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A test for symmetry of the distribution of the errors in a linear model is proposed. It is
a goodness-of-fit type test based on the discrepancy between two robust fits. The first fit
is appropriate under symmetric errors while the second is appropriate for skewed as well
as symmetric distributions. The proposed test is robust and is asymptotically distribution
free. Besides deriving the test statistic's null asymptotic distribution, its efficiency under
a general class of local alternatives is obtained which allows for the determination of the
test's asymptotic relative efficiency with its competitors.

1. Introduction

Constance van Eeden has made many important contributions to the de-
velopment of signed rank procedures. Symmetry is a crucial assumption
necessary for the validity of such procedures. In many situations encoun-
tered in practice, a test of symmetry is quite useful. For example, consider a
randomized paired design. Under the null hypothesis of no treatment effect,
the paired differences are symmetrically distributed; however, under alter-
natives that involve a change in scale as well as one in location, this is not
true.

In this paper, we propose a test for the hypothesis that the errors in a
linear model are symmetrically distributed. It is a goodness-of-fit type test
based on the discrepancy between two robust rank-based fits. The first fit
uses a robust signed-rank (SR) fitting criterion that is appropriate under the
assumption of symmetric errors. It yields the distance, the minimum of the
objective function, Z?SR(YSR)> between the vector of responses, Y, and the
vector of fitted values, YSR The second fitted vector, YR, is based on a
robust rank (R) fitting criterion that is appropriate for either symmetric or
asymmetric error distributions. For this second fit we obtain DSR(YR) the
distance between Y and YR using the symmetric "yardstick," i.e., distance
based on the SR norm. The test statistic is the standardized difference in
these distances, Hφ = Rϋβwhere RD = £>SR(YR) - ^ S R ( Y S R ) ; see (2.13).
Under symmetry, the fits, and hence the distances, should be similar. Thus
the null hypothesis of symmetry is rejected for large values of RD.

Keywords and phrases: asymptotic distribution-free; asymptotic relative efficiency;
linear rank scores; rank-based regression; robust; signed-rank regression; Wilcoxon scores.



100 T.P. Hettmansperger et al.

In Section 2, we describe the new test of symmetry and derive its asymp-
totic null distribution. We discuss what score functions to use for the test
of symmetry in Section 3. Finally we consider the behavior of the newly
proposed test under contiguous alternatives in Section 5.

2. The test statistic Hφ and its null asymptotic distribution

Consider the linear model,

(2.1) Y = α l + Xc/3 + e,

where 1 is a vector of n ones, X c is a n x p design matrix of full column
rank, and e is a vector of iid random errors with common density / and
distribution function F. Since the model includes an intercept there is no loss
in generality in assuming that the X c is centered and that med βi = F~ι (5) =
0. Denote the augmented matrix [1 : Xc] by X and let b = {a, ft)1'. Let
Ω denote the column space of X. We are interested in the hypotheses of
symmetry,

(2.2) Ho: f(-x) = f(x) versus HA: f(-x) φ f(x).

2.1. SR and R fits

As mentioned earlier, our test of symmetry is based on two fits, a signed-
rank (SR) fit and a rank (R) fit. Under the assumption of symmetry, the
SR estimates are consistent estimators while the R estimates are consistent
estimators under both symmetry and asymmetry. First we briefly present
the R estimates.

R estimates are based on rank regression scores. These are generated as
aψ(ι) = ψ(i/{n + 1)) where ψ{u) is a square-integrable, nondecreasing score
function defined on the interval (0,1), which, without loss of generality, is
standardized as follows: JQ φ(u) du = 0 and J^ ψ2{u) du = 1. We will further
assume that the scores are odd about ^ i.e., φ(l — u) = —ψ{u). The most
widely used such score is the Wilcoxon given by φ(u) — Λ/Ϊ2(TX — 5).

The R estimate based on the score function φ(u) is given by

(2.3) 3 R = Argmin| |Y-X c/3| |R )

where || | |R is defined by

n

(2.4) IIv||R = Σ aφ(R(vi))vΰ for v G iT\

and the R(vi) denotes the rank of V{ among υ±,... ,vn. This is a pseudo-
norm on Rn. It has all the properties of a norm except that the property
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||v|| = 0 iff v = 0 is replaced by ||v||R = 0 iff v = αl, for any scalar α.
Hence, the intercept a cannot be estimated using a pseudo-norm. Instead,
we will estimate it by

(2.5) a = med{Yi - x ' c 3 R }

The R estimate of b is bR = (α,/3R)'. Under the regularity conditions found
in the Appendix, b R has an approximate

distribution; where the scale parameter τφ is given by,

and the scale parameter rs is given by,

(2.8) 75 = 1/(2/(0)).

Chapter 3 of Hettmansperger and McKean (1998), (HM) gives a discussion
of the fitting and the scale parameters. We will use the estimate of τφ

proposed by Koul, Sievers and McKean (1987) because it is consistent under
both symmetrical and asymmetrical errors and we will denote this estimate
by τφ. Consistent estimates of rs are discussed on page 26 of HM.

Given the score function φ(u), the SR estimates are based on the associ-
ated signed-rank scores that are generated as α+(i) = φ+{i/{n + 1)), where
φ+{u) — φ((u + l)/2), 0 < u < 1. For example, the signed-rank Wilcoxon
scores are generated by φ+{u) = Λ/3U. For a given score function φ{u), the
corresponding signed-rank norm on Rn is given by,

n

(2.9) | |v | |S R = Yja+{R\vi\)\vi\, for v G i Γ ,
i=l

and the R\vi\ denotes the rank of \υi\ among \vι\,..., |vn|; see page 42 of

HM. The signed-rank estimate is given by

(2.10) b S R = Argmin || Y - Xb| | S R .

Under HQ and mild regularity conditions (given in the Appendix), bsR is

asymptotically

(2.11) ^

where the scale parameter τψ is defined in (2.7).
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The estimate bsR is asymptotically equivalent to the the signed-rank
estimate proposed by Kraft and van Eeden (1972); see, also, van Eeden
(1972). To see this, differentiate the norm expression found in display (2.9)
with respect to b. The solution to the resulting normal equations was the
estimate proposed by Kraft and van Eeden; see Hettmansperger and McKean
(1983) for discussion.

2.2. Test statistic

To test the hypothesis of symmetric errors, we will consider the SR and R
fits based on a selected score function φ(u). The SR minimizes the normed
distance between Y and Ω, using the norm || ||SR, (2.9). Under symmetry,
it produces a consistent estimate of b which we called bsR. The predicted
value of Y is YSR = XbsR Then the distance between Y and the space Ω
is given by £>SR(YSR) = || Y — YSR||SR This is the distance between Y and
the space Ω, assuming symmetry; i.e, the yardstick under symmetry.

The R fit produces a consistent estimate bR of b under both HQ and
HA The associated predicted value of Y is Y R = XbR. Under symmetry
Y R should be close to YSR TO measure the disparity, consider the || ||SR-
distance between Y and the space Ω based on this fit which we define as
^ S R ( Y R ) — ||Y —YRJISR Our test statistic is a standardization (see below)
of the difference in distances,

(2.12) RD = Z>SR(YR)-£>SR(YSR)

Note that RD > 0 because ^DSR(YSR) is the minimized distance. Small val-
ues of RD indicate Ho while large values of RD indicate HA- Our proposed
test is a goodness of fit type test. DSR(YSR) is what we expect the distance
between Y and Ω to be under i/o? while £>SR(YR) is the distance, using
the norm under symmetry, between Y and Ω based on a fit that does not
assume symmetry.

Our proposed test statistic is

(2.13) Hφ = ψ
0

where the scale parameter δ is given by

(2.14) δ =
- 2κτφτs + τ-2

2τφ

K is a known constant defined by

(2.15) n = 2 I φ{u)du,
Jl/2
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and δ is the estimate of δ based on the estimators τφ and τ$ defined above.
It is clear from the proof of the next theorem that 0 < n < 1; hence,
τ$ — 2κτφτs + Tφ > (rs — Tφ)2. Thus both δ and its estimate are always
nonnegative.

The asymptotic decision rule, based on the theorem below, is to reject
HQ if Hφ > Xι(ά) where Xι(o) is the upper α-critical value of a χ2 random
variable with one degree of freedom.

The proof of the following theorem can be found in the Appendix.

Theorem 2.1. Under Ho and the regularity conditions listed in the Ap-

3. Score selection

pendix, Hψ —> %i random variable.

In this section, we discuss appropriate score functions to use for Hφ. First,

consider a univariate sample, w\, wi, . . , wn. The classical test for symmetry

is based on the statistic,

see Chapter 7 of D'Agostino and Stephens (1986). This test is certainly not
robust, but it does suggest using a cubic rank score function. Further, if we
assume that W{ follows a normal distribution, then the asymptotically most
powerful rank test for a sequence of local skewness alternatives is based on
the third Hermite polynomial which is a cubic in Φ - 1 (^) , the inverse of the
standard normal distribution function; see Eubank, LaRiccia and Rosen-
stein (1987). In another paper, Eubank, LaRiccia and Rosenstein (1992)
also considered the third Legendre polynomial which is a cubic in u to form
a test statistic based on residuals from a location estimate. The Hermite and
Legendre third degree polynomials, though, are not monotone functions, a
condition required for φ(u) as discussed in Section 2.1. Hence, the corre-
sponding function defined as in (2.9) for these scores functions will not be a
norm and the dispersion function will not be convex. This jeopardizes the
computation of the regression coefficients as well as the asymptotic theory
for the rank and signed-rank procedures.

Instead, we will consider the following simple cubic, which overcomes the
problems described in the previous paragraph,

(3.2) φc(u) = 8y/7(u-±)*,

for rank regression scores and ΨQ{U) — φc((u + l)/2) for the associated

signed rank scores. Let TQ denote the scale parameter (2.7) for these cu-

bic scores. The score function ψc{u) is monotone and bounded; hence, the



104 T.P. Hettmansperger et al.

theory outlined in Section 2 holds for these score functions. Further, the
regression fits are easily computed as well as the Koul et al. (1987) esti-
mate of re; see Chapter 3 of HM. The test can be computed at the web
site http: //www. stat.wmich. edu/mckean/Symm/testofsymm.html. For
φc(u), K = Λ/7/4. Let δc denote the corresponding parameter given by
(2.14). Our test statistic is given by

(3.3) He =

An asymptotic level a test is to reject Ho if HQ > Xi(α), where χ\{o)
denotes the upper a critical point of a χ2 random variable with one degree
of freedom.

4. A comparison with other tests for symmetry, in particular, the
mean minus the median

In a companion paper, Hettmansperger, McKean and Sheather (2002) com-
pared the Monte Carlo performance of the test described in the previous
section with a number of procedures including the univariate procedures of
Boos (1982), Gastwirth (1971), Eubank, LaRiccia and Rosenstein (1992) and
a test based on the difference between the mean and the median (which we
shall describe below). All of these procedures are tests for the univariate
symmetry problem. For our setting, the linear model problem, we are inter-
ested in their behavior on residuals. Thus, these procedures depend on the
LS and the Wilcoxon residuals.

We will denote the LS residuals by

(4.1) rLSi = Yi-^/

ciβLS,

where 3 L S = ( X ^ X J - ^ Y and x^ is the zth row of Xc. We will denote
the Wilcoxon residuals by

(4.2) rRwz = Yi- XCZ3RW>

where /3 R W is the R estimate, (2.3), when the Wilcoxon score function is
used. Note that these are not the signed-rank Wilcoxon residuals. Also, for
Wilcoxon scores we will denote the scale parameter r, (2.7), by τ\γ Note
that for Wilcoxon scores, it simplifies to

(4.3) TW = l/(VuJ f{x)dx

Below we describe the two procedures which had the best Monte Carlo
performance in terms of both level and power.
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1. Hφ Procedures. Besides the test statistic ifcs (3.3), based on the
cubic score function, (3.2), Hettmansperger et al. (2002) investigated the
behavior of the test statistic Hφ for two other score functions: the Wilcoxon,
φ(u) = y/Ϊ2(u — ̂ ) and the normal score function φ{u) = Φ~1(w), where
Φ(u) is the cdf for a standard normal random variable. In their Monte
Carlo study, two choices of critical values were investigated: the χ 2 ( l ) , (χ2-
distribution with 1 degree of freedom), critical values as suggested by the
asymptotic theory and the F ( l , n — p), (F-distribution with 1 and n — p
degrees of freedom), critical values, a standard degree of freedom correction.
This leads to 6 different test procedures which we label as: the Wilcoxons,
i ί W χ 2 and i/wF5 the normals, H^χ2 and U^NF; and the cubics, HQX2 and
HQF The best performing procedure was found to be HCχ2.

2. MM: The Mean minus the Median. The mean minus the median
is one of the simplest measures of symmetry that is discussed in practically
every course in statistics. Its analogue for the regression problem is to com-
pare estimates of the intercept parameter. We chose estimates based on fits
which do not assume symmetry. Our analogues of the median and mean are
the median of the Wilcoxon residuals, (4.2), (S\v = med{rKWi})5 &nd the
mean of the least squares residuals, (4.1), (SLS = ^LS) Under symmetri-
cal errors e\ (see Hettmansperger and McKean, 1998, p. 166), we have the
following asymptotic representations of these estimates:

n .
(4.4) n

n • 1

ι=l

where τ$ is given by expression (2.8) and σ2 is the variance of the error distri-

bution. Based on these representations, it can be shown that the asymptotic

variance of SLS — δw is

2 2

(4.5) VMM = Var(αLS -aw) = ^- + ^-- 2 ^ E ( | e i | ) .

Hettmansperger et al. (2002) estimated rs based on the Wilcoxon residuals as

discussed in Section 2, σ2 by MSE of the least squares residuals; and E(|ei|)

by n~ι ΣILi |βkwi|) Let VMM denote the resulting estimate of Var(αLS —

δw) Given a level α, the MM-testing procedure is: reject the hypothesis of

symmetry if |^MM| > ^α/2 where

(4.6) ZUM — (SLS — δw)/v ^MM,

and za/2 is the upper a/2 standard normal quantile.
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5. Behavior under contiguous alternatives

We consider the asymptotic distribution of the test statistic Hφ, (2.13),
under sequences of local, asymmetric alternatives. A general class of such
local alternatives was considered by Eubank et al. (1992) for the univariate
case. In our notation, consider a sequence of linear models, (2.1) indexed by
the sample size n. Assume that the errors e n i , . . . , enn are iid with common
cdf,

(5.1) Fn{t) = F0(t) + A
/nn

where Fo(i) is a symmetric distribution function, G(i) — H(i) - -Fo(ί), H(t)
is a distribution function, and the O(l/n) term is uniform in t. As indicated
by Eubank et al. (1992), many of the local alternatives that have appeared
in the literature can be formulated as in (5.1). This sequence of alternatives
is contiguous to the symmetric cdf Fo(ί). We shall obtain the noncentrality
parameter of our test statistic Hφ under this sequence of alternatives.

Theorem 5.1. Under Fn given in (5.1) and the regularity conditions in the
appendix,

(5.2) Hφ^χ2(l,λ2μ2

φ),

where

Proof. Replacing δ with £, we can use (A. 14) of the Appendix to obtain the

following asymptotic representation of the test statistic Hφ:

(5-4) _
^ — 2κτsτφ

Def ^ 2

where K is given in (2.15) and

Under symmetry, λ = 0, it follows from Theorem 2.1 that Sn —> N(0,1).
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The density of Fn(x) is fn(x) = /0(x) + ^ff(x). Hence the log of the

ratio of the likelihood functions under Hn and Ho is given by,

Under Fn(t), Sn —> N(λμ<p, 1), where by LeCam's Third Lemma,

μφ = \imCovFo(Sn,ln)

Since g(e) = h(e) - /0(e) and /sgn(x) dF0(x) = 0 = /^(F 0 (e)) dF0(e), μφ

simplifies to (5.3). D

5.1. Comparison with the MM procedure

Because of their comparable Monte Carlo performances in the study of Hett-
mansperger et al. (2002), it is of interest to determine the asymptotic relative
efficiency between the Hcχ2 test statistic and the mean minus median (MM)
test statistic, for the sequence of alternatives given by (5.1).

The noncentrality parameter for the test statistic Hcχ2 is given by λ 2μ 2

where μφ is given by expression (5.3) and φ(u) is the score function given
by (3.2). For this cubic score, denote μφ by μc

To obtain the noncentrality parameter for the MM test, recall that we can
represent the difference of the mean and median under the null hypothesis
by the expression,

1 U

(5.6)

Using the log of the ratio of the likelihoods functions under Hn and HQ,

(5.5), we can apply LeCam's Third Lemma to show that ^ M converges in

distribution under Fn to a χ 2 ( l , λ 2 μ ^ M ) distribution, where

ίκ7λ EH(e)-τ8(l-2H(0))
(5.7) /iMM =

λ / V a r i ί ( e ) - 2 r s E / / | e | + r 2

The ARE between Hcχ2 and Z^M is the ratio MC/MMM Large values favor
Hcχ2.

Because the noncentrality parameter //MM contains the mean E# \e\ and

variance Var#(e) of the errors, it is not robust. As the following example

shows, it is easy to obtain a family of asymmetric distributions where

is essentially 0.
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Table 1. AREs between HCχ2 and z^M Test Statistics at the Distribution (5.8) with e = .2,

3, ana

ML

-2
- 3
-4

μR — J-

Mean(#)

.17

.16

.15

Median(#)

.1635

.16395

.1629

6
1
2

2

.58E-4

.70E-4

.30E-9

5
3
3

.92E-4

.66E-4

.00E-4

ARE

.90
2.12

1.30E+5

Example. Consider the contaminated normal distribution function with
contamination in both directions:

(5.8) H{t) = (1 - e)Φ(ί) + eηΦ(t - μR) + e(l - η)Φ(t - μL);

where Φ(t) is the cdf of a standard normal random variable. If η is close to 1
then the majority of the contamination is on the right side. For various values
of the parameters, the noncentrality parameter μMM of the MM procedure
is 0. Table 1 displays such a situation for e = .2, η = .95, and /XR = 1. Here,
MMM is essentially 0, if μι — —4. Note that the contamination in this case
drove the mean of H to the left of its median.

6. Conclusion

The proposed test statistic Hψ offers the user a robust and asymptotically
distribution free test for symmetry of the error distribution in a linear model.
It is a goodness-of-fit type test and is easily interpretable. We recommend
the statistic HCχ2 based on the simple cubic score function (3.2). Part of
the theory behind the test is based on the fundamental work of Constance
van Eeden on signed-rank procedures for the linear model.

Acknowledgements. We would like to thank the referees and the editor
for their remarks on the paper which improved its exposition.

APPENDIX

Regularity conditions

Assume the following conditions, (see Chapter 3 of HM for discussion). On
the density /, assume that

(R.I) / is absolutely continuous, 0 < /(/) < oc.
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On the design matrix X, assume that

(R.2) lim max hun = 0,
n—>oo \<i<n

(R.3) lim n^X'X = Σ,

where han denotes the ith diagonal entry of the projection matrix onto the
column space of X and Σ is a (p + 1) x (p + 1) positive definite matrix.

Proof of Theorem 2.1. Without loss of generality assume that the true vec-
tor of parameters b = 0. Write DR = ^D S R(YR) Λ £>SR = £>SR(YSR) In
this notation, RD is given by RD = D(bn) — -D(bsR). The function D is
a convex function and can be approximated, asymptotically by a quadratic
function; see Hettmansperger and McKean (1983). Let α* be

(A.I) a*(R\ei\) = a+(R\ei\)sgn(ei),

and denote the n x l vector (α*(i?|ei |),... ,a*(R\en\))f by a*(i?|e|). We will
use similar vector notations for the ranks, signs, and score functions, i.e.,
a(i?(e)), sgn(e), and φ(F(e)). Consider the quadratic function,

(A.2) Q(b) = (2rφ)-1WXfXb - b'X'a*(β|e|) + D(e).

This quadratic function approximates D in that D(b) — Q(b) = op(l) for
Vnb = Op(l).

Then write,

(A.3) RD = [D(bR) - Q(bR)] + [Q(bR) - Q(bSR)] + [Q(bSR) - D(bSκ)].

Based on the quadratic approximation, (see Hettmansperger and McKean,
1983), the first and third bracketed terms of (A.3) go to 0 in probability.

Before evaluating the middle term, we will state some useful asymptotic
representations. Basically we will have two sets of representations: a general
representation and a representation when the errors have a symmetric dis-
tribution. For our proof we will use the more convenient second set but the
first set will be convenient for our discussion on local alternatives. First con-
sider the quadratic function. Its definition above, (A.2), is the general result.
Next, using the connection between ψ{u) and φ+(u), (ψ+(u) = φ((u+l)/2)),
and substituting the distribution function for the empirical distribution func-
tion, results in

(A.4) -Lχ'a*CR|e|) = -±=

We can then write the quadratic function, (A.2) as

(A.5) Q(b) = (2τφ)~1bfXίXb - b'XVCF(e)) + D(e).
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The quadratic approximation holds for this quadratic function also.
As discussed in HM (Theorem 3.5.11), asymptotic representations for

are given by:

0(±

τ s ± l ' s g n ( e ) ] + 0 ( ±
'X)-iχ'Mn))\ PV

(A.6) b R =

Again, the second representation is useful in the proof while the first will be
useful in the contiguous section. Algebra shows that if \fn(h\ — b2) = Op(l),
then Q(bχ) — QO&2) = op(ϊ). Hence, we can use the vector on the right in
(A.7) for the evaluation in (A.3).

Next consider the signed-rank estimate bsR. Similar to the asymptotic
representations of the rank estimate,

(A.8) b S R - r^X'X^XVORIel) + C

(A.9) = τv(X'X)-1XV(F(e)) + C

see Hettmansperger and McKean (1983).
Using these approximations, we will now evaluate the middle difference.

We will first evaluate it using the first quadratic (A.2) and the set of first
representations for the estimates. This results in

(A.10) Q(bS R) = -^a*(i?|e|)'Ha*(i?|e|) + D(e),

where H = X(X/X)~1X/. Using the second set of asymptotic representa-
tions which hold under symmetric errors we have,

(A.ll) Q(bSR) = -^φ{F(e))Ήiφ(F(e))

-Tξφ(F(e))'Hcφ(F(e))+D(e),

where the projection matrices are Hi = n~ιllf and H c = XC(X^X)~1X^.
Likewise under the first set of representations,

(A.12) Q(bR) = ~ [τl 8 gn(e)Ήi sgn(e) + τ2a(β(e))/Hca(i?(e))]

- 7ssgn(e)Ήia*(i?(|e|) - τ^a(i?(e))Ήca*(JR(|e|)) + D(e).

While under the second set of representations we get

2

(A.13) Q(bR) = ^ - sgn(e)Ήi sgn(e) + ^φ(F(e))tHcφ{F{e))

- τssgn(e)Ήiφ(F(e)) - τφφ(F(e))Ήc(p(F(e)) + D(e).
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Using (A.11) and (A.13), after simplification, we get

(A.14) RD = i [sgn(e) - ^<^(F(e))jΉ1 |sgn(e) - ^ (

Let V denote the variance-covariance operator. Under symmetry,

(A.15) iψgn(e) - ^ ( F ( e ) ) ] = 0,

and D(sgn(e)) = I. Because the scores are standardized, V (<^(F(e))) = I.
Finally, the matrix £l[sgn(e)(^(F(e)) ] has 0 entries off the main diagonal
while on the main diagonal it has entries

(A.16) κ = E[sgβ(e1)φ(F(e1))]

= E[sgn(2F(e1)-l)φ(F(e1))}

= / sgn(2?i - \)ψ{u) du
Jo

ί1

= 2 ψ{u) du.

Hence,

(A.17) V [sgn(e) - ^φ(F(e))] = f 1 + 4 " 2 - ^ l L

L ^ Ί L ^ r J
4 rs

The asymptotic normality of sgn(e) — (τφ/τs)φ(F(e)) can be established by
standard Lindeberg Central Limit Theorem arguments; see p. 167 of HM.
Because the rank of Hi is 1, the result follows. D
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