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Let X ~ NP(Θ,Σ) (Σ known) and consider the problem of estimating the mean vector
when loss is general quadratic loss (δ — θ)'Q(δ — θ). Many results are known for the case
Σ = Q = I. There is also a relatively large literature for the case of general Σ and Q
but it is relatively less well developed. The purpose of this paper is to unify many of the
results in the general case by relating them to the simpler case Σ = Q = I. We give a
reduction of the general case to a canonical form (Σ = /, Q = Diagonal) and show that
a natural correspondence between priors, marginals, and estimators in the two versions of
the problem preserves risk, admissibility, minimaxity and Bayesianity. This allows many
results on minimaxity and admissibility in the case Σ = Q = I to be extended to the
general case and allows an expansion of the classes of known minimax estimators in the
general case. It also seems to make the general case somewhat more comprehensible.

1. Introduction

Let X rsj NP(Θ,Σ) and consider the problem of estimating the mean vector
θ with loss L(0, d) = (d- θ)'Q(d - θ).

A great deal is known about this problem when Σ = Q = I (and more
generally when Σ and Q are known multiples of /). Relatively less is known
when the covariance matrix, Σ, and the matrix Q are general positive definite
matrices. The purpose of this paper is to close, to a degree, the gap between
the case Q = Σ = / and the general case.

In Section 2, we briefly present a snapshot of results for the case where
Σ and Q are known multiples of /. In Section 3, we extend these results to
the case where Σ and Q are diagonal and in Section 4, to the case of general
positive definite Σ and Q.

The spirit of the development herein is to derive procedures in the gen-
eral case corresponding to procedures in the Σ = Q = I case which are Bayes
(proper, generalized, or pseudo) minimax and/or admissible and which pre-
serve these properties in the general case. There are a number of results
along these lines in the literature. This paper unifies and generalizes many
of these results and gives a comprehensive and, it is hoped, comprehensible
picture of the general case.

We will use the notation Vm(I), V m(X) and V2ra(X) for the gradi-
ent, divergence, and laplacian of a function m(X). Recall that V2m(X) =
Σ^ d2m(X) / dXf and that a function m(X) is superharmonic if and only if
V2m(X) < 0 VX.
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See Strawderman (1971), Alam (1973), Bock (1975, 1988), Berger (1976),

Faith (1978), Shinozaki (1980), Stein (1981), George (1986), Berger and

Robert (1990), Berger and Strawderman (1996), and Fourdrinier, Strawder-

man, and Wells (1998) for background and results related to this paper.

The main technical contributions of the paper are part (c) of Theo-

rem 3.2 and part (b) of Example 4.1 which may be viewed as extensions

of Berger (1976) along the lines Fourdrinier, Strawderman and Wells (1998).

2. The case Σ = <τ2l, Q = I

The basis of much of the modern development in Stein estimation is Stein's
1981 paper. The following is a summary of that development. We assume
throughout that g(X) is weakly differentiate and £Ί|^(X)| |2 < oo.

Theorem 2.1 (Stein, 1981). Let X ~ Np(θ,σ2I) and suppose the loss
function is \\d - θ\\2 (i.e., Σ = σ2l, Q = I).

(a) E[(X-θ)'g(X)]=σ2EV g{X).

(b) Ifδ(X) = X + σ2g(X), E\\δ - θ\\2 = R(θ,δ) = pσ2 + E[σ\\\g{X)\\2 +

(c) // II^POII2 + 2V g(X) < 0 VX, then δ(X) = X + σ2g(X) is minimax.

(d) Ifθ ~ π(θ), the Bayes estimator δπ(X) = X + σ2Vm(X)/m(X), where

m{X) = (v/27fσ)-2/exp[-(2σ2)-1||X-0||2]π(0)d0 is the marginal dis-

tribution of X.

(e) //0~τr(«O,

= pσ2 + Aσ4E

Hence δπ is minimax provided ^m{X) is superharmonic.

Note that superharmonicity of π(θ) implies superharmonicity of m(X)

which in turn implies superharmonicity of y/m(X). Hence superharmonicity

of π(θ), m(X), or y/m(X) implies minimaxity of δπ(X).

It is also convenient to introduce the notion of a pseudo-Bayes estimate

(see Bock, 1988). We say δm(X) is pseudo-Bayes if δm(X) = X + σ 2 ^ J ^ ,

where m(X) is any function for which Vm(X) exists (we assume further

that V2m(X) exists and E\\Vm\\2/m2 < oo). Hence a pseudo-Bayes esti-

mate has the form of a Bayes estimate but m{X) may not be a true mar-

ginal distribution resulting from a (generalized) prior τr(0). For example,
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if m(X) = (l/| |X||2) , the resulting pseudo-Bayes estimator is δm(X) =
X — (2bσ2/\\X\\2)X, a James-Stein type estimator. The next corollary fol-
lows essentially directly from Theorem 2.1(d) and (e).

Corollary 2.1. A pseudo-Bayes estimator δm(X) is minimax provided
yJm(X) is superharmonic.

Example 2.1. Suppose m(X) = (1/||X||2)6. Then

bX

and

\\χ\\2b+4

b[(p-2)-b]
\\χ\\6+2

Hence Vy/m(X) < 0 (m is superharmonic) provided 0 < b < (p — 2). It
follows that the James-Stein estimator (1 — ασ2/||X||2)X is minimax for
0 < a < 2(p — 2). Note that superharmonicity of m(X) holds only for
0 < b < ^ ^ corresponding to the range 0 < a < (p — 2). The risk of δm(X)
is equal to pσ2 - Aσ4E[b[{p - 2) - b]/||X||2] by Theorem 2.1(e).

Fourdrinier, Strawderman, and Wells (1998) (FSW) point out that the
distinction between superharmonicity of yJm(X) vs m ( l ) is important and
that it is impossible for m(X) to be simultaneously proper (corresponding
to a proper (integrable) prior π(0)) and superharmonic. They show that
propriety of m(X) and superharmonicity of y/m(X) are indeed possible, if
P> 5.

FSW also give a fairly general class of Bayes minimax estimators. A main
result of that paper is the following result concerning hierarchical (general-
ized and proper) Bayes minimax estimators.

Theorem 2.2 (FSW). Suppose θ has a prior distribution with the following
structure

Θ\X - Np (o, ^ ~Λ

Λ^σ l \ λ - Λ(λ), 0 < λ < 1.

(a) The marginal distribution of X conditional on λ is

( 2

O.y
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(b) The marginal distribution of X is

m(X)(x

(c) y/m(X) is superharmonic (and hence δπ(X) is minimax) provided h{X)
satisfies

(2-1) j ^

where ίι(X) < A, is nonincreasing in λ, and 0 < ^(λ) < B where
\A + B<{p- 6)/4,

(2.2) lim Xp/2h(X) = 0, lim h(X) < oo.

e. FSW developed their results in terms of a hierarchical distribution of
the form

θ I V ~ JV(O, Vσ2/), F - λ(y), 0 < V < oc.

The above result re-expresses Theorem 1 of FSW in terms of the current
parameterization.

Example 2.2. The prior distribution given by h(X) = (1 — α)λ~α given
in Strawderman (1971) satisfies the conditions of the theorem for — a <
(p — 6)/2. These priors are proper provided that — a > — 1 and lead to
admissible estimators provided — a > —2 by Brown (1971). Noting that
the interval — 1 < — α < (p — 6)/2 is nonempty for p > 5, and — 2 < — a <
(p — 6)/2 is nonempty for p > 3, the above prior gives proper Bayes minimax
estimators for p > 5 and admissible minimax estimators for p > 3.

See also Faith (1978), Alam (1973) for other mixing distributions h(X)
leading to Bayes minimax estimators.

George (1986) studied multiple shrinkage estimators. Here one may have,
for example, several possible points Vi, i — 1,..., k towards which to shrink.
It is desired to adaptively shrink toward one of the points so that the re-
sulting procedure is minimax. The key observation is that if each of 7Γi(0)
is superharmonic, then so is Σaiπi(@) ( a nd more generally for an arbitrary
mixture of superharmonic functions). Here is a version of George's result.

Theorem 2.3. Suppose πa(θ), a G A, are a collection of superharmonic
(generalized) priors and ma(X) is the corresponding collection of marginal
distributions. Let λ(α) be any finite mixing distribution on a £ A. Then
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(a) Jπa(θ)h(a) da is superharmonic with corresponding superharmonic mar-
ginal

ma(X)h(a) da.
/•

(b) The resulting generalized (or pseudo, if ma(X) are given) Bayes esti-
mator is minimax.

Example 2.3. Suppose 1/1,..., v^ are k given vectors in i?p, and πii(X) =
{1/\\X - i/ill2)6 for 0 < b < (p - 2)/2. Let m(X) = (l/fc)Σί=i™i(*)
Then rrii(X) and m(X) are superharmonic and the resulting pseudo-Bayes
estimator is minimax. This estimator is given by

x-S [St..

and "adaptively" shrinks X toward the "closest" vι or alternatively is a
weighted combination of James-Stein like estimators shrinking toward the
Vi with greater weights (1/||X — z^||26) put on vι closest to X.

It seems worth noting that in Theorem 2.3 we required 7Γi(0), and not
y/πi(θ), to be superharmonic. This is significant in that this makes it im-
possible that the 7Γi(θ) (and hence τr(0)) be proper priors. It need not be
the case that the square root of mixtures of functions whose square roots
are themselves superharmonic. Hence it is difficult to carry out George's
development for mixtures of proper priors (or even proper pseudo-marginals
as in Example 2.3).

3. Results for the Case Σ, Q Diagonal

In this section we study the case where Σ = diag(σ2, σ | , . . . , σ2) and Q =
diag(rfi,..., dp) = D. The extension of Theorem 2.1 to this case is the
following result.

Theorem 3.1. Suppose X - NP(Θ,Σ) and L(θ,d) = {d-θ)fD(d-θ), where

Σ and D are as above. Then

(a) Ifδ(X) = X + Σg(X), where g(X) is weakly differentiable and E\\g\\2 <

oc, then R(θ,δ) = tτΣD + E[ΣΪ=1 σfdi(sH(X) + 2d9i(X)/dXi)}.

(b) Ifθ~ π(θ), the Bayes estimator of θ is δπ(X) = X + ΣVm(I)/m(I).
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(c) The risk of a proper (generalized, pseudo-) Bayes estimator of the form
δm(X) = X + ΈVm(X)/m(X) is given by

m2(X)

(d) // the term in brackets in the last line of (c) is non-positive, the proper
(generalized, pseudo-) Bayes estimator δm(X) is minimax.

Proof. The proof is basically the same as Theorem 2.1 and is essentially in
Stein (1981). D

Here is the key observation that allows us to construct Bayes minimax

procedures for the present case based on procedures for the case Σ = Q = I.

Lemma 3.1. Suppose η(X) is such that V2η(X) = Σd2η(X)/dXf < 0.
Then η*(X) = η^D-^X) is such that YJσfdid

2η*{X)/dXf < 0.

Proof. The proof follows by straightforward calculation noting that

d2 d2

Hence

Note by the same reasoning that if η(X) is superharmonic, then so is
η(aX) for any scalar α.

The following theorem is the main result of this section.

Theorem 3.2. Let X - N(Θ,Σ) and L{θ,d) = (d - θ)'D(d - θ) where Σ
and D are diagonal as above.

(a) Suppose y m ( ϊ ) is superharmonic (a proper, generalized, or pseudo-
marginal for the case Σ = Q = I). Then

δ
δ

is a proper, generalized, or pseudo-Bayes minimax estimator.
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(b) // T/TO(| |X| | 2) is spherically symmetric and superharmonic, then

2m'(X'Σ-1D-1Σ
δm(X)-X + m ( χ / Σ - i D

is minimax.

(c) Suppose the prior distribution π(θ) for θ has the hierarchical structure

θ\λ ~ 7Vp(0, Aλ), λ ~ Λ(λ), 0 < λ < 1,

where A\ = (c/\)ΣDΈ — Σ where c is such that A\ is positive definite
and h{X) satisfies the conditions of Theorem 2.2(c). Then

is minimax. [Note that such a c may always be found and that h(X) may

be any mixing distribution for which y/m(X) is superharmonic such as

Alam's, etc.]

(d) Suppose rrii(X), ί = l,...,fc are superharmonic. Then the multiple
shrinkage estimator

uχ)-χ+

is a minimax multiple shrinkage estimator.

Proof. Part (a) follows directly from Theorem 3.1(c) and (d) and Lemma 3.1.

Part (b) follows from part (a) and Theorem 3.1(b) on straightforward cal-

culation.

To show part (c), note that X - θ\\ ~ JV(0,Σ) and 0|λ - N(0,Aλ)

and X — θ and θ are therefore conditionally independent given λ. Hence

X\λ - ΛΓ(O, Ax + Σ). It follows that

m(X)(x ί λp/2

but m(X) = ^X'Σ^D^Σ^X/c), where y/η(X'X) is superharmonic by

Theorem 2.2(c). Hence by part (b), δπ(X) is minimax (and proper or gen-

eralized Bayes depending on whether h(X) is integrable or not).

Part (d) follows from part (a) noting that η(X) superharmonic implies

that y/η(X) is superharmonic.

Note again that we ask for superharmonicity of rrii(X) and not of y/rrii(X)

in part (d). •
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Examples 3.1. (a) Pseudo-Bayes minimax estimators. We saw in Ex-
ample 2.1 that James-Stein estimators result from pseudo-marginals of the
form m(X) = (1/||X||2)6. It follows from part (b) of Theorem 3.2 and Ex-
ample 2.1 that m{XfΣ-1D-ιΣ-ιX) = (l/X'Σ^D^Σ^Xf has associated
pseudo-Bayes estimator δm(X) = X - (2bD-1Σ-1X)/(XίΣ-1D~1Σ-ιX)
and that this estimator is minimax for 0 < b < (p — 2).

(b) A hierarchical (proper) Bayes minimax estimator (Berger, 1976).
Suppose h{\) oc λ~α, 0 < λ < 1, for (6-p)/2 < a < 1 and that Ax = cΣDΣ-
Σ, where c > 1/ min(σ?rfi). The resulting proper Bayes estimator is minimax
by Example 2.2 and Theorem 3.2. That it is a generalized Bayes admissible
minimax estimator for a < 2 will follow immediately from Section 3.

(c) A multiple shrinkage minimax estimator. It follows from Example 2.3
and Theorem 3.2 that

k

m{X) = '

satisfies the conditions of Theorem 3.2(d) for 0 < b < (p — 2)/2 and hence
that

l X -

is a minimax multiple shrinkage (pseudo-Bayes) estimator.
It is worth pointing out that in this example and in Example 2.3, a gener-
alized Bayes minimax estimator (as opposed to a pseudo-Bayes estimator)
results from the generalized prior

π W § \ ( θ - i/O'Σ-iβ-iΣ-1^ - K

for 0 < b < (p - 2)/2.

4. The Case of Generalized Σ and Q

In this section we show that the case of general Σ and Q (both positive
definite) can be reduced to the canonical form Σ = /, Q = diag(c?i,..., dp) =
D. We use the following well-known fact repeatedly:

Lemma 4.1. For any pair of positive definite matrices, Σ and Q, there
exists a non-singular matrix A such that AΣAf = I and (A')~1QA~1 = D
where D is diagonal.

This fact leads to the following canonical form of the estimation problem:
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Theorem 4.1. Suppose X ~ TV"(0, Σ) andloss is Lx{θ,d) = (d-θ)'Q(d-θ).
Let A and D be as in Lemma 4.1, Y = AX ~ JV(z/, J), v — Aθ, and

(a) For every estimator δ\{X) with risk function Rι(θ,δι)
the estimator δ2(Y) = Aδ\(A~ιY) has risk function R2{v,δ2) =
= EL2(is,δ2(Y)).

(b) δ\(X) is proper or generalized Bayes with respect to the prior distri-
bution τri(0) (or pseudo-Bayes with respect to pseudo-marginal πi\(X))
under loss L\ if and only if δ2{Y) — Aδ\{A~1Y) is proper or generalized
Bayes with respect to π2(y) = ττι(A~1ιy) (or pseudo-Bayes with respect
to pseudo-marginal rri2(Y) = m\{A~~ιY)).

(c) δι(X) is admissible (or minimax or dominates δ\{X)) under L\ if and

only if δ2(Y) = Aδ\(A~ιY) is admissible (or minimax or dominates

δζ(Y) = Aδl(A~ιY)) under L2.

Proof, (a)

R2(v1δ2)=E[L2(v,δ2(Y))]

A^Y) - Aθ)}

= E{δχ{X) - θ)fAfDA(δι(X) - θ)

= E(δ1(X)-θ)'Q(δ1(X)-θ)

This completes the proof of part (a).

Part (b) follows upon noting that the Bayes estimator for any quadratic

loss is the posterior mean. Hence, since if θ ~ τri(0), v = Aθ ~ π2{y) —

ΈX{A'xv) (ignoring constants) δ2{Y) = E(y\Y) = E(AΘ\Y) = E(A(Θ\AX))

= AE(Θ\X) = Aδχ{X) = Aδι{A-χY).

Part (c) follows directly from part (a). D

Strawderman (1978) contains a result which is similar to parts (a) and
(c) of the above theorem. It is worth noting that if Σ 1 / 2 is the positive
definite square root of Σ, and A = P Σ " 1 / 2 where P is orthogonal, then
Y = AX ~ N{v,L) and the above argument gives equivalence of the two
corresponding problems X - JV(0, Σ), Lι(θ, d) = (d - θ)'Q{d - θ) and Y -
N(v,I), L2{y,d) = (d - vyPΈ^QΣ^P'id - v). Hence in Theorem 4.1,
A = P Σ " 1 / 2 where P diagonalizes Σ 1 / 2 QΣ 1 / 2 will work.
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Examples 4.1. (a) A pseudo-Bayes minimax estimator. It follows
from Example 3.1 (a) and Theorem 4.1 that

b

for 0 < b < p — 2 results in the minimax James-Stein estimators

Y 26Q- 1 Σ- 1 A:

(b) 4̂ hierarchical (proper) Bayes minimax estimator. Similarly for Ex-
ample 3.1(b) and the above theorem we have that if

0 I λ ~ N(0,Aχ), λ - λ"α, 0 < λ < 1

for (6-p)/2 < a < 1 and

Ax = jΣQΣ - Σ

for c > inf ι/̂ , where V{ are the eigenvalues of Σ / QΣ ' , then the resulting
Bayes estimator is proper Bayes and minimax. It is admissible minimax
if (6 — p)/2 < a < 2. In fact the same is true if λ ~ h(\), where h(X)
is any mixing distribution for which the Bayes estimator is minimax when
Σ = Q = I.

(c) A multiple shrinkage pseudo-Bayes minimax estimator. Applying the
result of this section to Example 3.1(c) implies that

k

m(X) = '

for 0 < b < (p — 2)/2 leads to the minimax estimator

Also a prior distribution of the form

k

for 0 < b < (p — 2)/2 gives a minimax generalized Bayes estimator.
It follows from a result of Shinozaki (1980) that admissibility of a (gener-
alized Bayes) estimator does not depend on the matrix Q in the loss func-
tion. Hence admissibility holds in the above case if b = (p — 2)/2 from
Brown (1971).
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5. Summary and Conclusions

We have attempted in this paper to unify and extend much of the existing
literature on minimax estimation of the mean of a multivariate normal dis-
tribution with arbitrary (known) covariance matrix and arbitrary quadratic
loss.

The main results are
(a) If a (pseudo-) marginal m(X) results in a minimax estimator for the

case Σ = Q = /, then m(Σί~
1D~1/2X) results in a minimax estimator for

the case Σ and D are diagonal, and
(b) If m(X) (or π(0)) results in a minimax estimator for the case Σ = /

and Q = D (diagonal), then m(A~1X) (π(A~1θ)) results in a minimax
estimator for the general Σ, Q case where A is such that AΈAf = / and
(A')-ιQA-1 = D.

(c) The general case can be reduced to the case Σ = /, Q — D in such a
way that risks, minimaxity, admissibility, and Bayesianity are all preserved
through the correspondence X <-> AX, θ <-> Aθ, δ(X) <-> Aδ{A~1X).

Most of the specific examples in the paper are not new but the point of
view seems to be new and quite successful in unifying and extending known
results.
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