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Abstract

Issues relevant for the design of gene expression experiments using spotted
cDNA microarrays and gene chip microarrays are overviewed. Emphasis is placed
on the uses of replication, and on the importance of identifying major sources of
variation.
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1 Introduction

Microarrays are new and evolving technologies that enable large numbers of genes,
up to the order of tens of thousands, to be evaluated simultaneously. Our aim is to
give a brief overview of principles of experimental design, and to comment on their
application to microarray experiments. A major theme is that, for purposes of design,
the different sources of variation in gene expression ‘are not well understood.

The objective of a microarray experiment might be to investigate genes which are
differentially up or down regulated in cells between, say, a control group and cells
which have undergone some treatment, or between cells of animals of different genetic
background (e.g., control mice compared to knockout mice) or between cells in healthy
tissue and diseased tissues, or between cells at different time points (e.g., developmental
biology). Many studies search for genes that have similar expression profiles, often in
an attempt to determine genes involved in biological pathways, or in development, or
genes involved in regulatory functions. The focus would then be on the analysis of
dependency structure. Time course experiments may investigate how the pattern of
expression or relative expression changes over the cycle of cell division, or following
administration of a drug. Finally, interest may be in estimation of gene expression
levels.

The primary goal of the experiment should be clear, as this gives focus to the in-
vestigation, desirable even if a major part of the analysis will be a general search for
interesting patterns of expression. Many experiments have multiple aims; these must
be prioritized. Both in its scale and in the processes that are under investigation, the
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biology has a large element of novelty, with implications for statistical design and anal-
ysis. Vingron [52], commenting on the “big science” issues that such large-scale tech-
nologies raise, draws attention to “a major upcoming challenge for the bioinformatics
community to adopt a more statistical way of thinking and to interact more closely with
statisticians.” Bioinformaticians need to educate themselves in statistics. “Not so much
with the goal of mastering all of statistics but with the goal of sufficiently educating
ourselves in order to pull in the statisticians.”

Our focus here is on design issues for comparative studies for two types of ar-
ray platform — two-channel cDNA spotted microarrays [17, 20, 24], and high density
oligonucleotide microarray chips produced by Affymetrix [1] for expression analysis,
which we refer to as gene chip microarrays. For both types of array, DNA sequences
are laid out in a grid on a solid substrate. Occasionally we refer to the spotted microar-
rays as slides, recognising however that glass is just one of several possible substrates,
and we refer to Affymetrix oligonucleotide microarrays as chips. Much of our discus-
sion of spotted cDNA microarrays applies also to oligonucleotide spotted microarrays
(distinct from Affymetrix oligonucleotide arrays, which are produced by photolithog-
raphy rather than spotting), which we do not explicitly discuss. We note that gene
chip microarrays can in principle, with suitable calibration, yield absolute expression
measures. Each individual spotted microarray slide is by contrast used to yield rela-
tive expression measures, for example between a treatment and a reference, or between
one treatment and another. We note also that, perhaps inevitably for technology that
is rapidly changing and developing, there is no single established nomenclature that
distinguishes clearly between the different types of arrays. A feature that distinguishes
microarray experiments from more conventional experiments described in the biosta-
tistical literature is the very large number of parallel measurements on typically only
a few cases. Summary measurements are typically provided for each of a large num-
ber of genes or of Expressed Sequence Tags (ESTs), which are partial gene sequences.
The small number of cases is, in part, a function of the (initial) high costs of the mi-
croarrays, especially chips, limitation of available sample, and the (apparent) failure
to involve scientists with statistical training in the early stages of the development of
microarrays.

The processing of microarray data raises a variety of statistical, mathematical and
computational issues, see for example [12, 19, 45, 47, 49]; some of these are alluded to
in passing.

The remainder of the paper is organized as follows: Section 2 gives examples of ex-
periments, Section 3 considers outcome measures, Section 4 notes experimental design
principles and discusses their application to microarray experiments, Section 5 consid-
ers sources of variation, Section 6 discusses the design of microarray slides and chips,
and Section 7 summarizes the discussion.
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2 Examples of Experiments

2.1 Spotted Microarrays

In a typical spotted microarray experiment, samples from a treatment and from a ref-
erence are combined in equal proportions and hybridized to cDNA probes that have
been spotted on a slide. A key question is whether the comparisons that are of interest
will be made directly or indirectly. In an indirect comparison, each treatment that is
of interest is compared with a reference sample, and the responses of the treatments
relative to this reference sample are then compared. In a direct comparison, treatments
are directly compared with each other.

For example, Callow et al. [6] used the indirect comparison approach to search
for genes that were differentially expressed between liver tissue from apolipoprotein
apoAl-knockout (test) mice and liver tissue from C57B1/6 (control) mice. Each of 8
test mice was compared with the reference sample, and each of 8 control mice was also
compared with the reference sample. For a reference sample, material from the same
eight control mice was pooled.

For each of the 16 mice, cDNA, labeled to reflect the source of the mRNA, was
prepared by reverse transcription of mRNA. The experiment we describe used Cy5
“red”) and Cy3 (“green”) dyes, with Cy5 for individual mice and Cy3 for the reference.
The cDNA from each mouse was combined with the cDNA from the reference sample
and hybridized to a slide. This experiment resulted in 8 comparisons between control
mice and reference, and 8 comparisons between test mice and reference.

Preparation of a spotted microarray slide involves choosing and fixing a large num-
ber of spots on a slide, with each spot containing a number of strands of DNA or cDNA
that are intended to uniquely hybridize, or bind, to the corresponding gene in the la-
beled cDNA sample. In this experiment around 6000 spots, one or two per gene, were
laid down (spotted) on each of 16 microarray slides (one per “treatment”). After sep-
arate labeling, the mixed sample was hybridized to the slide in specially humidified
chambers. Laser-induced fluorescence imaging was then used to detect dye intensities.
This gave two images of the slide, one for the treatment (test or control) and one for the
reference. Image analysis software, together with some post-processing, was then used
to derive a background-corrected relative intensity measure for each spot.

Results, for each spot on each of the 16 slides, were expressed as the logarithm
of a ratio of the intensity value for each mouse to the intensity value for the pooled
reference. Two-sample -tests, with an adjustment for the large number of comparisons
made, were then used to compare the log-ratios from the test mice and the control mice.
The study identified eight spots, corresponding to four genes, that were under-expressed
in test mice relative to controls.
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2.2 Gene chip expression microarrays

In a typical gene chip microarray experiment, prepared cRNA sample is hybridized to
the probes on a chip. The chip is then scanned to obtain fluorescence intensity readings
of stains incorporated during the laboratory procedures. Image processing software is
then used to compute intensity values for each probe.

In contrast to typical spotted microarray experiments, only one sample is hybridized
to a chip, allowing, in principle, the estimation of absolute expression values. Because
of the high cost of these chips, efficient use is important.

The main characteristics of gene chip microarrays are:

1. Thousands of short oligonucleotide probes (commonly 25-mer, i.e., 25 bases in
length) are synthesized in situ on a glass substrate, using photolithographic tech-
niques. Multiple paired sets of probes (commonly 11, 16 or 20) are used for
each gene or EST. The probe sequences are chosen according to specific criteria
described in Lockhart et al. [35].

2. One probe in a pair has the exact sequence from the gene or EST, while in the
other member of the pair the middle base is changed to its complement. The mis-
matched probes (MM) provide a probe-specific control or nonspecific hybridi-
sation control. The collection of perfect match (PM) probes and mismatched
probes (MM) corresponding to one gene or EST makes up a probe set.

3. User control over the choice and layout of probes requires the construction of
custom arrays, whose cost is beyond the resources of many laboratories.

We note that probes are not chosen at random, nor are they independent, although
some analyses make this assumption.

In an experiment described by Efron ef al. [14], the aim was to study transcriptional
responses to ionising radiation in the context that some cancer patients have severe life-
threatening reactions to radiation treatment. It is important to understand the genetic
basis of this sensitivity so that patients with high rates of sensitivity can be identified
before being allocated treatment. The design was a factorial experiment with two levels
each of two factors, namely (i) RNA was taken from two wild-type human lymphoblas-
toid cell lines; (ii) the growing state was either irradiated or unirradiated; in addition
RNA samples were labeled and divided into two identical aliquots for independent hy-
bridizations. Each microarray provided expression estimates for 6810 genes/ESTs.

Another type of gene chip microarray experiment is described by Golub et al. [23].
Their aims were essentially class prediction (assigning tumours to known classes) and
class discovery (identifying new cancer classes). They analysed leukemia data of 38
bone marrow samples obtained at time of diagnosis: 27 acute lymphoblastic leukemia
(ALL) and 11 acute myeloid leukemia (AML).
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3 Issues Concerning Outcome Measures

As noted, spotted microarrays typically yield two intensity measurements for each spot,
which are combined into a single ratio or logratio. Gene chip microarrays yield one
intensity measurement for each probe. The information from each probe set is generally
combined into a single expression index for the probe set. The outcome measure is, in
either case, essentially multivariate.

Evidence for the form of the link between expression summary measures and mRNA
concentration (or number of molecules) is sparse; however see [8, 25, 28, 32] for gene
chip microarrays. When an antibody amplification step is employed, the link is more
tenuous, due to nonlinearity in its action. It is important to note that even with replicate
slides or chips that use different subsamples from the same sample, and where labora-
tory procedures have been carried out as similarly as possible, the scanned images can
show considerable differences. The normalization or scaling techniques that attempt to
make intensity measures comparable between slides or chips are different for the two
technologies; see [28] for chips, [55] for slides.

Saturation effects, i.e. intensity readings close to or above the upper detection limit
of the scanner, are an extreme form of nonlinearity. At high mRNA concentration
or high laser power, all intensity measurements may be inaccurate due to saturation.
Where one of two estimates being compared is affected by saturation, the estimated
difference is attenuated. If both are affected by saturation, the difference will be mean-
ingless [26]. Due to the large number of genes or probes, each with a potentially dif-
ferent saturation level, global avoidance of all such regions may not be feasible, and
detection strategies are required.

For both technologies, negative controls (i.e. spots or probe sets that should never
show a signal) or positive controls (i.e. should always show a signal), can be useful
checks.

3.1 Spotted Microarrays

Each slide may be used either for a comparison between treatment and reference, or
for a comparison between two treatments. In either case, there is one intensity ratio or
log-ratio for each spot.

There are typically separate background corrections for the red and the green sig-
nals. Both foreground and background signals will differ, depending on the scanner
settings and on the image analysis software used [54]. Important considerations are
the identification of the spot boundary, the choice of the region used to estimate back-
ground and the form of the background adjustment. Negative intensity estimates that
can result from background subtraction are a nuisance for later data processing, and
should be avoided.

Ramdas et al. [41] noted that signal quenching associated with excessive dye con-
centrations led to nonlinearity in signal intensities. Spot size and morphology can affect
intensity measurements. Thus, the routine use of the intensity ratio or logarithm of the
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intensity ratio as the comparative expression measure is open to question. If, for ex-
ample, the intensity measurements were changing additively, then differences could be
used. On the other hand, if the intensity measurements were changing proportionately
then differences in the log values would be used. Currently this is the scale that is
widely chosen. If there are three (or more) treatments, then an experiment that has all
pairwise comparisons allows us in principle to check that the chosen scale is appropri-
ate. It is prudent to check, to the extent that this is possible, that measurements are in a
range where response is linear.

3.2 Gene chip microarrays

In statistical terms, the data from each chip is a single multivariate response vector,
with complex dependencies inherent from the biology and the technology. As men-
tioned earlier, generally a summary measure or estimate of expression is computed
from the multiple probes in each probe set, following suitable background estimation
and chip normalization (calibration). A number of different summary measures or ex-
pression indices are in use. Some are based on differences between the probe intensity
(PM) and its nonspecific hybridization (MM) control; examples include the Affymetrix
trimmed average difference (AvDiff, [1]), the model-based expression indices of Li and
Wong [33], and the average median filtered differences of Alon et al. [2]. Since as many
as a third of the MM control probes can have intensity readings higher than their paired
PM probe, truncation, filtering or transformation are often used to accommodate the
negative values of PM — MM differences. Some measures do not use the nonspecific
hybridization control probes except to calculate a background estimate [28, 34, 39].
Other possibilities include the log of the ratio of the PM probe to MM probe [1, 32, 39],
the robust multi-array average (RMA) approach [28], and empirical Bayes estimation
[14]. Other summary measures are also found in the biological literature (e.g. [21]).

4 Experimental Design

This section is organized as follows: An introductory subsection discusses aims and
principles of experimental design, then bias and replication are discussed in more de-
tail; 4.1 discusses pooling, which is an issue for both types of array; finally 4.2 discusses
special issues for spotted microarrays, including the choice between direct and indirect
comparison, and dye bias. There are many excellent texts and papers that discuss gen-
eral principles of experimental design, including [5, 9, 10, 15, 42, 36]. Here we discuss
these in the context of microarrays.

Design questions relevant to the aim of the experiment that should be clear before
proceeding include:

1. What are the “treatments”?

2. What are the experimental units?
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3. What are the experimental measurements?
4. What is measured, and what do the measurements mean?

5. What comparisons are of interest? (Note that interactions are a form of compari-
son.)

For microarray experiments, “treatments” refer not only to defined procedures, for
example treatment by a drug, but also to qualitatively different units, such as tissues
from healthy and unhealthy organs, or tissues from wild type model organisms and
genetically modified organisms.

For example, in the Callow ef al. [6] experiment the comparison was between
test (knockout) mice and control mice. In the Efron et al. [14] experiment, the main
interest was in the comparison between irradiated and unirradiated cells, allowing for a
possible difference in effect between cell lines, i.e., for a possible interaction between
the irradiation effect and cell line.

Cox and Reid [10, p. 4] define an experimental unit as the “smallest subdivision of
the experimental material such that any two different experimental units might receive
different treatments”. The sample may be from a single organism, or it may be a pooled
sample of material from several organisms.

In the Callow ef al. [6] experiment, it is convenient to regard the separate red and
green labeled samples that are mixed and hybridized onto a slide as a pair of experi-
mental units, yielding separate intensity information that will (usually), for analysis, be
combined into a single log intensity ratio. In Efron er al. [14], the experimental units
are, strictly, the four separate mRNA samples, each of which is repeated.

A broad over-riding aim of experimental design is to use resources in the manner
that will best achieve the intended purpose and produce conclusions that are widely
valid (i.e., that are not restricted to too specific a set of conditions). However, this
needs to be balanced against the need for simplicity and robustness of design. We be-
gin with a list of broad aims and principles of statistical experimental design, using
experiments with spotted microarrays for illustrative purposes, followed by further dis-
cussion of some of the issues. Later, we consider special issues for the design of spotted
microarray experiments.

Broadly, the aims are to find designs that:

1. Allow generalization of results to the relevant wider population;
. Avoid bias, or systematic error;

. Minimize the effects of random error, for a given cost;

NN

Allow an assessment of the accuracy of estimates of effects that are of interest;

5. Are robust, in the sense that they will still give useful results even if there are
occasional failures in the experimental protocol, or if some assumptions that mo-
tivated the design prove to be false.
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Basic devices that are available to achieve these aims are:

1. Controlling for all “fixed” effects for which this is possible. For example, the
expression of genes in some tissues will be different depending on whether the
tissue is from a male or female;

2. Blocking, or local control, to allow an accurate assessment of effects under vary-
ing experimental conditions. In two-channel spotted microarray experiments,
each pair of samples is a block. In general, it is desirable to match the treatment
and control samples as closely as possible;

3. Randomisation of treatment allocations with respect to factors that cannot be
controlled. For example, in a two channel spotted microarray experiment, it is
inherently desirable to randomise the allocation of dyes to treatments, in such a
way that each treatment occurs equally often with each dye;

4. Replication of experimental units, at least to an extent that an estimate of accu-
racy is possible. In principle, replication may be further increased to achieve a
pre-specified accuracy. Additionally, by reducing the opportunity for one unsat-
isfactory replicate to damage results, replication makes experiments more robust;

5. The use of repeats, e.g., repeated spots, within experimental units, where this
makes a useful contribution to reducing variability between experimental units.
As with replication of experimental units, this has the additional effect that ex-
periments are more robust;

6. Giving first priority in use of experimental resources to controlling the effects
that have the largest implications for results. For example, once appropriate
forms of correction have been applied, the dye effect may, for the present spotted
microarray technology, be inconsequential; i.e., any remaining bias from this
source may be dwarfed by other sources of variability.

Avoiding Bias

The best way to deal with bias is to modify instrumentation or experimental procedures
to avoid it. Where a bias is associated with instrumentation, it may be possible to find
an analytical adjustment that verifiably removes or reduces the bias. If neither of these
approaches is completely successful, and the necessary information is available, one of
devices 1-3 above can be used.

A major difficulty in discussing methods of avoiding bias in microarray experiments
is that there is insufficient systematic information available about the biases involved.
At present, the exception for spotted microarrays is the bias arising from differences
between the dyes used to label the different samples [13]. There is some evidence of day
effects, i.e. changes in response from one day to another, for both types of microarray.
Concerning other sources of bias, until appropriate experiments are performed it might



Design of Microarray Experiments 375

be prudent to make the laboratory situations as uniform as possible during the course of
an experiment and to randomise treatment allocation over any potential sources of bias
that are not otherwise controlled.

Replication

A discussion of replication and decisions on the optimal level of replication are inti-
mately linked with understanding the sources of error, which we address in a later sec-
tion. In the context of replication, it is useful to consider a hierarchy of corresponding
variation, as in Yang and Speed [56], with the following levels:

1. Separate slides/chips to (separately) obtain measurements on samples from dis-
tinct biological sources — biological replicates;

2. Separate slides/chips to probe each of several replicate preparations of RNA from
the same biological source (sometimes, and rather misleadingly, also referred to
as biological replicates);

3. Technical replicates that use distinct slides/chips to obtain measurements on dif-
ferent target samples of RNA from the same preparation;

4. For spotted microarrays, replicate spots on the slide.

Biological replication is essential when the intention is to make claims about a
broader population of patients, plants or animals. Since biological organisms can vary
substantially, such replication would be necessary even if the measurement device gave
exactly reproducible results when repeated on an individual. Note in this context the
broad distinction between technical reproducibility and biological reproducibility. Note
also that in the above hierarchy, variation at any lower level contributes to variation at
all higher levels.

Since the reasons for replication are not transparent to all, we repeat them here in
the microarray context: (i) to allow generalization to the wider biological population
(and replication at the biological level is essential for this); (ii) to provide information
that will make it possible to do a better experiment next time; (iii) to reduce varia-
tion (and increased replication at the biological level will certainly do this, but may
be an unnecessarily expensive method if a similar improvement could be achieved by
increased replication further down the hierarchy); (iv) to allow identification of major
sources of variability, in the hope that something might be done about some of them
(and in this context we might want to consider crossed, i.e. nonhierarchical, sources of
variation); (v) to allow identification of outliers, at levels where that may be important;
(vi) to make experiments more robust.

The calculation of the number of replicates required to be able to detect a difference
of a given size (power calculations) is challenging in microarray experiments, not only
because the newness of the field means that even rough guides to variance estimates for
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given probe sequences are unknown but also because estimates will change between
probe sequences.

Above, we distinguish “technical replicates” from biological replicates. When
replication is used to reduce variance (because analysis can be based on the mean or
other summary measure) it is important that the replicates be as independent as possible.
For example, using different sample preparation hybridized to chips/slides is probably
preferable here to using duplicate chips/slide but the same mRNA sample.

At least for spotted microarrays, a further level of replication is possible, namely
replicate spots on the same slide, as recommended in Tseng ez al. [51]. However, the
placement of these duplicate spots needs to be carefully considered to avoid potential
systematic bias; see Yang and Speed [56]. Removal of one apparently contaminated
spot may enable remaining spots to be used in further analysis [51].

For gene chip microarrays, limited available sample material and the relatively high
cost of chips often limit the number of biological or technical replicates. While noting
that there are no firm standards on the number of replicates required in a microarray
chip experiment, Novak ef al. [40] mention that they commonly design their initial ex-
periments to include three replicates for each biological state, including control. Li and
Wong [33] recommend 10 replicates for estimating standard errors used for detecting
outliers in gene chip microarray studies. Glynne at at [22] recommend between two
and five replicates.

The value of replication in a spotted microarray experiment was shown by Lee et al.
[31] who, limiting their attention to the red signal, carried out an experiment in which
32 out of 288 genes were expected to be strongly expressed, while the remaining genes
should not have been expressed. They used a mixture model to identify genes that were
expressed. Although the assumptions required for their analysis can be questioned,
their qualitative conclusion holds, in particular that results from individual replicates
are unreliable, and of unknown accuracy. With two replicates, there is some indication
of the extent of irreproducibility; however, Lee ef al. recommend doing at least three
replicates.

In general, and depending on the tissue, experiments with human tissue are likely
to require more extensive replication than experiments with tissue from highly inbred
strains of laboratory animals.

Multiple independent estimates of treatment effects

Designs that allow multiple independent estimates of treatment effects may allow re-
duced replication, or even no replication. For example, for spotted microarrays consider
the “all possible pairs” experimental design with three treatments A, B and C. There
are two estimates of the contrast between A and B: one that is obtained directly by
comparing B with A, and the other that is obtained by subtracting the A versus C effect
from the B versus C effect. Thus, if each pairwise comparison is made only once, there
is one degree of freedom that can be used for the estimation of “noise”; we prefer this
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term to the commonly used term “error”. If the design has two replicates of each of the
three two-way comparisons, there are four degrees of freedom for estimation of noise.

With four or more treatments, there are several alternatives to designs in which all
comparisons are with a reference. The design that has each of the six possible com-
parisons between four treatments has three degrees of freedom for estimation of noise
for evaluating each treatment comparison. An alternative is the loop design [30] that
compares A with B, B with C, C with D, and D with A. This design has one degree
of freedom for estimation of noise. The comparisons that must be made indirectly, be-
tween A and C and between B and D, are on average less precise than the comparisons
that can be made directly. Where there are many treatments, some comparisons in a
loop design will involve many links, with a consequent loss of precision. Modifica-
tion of loop designs to add comparisons that avoid many connecting links is therefore
desirable.

Considerations that will affect the choice between the different designs include:
the number of slides that are required; the precision of the comparisons that are of
chief interest; the amount of available mRNA, for treatments and where relevant for the
reference; the robustness of the design; and the ease of carrying out the analysis.

Factorial designs

Following the structuring of comparisons in terms of main effects and interactions of
factors, it may be possible to incorporate into the noise term high order interactions
that are not statistically significant, thus increasing the available degrees of freedom for
estimating the relevant noise variance. This should be considered at the design stage,
although often it is left to the analysis stage.

For example, Efron et al. [14] used an initial exploratory analysis to satisfy them-
selves that the effect of radiation was similar for both levels of cell line, for both
aliquots. Hence, they felt able to assume that the three interactions involving irradiation
were zero, giving three degrees of freedom for estimating the relevant noise variance.
This does, however, ignore the implications for variance structure of the nesting that
arises from the way that aliquots were formed in this experiment, namely by splitting
samples in two.

For a general discussion of factorial design issues, see Cox [9, pp.94-96] and Cox
and Reid [10, pp.99-101].

4.1 Pooling — an issue for both technologies

If there is insufficient RNA from the tissues under investigation from one individual,
then it is common practice to prepare RNA from, say, several individuals from a pure
(inbred) line, kept as far as possible in a common environment. Other reasons for
pooling include provision of adequate quantities of a standard that can be maintained
consistently over time, and to “reduce” variation. An alternative to pooling is am-
plification. Depending on how it is done, however, amplification can bias abundance
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relationships [4, 29]. At the same time amplification can, for spotted microarrays, lead
to results that are more consistent between slides.

A concern is that pooling might increase or modify potential masking effects that
may arise from the hybridization of RNA to itself or to other strands of RNA. Self-
hybridization is an aspect of secondary structure as described in Zuker [57]. Con-
sistently with comments in Yang and Speed [56], we have been unable to find direct
experimental evidence on this point. If masking is not a serious problem and pooling
is indeed a form of averaging, then it should be used wherever possible, for treatments
as well as for any control. Replication will then require the use of replicate pooled
samples, with different individuals used for the different pooled samples. Or is pooling
perhaps more problematic for treatment samples than for reference samples, e.g., for
knockout or transgenic organisms? There is a clear demand for better knowledge of
effects at this level.

For gene chip microarray experiments, Novak et al.. [40] suggested that pooling
to reduce biological variation is of limited value. On the other hand, Bakay et al. [3]
concluded that pooling is of value. Such conflicting claims are due, in part, to the
different methods used to examine variability, but the issue is clearly unresolved.

4.2 Some special issues for spotted microarrays

The issues that we discuss here are special to spotted microarrays because each slide
gives comparative information — either between two treatments, or between a treatment
and a reference.

The design used by Callow et al. [6], described above, is analogous to the conven-
tional completely randomised design. Note that the use of a common reference sample
creates a correlation between the two sets of comparisons with the reference. Addition-
ally, for this experiment one of the comparisons is between the reference and individual
mouse samples that are correlated with the reference. An alternative is a design in
which each slide gives a direct comparison between a test mouse and a control mouse.
Such a direct comparison will, with 8 slides, be more precise than the indirect compar-
ison that used 16 slides, while requiring less mRNA from each control mouse and the
same amount of mRNA from each test mouse. Often, though not in the Callow et al..
experiment, the comparison with reference will have intrinsic interest. The choice is
then between the design that has all pairwise comparisons, and the design that has only
the comparisons between treatments and reference.

We have noted that a direct paired comparison of the two treatments should be more
precise than the indirect comparison (see also Dudoit et al. [13]; Yang and Speed [56];
Kerr and Churchill [30]). Applying such a design to the Callow et al. experiment,
each slide compares a test mouse with a control mouse. A consequence of the corre-
lations alluded to above is that, as demonstrated in [50], the improvement in precision
is not as great as a naive analysis might suggest. Paired comparison designs are a sim-
ple type of block design, with each pair of samples (mice) that are compared forming
a block. Readers who are familiar with classical experimental design will recognise
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this as a “paired comparison” experiment, though now with many such comparisons
made using a single slide. Fisher [15] discusses such experiments. They are the sub-
ject of David’s [11] book; see also Cox [9]. These designs have been widely used in
food tasting and other sensory evaluation experiments [18]. They are a special case of
more general balanced incomplete block designs. For technical details, see Yang and
Speed [56] who also discuss and compare many different experimental designs.

The precision of the comparisons that are of interest is not the only consideration.
Depending on the experimental context and aim, the experiment in which all compar-
isons are with a baseline has the following merits: assuming that dye bias affects all
comparisons with the reference equally, though perhaps differently for different probe
sequences, the swapping of dyes is unnecessary; the comparison between treatments
and reference may have an intrinsic interest of its own; limitations in the amount of
available mRNA, for one or all of the treatments, may require the use of a design that
compares treatments with a reference [56]; use of a reference that is common over
different experiments allows treatment effect comparisons across those experiments.

Dye bias

It is now well known that the dye bias varies nonlinearly with the average intensity of
the signals [13]. The loess correction, which is one of several corrections that Dudoit ez
al. [13] discuss, seems to work well, but like other such corrections can at best ensure
that the bias over all spots is on average reduced to zero. It is in principle possible
that the strength of the binding may vary with the sequence of bases to which the dye
binds, thus leading to variation between different differentially expressed genes. A
cautious approach therefore requires the routine use of dye flips, i.e., each dye occurs
equally often with each treatment. This allows an analysis that averages out any bias
that remains after the correction.

5 Sources of Variation

The following scheme, adapted from Cox and Reid [10, p. 10], gives a framework
for discussion of sources of variation in microarray experiments. Inevitably, it cannot
capture the complex ways in which sources of variation may interact:

1. Intrinsic or baseline noise (or “error”), i.e., variation that is inherent in the sub-
jects of the experiment

(a) Errors associated with the biological, genetic/environmental sources (e.g.
SNP or different animals or cultures)

(b) Errors associated with hybridization process (which may be probe depen-
dent);



380 J. H. Maindonald, Y. E. Pittelkow and S. R. Wilson

2. Intermediate noise, i.e., variation associated with the process that leads from
treatment to response

(a) Laboratory (RNA extraction, amplification and labeling)
(b) Biological sample sources (tissue, homogeneity, contamination);

3. Measurement error, i.e., error associated with the instrumentation

(a) Chip/slide manufacture (including for spotted microarrays the size and shape
of spots)

(b) Scanning

(c) Algorithms, including the image processing and scaling procedure used

(d) Defects arising in the manufacturing process, or in the subsequent handling
of slides or chips.

References addressing these sources of variation include [25, 28, 32, 37, 38, 39, 40, 46,
56].

A hierarchy of levels of variation can be envisaged, as detailed in Yang and Speed [56],
and might be formalized in a multi-level model, with components of variance attached
to each level of the hierarchy. Such models provide a useful framework for thinking
about sources of noise, and in addition have a role in the examination of the effects of
individual genes. They allow us, e.g., to compare the improvement in precision that
arises from the use of multiple spots for the one probe sequence with the improvement
from increased technical or biological replication, a point that is demonstrated in the
next section. We note that from its beginning, the analysis of variance has been multi-
level; see Speed [48]. Many of the models that Fisher [15] analysed had multiple levels
of variation.

From a design perspective, we require an estimate of technical variability because
we wish to know the contribution that it makes to the variability of biological mea-
surements. Where technical variability is a substantial component, it will be necessary
to break it down further, so that we can identify the major sources of noise and take
whatever steps are possible to reduce their effect. For a variety of biological and tech-
nical measurement reasons, the relative contributions of different noise sources may
vary between probe sequences.

Note that:

1. There are several different components of the experimental procedure. If one of
these components is, relative to the others, a major component of the variation,
attempts should be made to identify it;

2. Comparisons made within individuals, e.g., a cell line from an individual versus
a knockout cell line created from the same individual, can be more precise than
when the sample and the knockout sample are from different individuals. Experi-

mental procedure becomes more than ever important for controlling the variation
that remains;
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3. If interest is in getting an accurate estimate of variation, for purposes of general-
izing (e.g., to mice generally of a particular strain), then the demand is for repeat
results from several individuals, i.e., for genuine biological replication. Then al-
though the standard errors of treatment comparisons can be estimated, it will not
be possible to distinguish between variation that arises from experimental pro-
cedure and the effects of variation between individuals. The distinction between
these two sources of variation may be useful in deciding whether effort on the
improvement of laboratory procedure is justified.

6 The Design of Microarray Chips and Slides

There are two aspects of microarray experiment design — the design of the array/chip,
and the allocation of the mRNA samples to the array/chip. Because the fabrication of
a custom gene chip is expensive, most users accept one of a set of standard gene chip
microarray designs. By contrast, users of spotted microarrays do often design their own
slides. They then face important issues that include the choice of genes (or ESTs), the
number of repeats of each probe sequence, and the relative positioning of repeats. In
addition, each gene may be represented by more than one probe sequence. A major
advantage of fabricated oligonucleotide sequences, for spotted arrays as well as for
chips, is in the opportunities that they offer for selecting and testing probe sequences.
This is an important ongoing research area, which is however beyond the scope of this
paper; we refer the reader to Rouillard et al. [44].

The remaining discussion will comment on the number and possible prioritization
of genes represented on the slide or chip, and the use of repeats. Our comments have di-
rect relevance to cDNA microarray slides, where there is ordinarily one probe sequence,
perhaps repeated, for each gene or EST, but the principles are general.

Many probes, or few probes

It is tempting to include as many probes for genes as possible on a slide. However, as
the number of different genes represented on the slide increases, so also does the po-
tential for false positives when, say, analysing a comparative experiment. To avoid this
situation, the criteria for establishing differential expression becomes more stringent
for statistical tests as the number of tests are increased. For example a ¢ critical value
that equals 2.1 for a single ¢-test (for a single gene) may, depending on the adjustment
used and on the choice of reference distribution, increase to 4.5 when there are 5000
such tests.

An attractive design option can be to divide probes into two groups — a smaller
“likely” group, and a much larger “possible” group. Statistical comparisons can then be
done separately for the two groups, with a much less stringent criterion for establishing
differential expression used for probes in the smaller group. The highest priority for
the use of repeated spots will be given to the smaller group of genes chosen for careful
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scrutiny. Such a classification of genes into two groups builds in prior knowledge, with
implications for the subsequent statistical inference.

Repeated spots

What is the effect on precision from repeating probes multiple times on a single slide,
by comparison with repeating slides?

Writing m,, for the between array mean square, and m,, for the within array mean
square, and with k spots per probe sequence, and assuming a simple form of multi-level
model where the between spots (within array) component of variance is 62, while the
between array component of variance is 0%, it follows that:

E[mb] k012,+02
E[m,] = o

Thus E[m;)/E[m.] equals 1 if 62 = 0, and is otherwise greater than one.
The variance of the mean X over all k spots on each of » slides is

2 2
(8 &)
var[;‘c] = Tb + E

If 6% = 0, then var[x] = %2;, and the repeating of spots is just as effective, for increasing
precision, as the repeating of slides.

The Callow et al. [6] data are interesting in this connection. Out of 5544 non-blank
spots, 175 were duplicates of the same probe sequence, while 6 were tripiicates. For
each of these probe sequences, we can thus use an analysis of variance caiculation to
determine both a within array (between spot) mean square, and a between array mean
square.

Individual sample ratios are too inaccurate and variable, ranging from 0.11 to 11.2,
to give useful indications for experimental design. We can however use a quantile-
quantile plot (Figure 1) to study the pattern of change of the ratio over many different
genes, and assess the extent to which these ratios behave like independent ratios from
an F-distribution with 14 and 16 d.f.

The smallest 156 values are consistent with the assumption that the ratios follow
the theoretical F-distribution corresponding to 63 = 0, independently between probe
sequences. Included among these 156 probe sequences are the only two out of the 181
that were identified as differentially expressed.

Thus for these duplicated or replicated data, for the majority of probe sequences,
increasing the number of spots on a slide gives the same improvement in precision as
increasing the number of slides by the same factor. There is no way to know whether
the same would be true for the probe sequences that were not repeated. Data from a
less homogeneous biological population, e.g., tissues from distinct human sources, are
inherently likely to show stronger evidence of biological variation. In some types of
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Figure 1: Quantile-quantile plot that compares ordered ratios of between to within slide
mean squares, for 181 probe sequences that appear more than once, to quantiles of the F-
distribution with 14 and 16 d.f. The line y = x is superimposed on the plot. The two points
that correspond to genes identified as differentially expressed are marked with a vertical bar
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study, for some probe sequences, increasing the number of spots per gene may be a
highly effective way to improve precision.

Note that in more traditional applications of multi-level models, the relevant vari-
ances are rarely known with sufficient accuracy that they give a secure basis for use
in setting priorities in the future use of experimental resources. For microarray ex-
periments, the combining of information across large numbers of probe sequences can
provide such a secure basis. This is an area that requires further investigation.

Published information on mean square ratios such as just given, for a range of dif-
ferent experimental conditions and probe sequence sets, would greatly assist the design
of future experiments.

Some special issues for gene chip microarrays

Important chip design issues that require further investigation include the following:

1. There is some evidence that the use of mismatch probes in expression indices
reduces precision; see [28, 39]. Further research is required on the optimal
assessment of nonspecific hybridization and background.

2. Some probes appear consistently unresponsive, arguing for their removal or re-
placement.

3. The inclusion of control probe sets can assist quality control and calibration.
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In designing experiments, consideration should be given to the inclusion of “spikes”
of known concentration in the sample, to allow for more accurate normalization be-
tween chips.

7 Discussion

While statistical methodology is now seen as an important part of microarray exper-
iments, its penetration into this area remains, in many respects, superficial. This is
especially true for experimental design. Effort at the design phase of a microarray ex-
periment will often save considerable effort and frustration at the analysis stage; see
Yang and Speed [56] for further discussion. Good experimentation can be seen as a
sequential learning process in that what has been learned from one experiment can con-
tribute to the design of the next experiment.

This paper outlines many of the issues that require consideration when designing
a microarray experiment. There has been emphasis on replication and sources of error
because of their pivotal role in analysis and subsequently inference. For example, in
a comparative experiment researchers should consider that an observed difference is
‘real’ only if it is greater than what could be expected by chance. The estimate of the
size of that difference is a function of all the noise that has contributed to the difference,
and is obtained from replicates. Too often, the need for replication has been overlooked
in microarray experiments. Yet recall Fisher’s [16] comment over seventy years ago
concerning plant experimentation:

No one would now dream of testing the response to a treatment by com-
paring two plots, one treated and the other untreated.

It is unusual when measuring with, say, a tape measure, to make replicate measure-
ments on the same object. The accuracy of the instrument is commonly high relative to
the variability of the object that is measured. Hopefully, technological improvements
will lead to arrays with correspondingly high levels of technical reproducibility. In the
meantime, there are large potential gains that may come from a better understanding
both of the technology and of quantitative aspects of gene expression. Experiments that
will assist in an understanding of the technical characteristics of this methodology and
the sources of variation and bias should be a priority.

Combining information from the different platforms and laboratories also is im-
portant (see, for example, Glynne et al. [22]). As yet, we are not aware of studies
that directly investigate the extent to which results from a microarray experiment can
be reproduced by other workers in other laboratories. If, however, results from some
microarray studies point in one direction and some in another, it may be necessary to
undertake a statistical overview analysis, or meta-analysis, such as is done in clinical
medicine (see for example, Chalmers and Altman [7]). In a related context, Ionnidis
et al. [27] examined the extent to which genetic association studies stand up when re-
peated by other researchers, and found that results from the first study often suggest
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a stronger effect than is found in later studies, and show poor correlation with subse-
quent research on the same association. This observation may be in part a manifestation
of the so-called “file drawer problem” [43], that positive results are more likely to be
published than negative results. Epistatic effects such as are discussed in Wilson [53]
provide another likely explanation.

The challenges that arise from the massively parallel measurement of gene expres-
sion are new. At the analysis stage, what choice of designs will ease the task of in-
terpreting and summarizing the potentially huge number of individual results? This is
clearly an area for further research. Meanwhile, we recommend the use of designs that
are both reasonably robust against unexpected behavior, and that are also capable of
revealing effects that have not been anticipated.
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