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An aligned rank test for treatment effects in the bivariate randomized block model is
proposed. The test is easy to implement and its validity requires only minimal assumptions.
Furthermore, the test statistic is affine-invariant and has a limiting x2 distribution under
the null hypothesis when the number of blocks goes to infinity. If the number of blocks is
not large enough, we show how to perform a permutation test and illustrate this method
with an example. Finally, a simulation study indicates that the new test performs well
compared to the likelihood ratio test, to a coordinate-wise aligned rank test and to a sign
test based on the Oja measure of scatter.

1. Introduction

Consider the bivariate randomized block model with one observation in each
cell. We wish to test the hypothesis that there are no treatment effects. If
we assume that the observations follow a bivariate normal distribution, one
sensible test is based on the likelihood ratio statistic described, for example,
in Section 8.9 of Anderson (1984). This statistic is affine-invariant, that is, its
value remains unchanged if a nonsingular linear transformation is applied to
the observations. In practice, this important property means that the power
of the test is not affected by the correlation structure or the scale of the
variables.

For univariate data, there are two main approaches to construct tests
based on ranks. The first one uses intra-block ranking which means that
the observations are ranked separately within each block. The Fried-
man test is the most well-known example of this approach, Hollander and
Wolfe (1999). This test is distribution-free but its efficiency relative to the
classical variance-ratio test is quite low at the normal model when the num-
ber of treatment is small and this is essentially due to the fact that no
inter-block comparisons are made. To alleviate this problem, Quade (1979)
proposed a method that is still based on within-block ranking but where each
block is given a data-driven weight. His test does have a better efficiency
when the number of treatments is small and remains distribution-free. On
the other hand, as opposed to the Friedman test, its efficiency decreases as
the number of treatments increases, see Table 1 of Tardif (1987). Larocque
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and Tardif (1995) show how to overcome this problem by considering appro-
priate scores for the block weights. The second main approach uses over-
all ranking after aligning the observations to get rid of the block effects,
Lehmann (1998). For instance, the linear score rank test that uses the block
means for aligning is no longer distributon-free but is more efficient at the
normal model than the tests based on within-block ranking, see Table 7.1
of Puri and Sen (1971) for example. This can be explained by the fact that
this approach recovers some inter-block comparisons. This is the main rea-
son why this approach is used in this paper to construct a test for bivariate
data.

For multivariate observations, the earliest propositions uses coordinate-
wise ranks, that is, the ranking is done separately for each variable. Both the
intra-block ranking and the ranking after alignment methods are described
in Chapter 7 of Puri and Sen (1971). One drawback of this approach is that
the statistics are scale-invariant but not affine-invariant.

A revival in interest for multivariate sign and rank methods has appeared
since the late 80’s, see Chapter 6 of Hettmansperger and McKean (1998).
Despite this, very few articles discuss in details these new approaches for the
randomized block model. One way to construct generalizations of sign and
rank tests for multivariate data is to use the Oja’s median, see Oja (1999)
for a recent review. Using this idea, an affine-invariant test based on intra-
block ranking for bivariate data is discussed briefly in Brown and Hettman-
sperger (1987). This test can be seen as a bivariate generalization of the
Friedman test. An affine-invariant sign test based on aligned observations
for multivariate data is mentioned briefly in Hettmansperger and Oja (1994).

Another approach for constructing affine-invariant sign and rank tests for
bivariate observations is described in a series of paper by Larocque, Tardif
and van Eeden (2000a,b,c) and is based on projections. In this paper we
use this approach to construct an affine-invariant test for treatment effects
based on the ranking after alignment method. The proposed test statistic is
simple to describe, easy to implement, has good efficiency properties and its
validity requires only minimal assumptions.

The model, the statistic and its asymptotic null distribution are presented
in Section 2. An illustrative example and the results of a simulation study
that compares the new test to three competitors are given in Section 3.
Concluding remarks follow in Section 4 and the proofs are sketched in the
appendix.

2. Model, test statistic and asymptotic null distribution

Suppose we want to compare the effects of p treatments. We have n blocks
of p subjects that are randomly assigned to treatments within each block
and we observe two characteristics (V, W) for each subjects. Consider the
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following model for the observations, let

(Vigs Wiz) = (1, p2) + (i1, ou2) + (81, Bj2) + (€1, €i52)

(2.1) . :
i=1,...,n; j=1,...,p(>2)

where the error vectors (e;;1, €;52) are independent and identically distributed
from a continuous distribution. The block effects, that is, the (a;1, a;2)’s can
be fixed or random. The treatment effects, that is, the (8;1,8j2)’s are fixed
and satisfy without loss of generality Z?zl(ﬁjl,ﬂjg) = (0,0). The vector
(1, p2) is the overall mean. Let N = np be the total sample size and let
M=N(N-1)/2.

We wish to confront the hypotheses of no treatment effects

Hy : (B11,B12) = --- = (Bp1, Bp2)
Hj : (Bj1,B2) # (Bk1, Br2) for at least one pair (j, k).

Firstly, here is a motivation for the test statistic that will be introduced
shortly. To keep things simple, suppose that we want to test that the location
vector of a bivariate distribution is (0,0). Suppose that we have a random
sample from this distribution and let WSR(8) be the Wilcoxon-signed-rank
statistic computed using the (univariate) projections of the observations on
the directed line with angle 6. For a given vector (z,y), this projection is
simply z cos(0) + ysin(6). To test the location vector, a reasonable statistic
can be constructed by “averaging” WSR(6) over 6. One way of doing this

is to consider statistics of the form f:/r 32 (WSR(@))2 dw(0) where w(f) is a
weight function.

This idea, based on projections, is the starting point to construct the
bivariate location test proposed in Larocque, Tardif and van Eeden (2000c).
It has has also been used, in conjunction with the sign test instead of the
Wilcoxon signed-rank test, in Larocque, Tardif and van Eeden (2000a). By
exploiting the relationship between the univariate Wilcoxon signed-rank and
the two-sample Wilcoxon statistics, this approach has been generalized to the
two-sample problem and, moreover, to the p-sample and simple regression
problems in Larocque, Tardif and van Eeden (2000b).

In this paper, the idea is to use the p-sample statistic of Larocque, Tardif
and van Eeden (2000b) with aligned (block by block) observations. Here is
the description of the test statistic.

In order to make the observations from different blocks comparable, we
first align them by subtracting the block averages. Let, for : =1,...,n and

j=1""7p’

(2.2)

(Xij, Yij) = (Vig, Wig) — (Vi,, Wy.)
where

o 1<
(Vi,Ws) = ’ > (Vi W)
j=1
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is the average of the i** block. We will use the aligned vectors to construct
the test statistic. By aligning the observations, we get rid of the block effects
at the expense of introducing correlation between the observations from a
given block. The problem then becomes a p-sample testing problem with
correlated observations. Instead of using the block average, it is possible to
align the observations by using another location estimator, one that is more
robust for example. To ensure that the final test statistic is affine-invariant
and that the asymptotic result remains valid, this estimator should be root
n consistent and affine-equivariant.

Let
Xii — X T
Q.1 = — t Y R _
i,k arctan < Y, — Y > + 5

1<i<I<n; j=1,...,p; k=1,....,p; j<kifi=I

be the angle (€ [0,7)) between the vector (X;; — Xk, Yi; — Yix) and the
X-axis. Note that there are M such angles corresponding to each choice of
two distinct observations. Define R;;;; as the rank of 6;;;; among the M
0’s. The test of the hypothesis Hy is based on the p(p — 1) statistics

1 n n
m Z Z S YL] Ylk COS(WRU lk/M)

(2.3) 1 11=11 l1=11
Bje = —5 > > s(Yyj = i) sin(m Rij e/ M),

1 <j <k <p, where s(u) =1lor —1aswu>0or <0 is the sign function.
A consistent estimator, ¥, of the null covariance matrix of (A;x, Bjx) is
needed and we describe it now. Let

Occl = — Z Y;j Ykl )/z] Yrt) COS(TrRZ] kl/M) COS(WRU rt/M)
Oss1 = — Z va Ykl Yz] }/7‘75) Sln(ﬂ'Rz] kl/M) Sln(ﬂRz] rt/M)

(cos(mRij /M) sin(mRyj e/ M)

N 1
Gest = - Z s(Yij = Yi)s(Yij = Yre)5
I

+ cos(mR;j e /M) Sin(WRij,kl/M))

where Iy = {(i,k,7,7,0,t) 1 4,k,r =1,...n; 5,l,t =1,...p; k # i;r #i,k}
and di = n(n — 1)(n — 2)p® = Card(l;). Also, let

. 1
Gecr = o Z 5(Ys5 — Yr)s(Yiu — Yot) cos(m Ry i /M) cos(m Ry vt /M)
I;
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R 1
Oss2 = d_

- > 5(Yij — Yia)s(Yau — Yoe) sin(m Ry gt /M) $in (m Ry /M)

I

. 1 1 .

Ges = - > s(Yij — Yi)s(Yiu — Yrt)5 (cos(mRyj ki /M) sin(m Ry /M)
I

+ cos(m Ryy,rt /M) sin(m R 11/ M)

where Iy = {(3,k,7, j,u,l,t) : i,k,r = 1,...n; ju,l,t = 1,...p; j # u;
k #4; r#i,k} and dg = n(n — 1)(n — 2)p3(p — 1) = Card(I,).
We define the estimator of the null covariance matrix of (A;x, Bjx) as

’Z\: _ (&ccl - a'cc2 a'csl - a’ch)

Ocs1 — Ocs2  Oss1 — Oss2

In practice, the number of terms in the sums needed to compute S can be
quite large. One simple way to proceed then is to select terms at random
(10000 for example) and approximate the sums. This approach was used in
the next section and it works very well.

The test then consists in rejecting the hypothesis Hy for large values of
the statistic

p—1 p
n S—
(2.4) Dp==> "> (Ajk, Bjt) S (Ajk, Bjx)"
PSS

It can easily be seen that Dy is affine-invariant by showing successively
that it is invariant for rotations, for coordinatewise scale changes and for
reflection about the X-axis as in Larocque, Tardif and van Eeden (2000c).

As mentioned earlier, D,, is essentially the statistic Sy, proposed in
Larocque, Tardif and van Eeden (2000b) for the bivariate p-sample prob-
lem, computed using the aligned observations. The difference here is that,
by aligning them, the observations are not independent within block while all
of them are assumed independent in the p-sample problem. Consequently,
the estimator ¥ now depends on three more quantities, G.c2, G552 and g0
that appear because of this intra-block dependence and the proof of the
asymptotic result (as the number of blocks goes to infinity) given next has
to be modified and is sketched in the appendix.

Theorem 2.1. Under Hy and as n — o0,
D 2
Dn = Xa(p-1y:

When the number of blocks is not large enough to use the asymptotic
distribution, a conditionally distribution-free permutation test can easily be



90 D. Larocque and I. Bussiéres

performed. The permutation distribution of D,, can be obtained by consid-
ering its distribution over all permutations of vectors within blocks. The
permutation p-value is then simply computed using this distribution as ref-
erence. In practice however the total number of permutations to consider
can be quite large. For example, if there are 6 blocks and 5 treatments, the
number of possible permutations is (5!)% = 2985984000000. If that is the
case we can simply select a large number of permutations at random and
find the corresponding estimated permutation p-value. An example of this
approach is given in the next section.

3. Example and simulation study

In this section, we illustrate the use of the new test with an example but first,
we compare the D, test to three of its competitors based on aligned observa-
tions in a simulation study. The first one is the normal theory likelihood ratio
statistic explained in Section 8.9 of Anderson (1984). The second one is the
coordinate-wise rank test based on aligned observations with linear score
function, Puri and Sen (1971). This test is scale-invariant but not affine-
invariant and an unfortunate consequence of that fact is investigated in the
simulation. The last one is the sign test based on aligned observations using
the Oja’s criterion function mentioned in Hettmansperger and Oja (1994).
Under the null hypothesis, all those tests possess the same asymptotic dis-
tribution which is X%(p—l) but the the likelihood ratio test has also an exact
F distribution under normality. Thus, the F' distribution quantile was used
for this test and the asymptotic x? quantile was used for the others. All
tests were performed at the 5% level. The number of replications is 5000.
The computations were performed using Ox version 2.20; Doornik (1999).
A program to compute D, is available from the first author upon request.

Four distributions were used to generate bivariate error terms (i, €2).
The first one is the standard normal distribution with independent mar-
ginals. The second one is the standard bivariate t-distribution with 3 de-
grees of freedom. The third one is a symmetric but non-elliptical distribu-
tion generated the following way. First we generate an angle (€ [0,27]) by
angle = w(B + S) where B is distributed as a Beta random variable with
parameters .2 and .2 and S is a Bernouilli random variable (independent
of B) with probability of success .5. Second, a radius R is generated as a
uniform random variable on the interval [0,10]. The pseudo-observation is
then R(cos(angle),sin(angle)). We denote this distribution by beta-angle
for simplicity. The last distribution is a non-symmetric distribution. It is
simply the uniform distribution inside the section of the unit circle that is
over the X-axis. We denote this distribution by the term half-uniform.

The design used is p = 3 treatments and n = 40 blocks. Treatment
effects were added to the error terms in the following manner. The obser-



Aligned Rank Test for the Bivariate Randomized Block Model 91

vations from the first treatment are shifted by (—c, ¢), the second treatment
is left untouched (i.e., with shift (0,0)) and the observations from the third
treatment are shifted by (c,—c). For each of the four distributions, four
values of ¢ were selected, specifically, the value ¢ = 0 (corresponding to the
null hypothesis) and three other positive values each producing a different
alternative.

In addition from using the original set of observations, a second set was
produced by applying a linear transformation to the original points. This was
done in order to introduce higher correlation between the two components
of the vector of observations and thus examine its impact on the coordinate-
wise rank test that is not affine-invariant. Specifically, the original points
were multiplied by the matrix ((.8100154,.5864086), (.5864086,.8100154)).
This transformation produces a correlation of .95 between the two compo-
nents for the bivariate normal and t distributions, a correlation of almost .97
for the beta-angle distribution and a correlation of almost .96 for the half-
uniform distribution. Obviously, the three other tests are not affected by
this transformation since they are all affine-invariant so only the coordinate-
wise aligned rank test has to be recomputed. Consequently, two different
observed powers are reported for this test, one for the original observations
and one for the transformed observations.

The results are reported in Tables 1 to 4. The well-known adverse effects
caused by the fact that the coordinate-wise test is not affine-invariant is once
again illustrated. This test is competitive when the original observations are
used but its power is always (sometimes considerably) lower with the trans-
formed observations. Consequently, the following discussion will concentrate
on comparing the three affine-invariant tests.

For normal errors (Table 1), the likelihood ratio test is slightly more
powerful that the test D, and the Oja sign test comes in last position.

For the heavier-tailed t distribution (Table 2), the test D,, is the better
one followed closely by the Oja sign test. This goes in accordance with the
fact that sign based methods are more competitive for heavy-tailed distribu-

Table 1. Observed probability of rejecting Ho for normal errors (5000 replications)

Value Statistics

of c¢* || Likelihood ratio | Coordinate-wise® | Oja sign | D,
0 .050 .045 (.043) .043 .044
14 244 225 (.202) 180 | .222
21 524 499 (.442) 411 | .496
29 821 801 (.746) 720 | 797

“shifts of the 3 groups are (—c,c), (0,0) and (¢, —c).
bresults when correlation is added are given between parentheses.
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Table 2. Observed probability of rejecting Ho for bivariate t errors (5000 replications)

Value Statistics

of ¢ || Likelihood ratio | Coordinate-wise® | Oja sign | D,
0 .043 .050 (.046) .042 .047
A7 157 184 (.162) .164 187
.28 .392 472 (.409) 445 A72
.38 .638 757 (.674) 743 762

%shifts of the 3 groups are (—¢,c), (0,0) and (c, —c).
bresults when correlation is added are given between parentheses.

Table 3. Observed probability of rejecting Ho for beta-angle errors (5000 replications)

Value Statistics

of ¢ || Likelihood ratio | Coordinate-wise® | Oja sign | D,
0 .046 .046 (.042) .043 .043
34 154 252 (.141) 276 | .195
.87 .393 .564 (.361) .598 487
.80 .695 .835 (.655) .843 787

%shifts of the 3 groups are (—c,c), (0,0) and (¢, —c).
bresults when correlation is added are given between parentheses.

Table 4. Observed probability of rejecting Ho for half-uniform errors (5000 replications)

Value Statistics

of ¢® || Likelihood ratio | Coordinate-wise® | Oja sign | D,
0 .051 .048(.050) .045 .048

.037 .190 .182(.160) 143 A7

.066 .542 .522(.466) 425 513

.092 .865 .844(.791) 732 .836

’shifts of the 3 groups are (—c,c), (0,0) and (¢, —c).
®results when correlation is added are given between parentheses.
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tions. Despite this, the rank based test D, is still superior in this particular
case.

For the non-elliptical but symmetric beta-angle distribution (Table 3),
the Oja sign test is the more powerful followed by the test D,,.

Finally, for the non-elliptical and non-symmetric half-uniform distribu-
tion (Table 4), the likelihood ratio test is the better one followed closely by
the test D,,.

In summary, we can say that the new test D, is very competitive and
offers a stable performance in the cases considered as it always comes in
first or second place among the affine-invariant tests. The likelihood ratio
test is not very powerful for heavy-tailed distributions while the Oja sign
test does a decent job but is less powerful for the normal and half-uniform
distributions. The coordinate-wise test should be used with caution because
its performance depends on the correlation structure of the data.

An illustrative example is now given to conclude this section. The data
are taken in Table 9.6 of Seber (1984) and are the results from an experi-
ment conducted in the Cook Islands. Six different treatments were randomly
assigned to plots of bean plants infested by the serpentine leaf miner insect
in each of four different blocks. Three variables were measured on each plot
but we retain only the first two here, namely, V = the number of miners
per leaf and W = the weight of beans per plot (in kilograms). The data are
reproduced in the form (V, W) in Table 5 for completeness.

The same tests compared in the simulation are used here to test the
hypothesis of no treatment effects. It is not justified to use the asymptotic
distribution for the sign and rank tests since we only have n = 4 blocks.
Instead, for those three tests, the preferred approach is to perform a permu-
tation test as described in the last section. The p-value were obtained using
1000000 random permutations. Also, midranks were used for the coordinate-
wise test to handle tied observations. The results are given in Table 6 where,
for comparison purposes, the asymptotic p-values of the sign and rank tests
are also reported. For the likelihood ratio test, only the usual p-value using
the F distribution is reported.

Table 5. Leaf miner insect data

Treatment
Block 1 2 3 4 5 6
1 (1.7,0.4) (1.7,1.0) (1.8,0.8) (0.1,0.8) (1.3,1.0) (1.7,0.5)
2 (1.2,1.4) (1.2,0.6) (1.5,0.8) (0.2,1.2) (1.4,1.2) (2.1,1.0)
3 (1.3,0.6) (1.7,0.1) (1.1,0.7) (0.3,1.2) (1.3,0.8) (2.3,0.4)
4 (1.7,1.1) (1.1,0.0) (1.1,0.9) (0.0,0.4) (1.2,0.6) (1.3,0.9)
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Table 6. Results for the leaf miner insect data

Statistic
likelihood ratio Coordinate-wise Oja sign D,
Value of the statistic 6.118 16.263 16.000 19.324
Permutation p-value - .054 .060 .008
Asymptotic p-value .000% .092 .100 .036

“for the likelihood ratio test, the F distribution p-value is reported.

We see that the likelihood ratio test rejects easily (p-value = .000) the
hypothesis of no treatment effects. Looking at the permutation p-values, we
see that the test D,, also rejects the null hypothesis (p-value = .008) at the
5% level. The other two tests are borderline with p-values just above .05.
Once again, it is not justified to use the asymptotic p-values here but never-
theless, we see that the test D,, is the only one rejecting the null hypothesis
among the three sign and rank tests if we look at those.

4. Concluding remarks

In this paper we have proposed a new test for treatment effects in the bivari-
ate randomized block model. The test statistic is affine-invariant, easy to
implement and valid under minimal assumptions. Its asymptotic distribu-
tion is convenient when we have a large number of blocks and we described
how to perform a permutation test when we only have a small number of
blocks. This last approach was illustrated with an example. The results of
the simulation study showed that the new test does very well for a whole
range of distributions.
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APPENDIX

Proof of Theorem 2.1

The proof follow the same lines as in Larocque, Tardif and van Ee-
den (2000b). Consequently, we only sketch here and focus only on the mod-
ifications that need to be made. The idea of the proof is the following: we
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first define approximating random variables, then we show that D,, and an
approximate version of it named D; are asymptotically equivalent under H
and we conclude by finding the asymptotic null distribution of D}.

For 1 €5 < k < p, define

. 1 n n
ik = ) ZZS Y — Yik) cos(mF( J@lk))
1 i=1 [=1
(-1) L o
T =3 2D 5(Yij = Yir) sin(nF (B51)),
=1 I=1

where F' is the null cumulative distribution function of 611 2;. Under Hy, if
i # 1, it is easily shown that s(Y;; — Yix) and 6;; 1 are independent. Further-
more, E[s(Yj; — Yix)] = 0 in that case. This entails that, for 1 < j < k < p,
both E[A%,] and E[B};] converge to 0 as n — oo under H.

Define

Ocel = Eny[s(Y11 — Ya1)s(Y11 — Ya1) cos(mF'(011,21)) cos(mF(011,31))]
0ce2 = Efy[s(Y11 — Ya1)s(Y12 — Y31) cos(mF(011,21)) cos(mF(012,31))]
0ss1 = Eng[s(Y11 — Ya1)s(Y11 — Y31) sin(nF(611,21)) sin(7 F'(611,31))]
0ss2 = By [s(Y11 — Ya1)s(Y12 — Ya1) sin(mF'(611,21)) sin(wF (612,31))]
0cs1 = Erg[s(Y11 — Ya1)s(Y11 — Ya1) sin(wF(011,21)) cos(mF(011,31))]
Ocs2 = Ery[s(Y11 — Ya1)s(Y12 — Y31) sin(mF(011,21)) cos(mF(612,31))]

and let
N (Uccl —Occ2 Ocsl — 0cs2>

Ocsl —O0cs2 Ossl — Oss2

Straightforward calculations show that under Hy and as n — oo,

V(A;.‘k) — Occl — Tec2y V(B;k) — Ossl — Oss2

_(Uccl - Uch)a

2

COV(Bjkale) - 5(‘7351 - 0532), COV( ]k)AlJ) i(accl - Ucc2),

Cov( ;k,B;k) — (Oes1 — oes2),  Cov( ;ka ;l) -

1 * * ]'
COV(B;kaB?j) - "5(0551 - 0'332)7 COV(Ajk;, jl) - §(chl - 0032)
and )
Cov(4jy, Bjj) — —§(ch1 — 0¢s2)

for j, k,l all distinct.
Let

Z Z A]k’B ( ;k’B;k)T‘

] 1 k=j+1
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With only minor adjustments, the argument for the remaining of the proof
is basically the same as the one in Section 2 of Larocque, Tardif and van
Eeden (2000b). Specifically, we can show that under Hy and as n — oo,

« | P « P
for 1 < j < k < p, which entails that
|D, — D £ 0.

Then, basic U-statistics theory can be used to show the asymptotic nor-
mality of the p(p — 1)-vector (Ajy, Biy,... ,A‘("p_l)p,BE‘p_l) p) and standard

results on quadratic forms give D}, L, X%(p—l) which concludes the proof of
Theorem 2.1.
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