation has a useful
accuracy for approximating p-values where typically less than one signifi-
cant digit is required. (Real experiments—at least those involving human
subjects—typically involve experimental biases of sampling and observation
at least of this order.) The case of the Cauchy MLE and Gaussian data
was selected here because it is known to be a more difficult approximation
problem. (In this case the mismatch between the M-estimator and data dis-
tribution leads to an inherent inefficiency—in the Fisher sense—and hence
to a lower effective sample size.) Here the approximation is at the edge of
usefulness for this sample size. For this case, the estimation of third and
fourth order cumulants is imprecise and larger samples sizes are required.

The saddlepoint approach for the estimation of densities may be paral-
leled for the estimation of tail areas. The Lugannani and Rice (1980) formula
may be used with approximated and estimated cumulants replacing exact cu-
mulants. The similarity in the order of accuracy of the saddlepoint density
approximation and Lugannani-Rice formulae for exact cumulants and the
known connection between these approximations (see, for example, Daniels,
1987) suggest that similar absolute precision will be achieved for approxi-
mated cumulants. Likewise, the methods of this paper may be adapted to
implement saddlepoint approximation formulae like those of Tierney, Kass
and Kadane (1989) or Diciccio and Martin (1991).
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