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Abstract

We survey results on the stability of various nonlinear time series,
both parametric and nonparametric. The emphasis will be on identi-
fying the role that the “error term” has in determining stability. The
error term can indeed affect stability, even when additive and for sim-
ple, common parametric models. The stability of the time series is not
necessarily the same as that of its related (noiseless) dynamical system.
In particular, this means that care must be taken to ensure that esti-
mates are actually within the valid parameter space when analyzing a
nonlinear time series.
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1 Introduction

Fitting time series with nonlinear models has become increasingly popular,
especially since the emergence of nonparametric function estimation meth-
ods (Collomb and Héardle (1986), Hirdle and Vieu (1992), Chen and Tsay
(1993a,b), Tjgstheim and Auestad (1994a,b), Masry and Tjgstheim (1995)).
No matter what model is fit, a critical part of the estimation procedure is de-
termining whether the model is stable or whether the parameters are within
the appropriate parameter space (Tjgstheim (1994)). Additionally, knowing
the stability properties of a particular model makes it possible to develop
simulation and resampling procedures to be used for inference.

For these procedures, as well as for the obvious questions of limit theo-
rems and robustness, the nature of the noise (error) distribution is clearly a
significant concern. What is not so clear, however, is how this distribution
can affect — if it does at all — the stability question itself. Habit with
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linear models has made it seem as though the error distribution is essen-
tially irrelevant for stability or, as in the case of bilinear and ARCH models,
the magnitude of the error variance can appear to be all that is relevant.
On the contrary, even when additive, noise often plays a large and critical
role in determining the stability of many nonlinear time series models. In
particular, the assumption that the process is stochastic is fundamental.

In a sense, the issue is between taking a stochastic view of the reasons
underlying a process and taking a deterministic view. In the stochastic view,
noise is not just a nuisance of observation and inference, a proxy for the
uncertainty of scientific investigation. Rather it is integral to the behavior
of the process. Of course this is no surprise to those who study stochastic
processes: the effect of noise on the values of the time series persists due
to dependence. This persistent effect, in turn, affects the stability of the
process itself.

Determinism as a tenet of science is ingrained into us at our earliest
experiences with the scientific method. Linear models, it turns out, naturally
lend themselves to this point of view. One’s objective as a scientist is to
identify the hidden principle, to strip away the flesh (as it were) of noise and
distracting factors and with Occam’s razor lay bare the skeleton of a true
mechanism for movement in the process. This is determinism. If instead we
choose to view nature as stochastic (and we will not argue whether this is
a wise choice) then we also recognize the biases of traditional determinism,
and this includes our view of the stability of nonlinear time series.

In this paper, then, our objective is to identify the role that noise plays
in determining stability conditions for nonlinear time series. This will in-
volve general approaches to the problem of stability, illustrated with specific
examples. We will also directly compare stability conditions for time series
with those of dynamical systems which are deterministic and can sometimes
be thought of as noiseless “skeletons” of the process (Tong (1990)). For some
examples the stability conditions coincide and for others they do not.

As have most authors studying stability, starting with Priestley (1980),
we take the approach of embedding the time series (say, {£;}) in a suitable
Markov chain referred to as the state space model and defining stability in
terms of the ergodicity, null recurrence or transience of that chain. State
space models may vary with the application and for our purposes they need

not be observable. For example, an autoregressive type of process can be
embedded in

{Xe} = {(;--- & —pr1)} (1)

for some order p, whereas a process that also has a moving average compo-
nent of order ¢ could use the state space model

{(Xtv Ut)} = {(gta ey §t—p+1a €ty .- ,et—q+1)}~ (2)
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The time series is most suitably stable — and the properties of estima-
tors behave best — when the Markov chain is geometrically ergodic (Num-
melin (1984), Athreya and Pantula (1986), Chan (1989,1993a,b), Meyn and
Tweedie (1992)), meaning the chain converges to its stationary distribution
at a uniform geometric rate. Throughout the paper we set aside the ques-
tions of irreducibility and aperiodicity even though the errors can have a
role in determining these properties as well. So unless we say otherwise,
the stability conditions discussed below are to be taken in the context of a
subspace on which the process is irreducible and/or with time lags according
to the periodicity. Likewise, we assume continuity of the transitions in the
sense of a T-chain (cf. Tuominen and Tweedie (1979), Meyn and Tweedie
(1993), Cline and Pu (1998)).

In addition, there is a distinction between geometric ergodicity of a
Markov chain and geometrically stable drift of a Markov chain. A chain
with geometrically stable drift tends to decrease geometrically in magnitude
when it becomes too large and it will satisfy a drift condition such as those
in Theorems 1 and 2 below, but such drift is not necessary for geometric
ergodicity. For most of the paper we will focus on geometrically stable drift
as it most directly compares with the notion of geometric stability of a dy-
namical system skeleton (see (5)). In section 7, however, we return to this
distinction in a discussion of the role that the noise distribution tails can
play.

The error sequence will be denoted {e;} and is assumed iid. It may or
may not contribute additively to the time series.

Sections 2 and 3 review stability of linear, bilinear and ARCH models,
as well as stability of models that can be tied directly to their skeletons.
Sections 4 and 5 go on to describe the standard uses of Foster-Lyapounov
test functions with examples that behave like their skeletons and an example
that does not. Section 6 presents a new approach to using such test functions
to analyze models which either do not have skeletons or are characteristically
different from their skeletons. Finally, in section 7 we discuss improvements
possible when errors have sufficently light distribution tails.

2. Linear, Bilinear and ARCH Models.

Ezample 1. Viewing stability deterministically works especially well
for a linear model. When in reduced form, the usual linear ARMA(p,q)
model

&=a181+ - +apbipt+e+beg_1+--+bgerq (3)

has (2) as its state space model and

* * *
Ty = a1 i + -+ apTi, (4)
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as its skeleton. The skeleton, in other words, is the time series stripped of
its noise terms. Here, it is a linear dynamical system. A dynamical system
{z}} is defined to be geometrically stable when a bounded solution exists
for each initial condition and there exist K < oo and p < 1 such that

lzf| < K(1+ p!||zol]) forallt > 1 and zo = (z§,...,27_,)- (5)

The system (4) is geometrically stable precisely when the solution is at-
tracted to 0 regardless of the initial condition. An equivalent algebraic con-
dition is that the eigenvalues of the so-called companion matrix,

ay1az---ap
10---0
A= ... .- .
0---10

have maximum modulus less than 1. Obviously, geometric stability for (3)
(more precisely, for (2)) is thus identical to geometric stability for (4).

Ezample 2. The usual condition for stability of bilinear models also
is essentially algebraic though it does depend on the error variance o2. The
model is expressed as

& = a'Xt_l + th._lBUt-—l + et + C’Ut_l,

where e; has zero mean, X;_; = (§t—1,...,&—p), Us—1 = (€t—1,...,€t—¢), Bis
a matrix and a and c are vectors. If B is subdiagonal, there are appropriately
defined matrices A, B; such that if 4; ® A; + 02B; @ B; has spectral radius
less than 1 then the state space process (e.g., (2)) is geometrically ergodic
(Pham (1985,1986)). See Bhaskara Rao et al (1983), Guégan (1987), Liu
and Brockwell (1988), Liu (1992) and Pham (1993) for a treatment with
more general B. Weaker conditions may actually suffice (Liu (1992)). These
also depend on the distribution of e, again principally through the scale
parameter.

Ezample 3. Combined autoregressive and autoregressive conditionally
heteroscedastic (AR-ARCH) models such as

1/2
& =ao+aibi—1+--+apli_p+ (bo +hi& ++ bpﬁtz—p) €t

likewise have an algebraic condition depending on o?:

P 2 P
(Z|azl) +0’2Zb1;< 1
i=1

=1



NONLINEAR TS STABILITY 155

(Tong (1981), Quinn (1982), Lu (1998b), cf. also Diebolt and Guégan (1993),
Lu (1996,1998a), Borkovec (2000)). The relevant Markov chain is (1). Liu,
Li and Li (1997) provided a similar algebraic condition for stability of a
nonlinear AR-ARCH model with piecewise constant coefficient functions.
We return to a generalization of this example in section 6.

3. Nonlinear AR(p) Models.

A common nonlinear model is the autoregressive model with functional
coefficients (FCAR),

& = ap(Xi—1) + a1(Xe—1)&e—1 + - + ¢p(Xe—1)&—p + cle; Xe—1),  (6)

where c(e;; ) has mean 0 for each z € RP and the state space model (1) de-
fines the embedding Markov chain. The coefficient functions ag(z), ..., ap(z)
usually are assumed bounded. The error terms may be additive (c(es;z) =
et) but more generally {c(e;; )} has some regularity condition such as being
uniformly integrable across the choices of z. Self-exciting threshold (SE-
TAR) models are special cases where the coefficient functions are piece-
wise constant, whereas threshold-like models only require the functions to be
asymptotically piecewise constant, as ||z|| — oco. Examples of all of these
have found successful application (cf. Tong (1990)). Nonparametric fitting
of the FCAR model is now common (cf. Tjgstheim (1994), Chen and Hérdle
(1995), Hardle et al (1997)).
The skeleton of (6) is the dynamical system,

Ty = a(Ti_1,- - Ti_p), (7)

where
a(z) = ao(z) + ar(z)z1 + - + ap(z)zp, = (71,...,7p). (8)

Explicit conditions for geometric stability of (7) are difficult to state, and
not always known. Chan and Tong (1985) and Chan (1990) have shown,
however, that if (7) is geometrically stable and a(z) is Lipschitz continuous
then (6) is likewise geometrically stable. That is, {X;} is a geometrically
ergodic Markov chain satisfying a geometric drift condition. Cline and Pu
(1999a, Thm. 3.1; 1999b, Thm. 2.5) have extended this result to the case
a(z) is asymptotically Lipschitz as min;= . p |z;| = 0o, in other words, for =
far away from the axial hyperplanes. It has also been extended to nonlinear
ARMA models (Cline and Pu (1999c)).

The condition is essentially deterministic as it depends only on the dy-
namical system and not on the noise. For the models where a(z) is suffi-
ciently smooth, the condition is sharp and thus stability of the time series
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coincides with stability of the skeleton. This includes any threshold model
where a(z) is piecewise linear and continuous. Unfortunately, the smooth-
ness condition disallows the many threshold models for which the coefficient
function is piecewise linear but not continuous.

Ezample /. An example where this approach gives good results is the
simple SETAR(1) model

& = (ao1 + a11&-1)1g,_ <0 + (ao2 + a12€t-1)1g,_ >0 + c(€e—1)et

which has a piecewise linear and Lipschitz continuous autoregression func-
tion. Assuming ¢(z) is bounded, this process has geometrically stable drift
if and only if

max(ay,a12,011012) < 1,

agreeing exactly with the geometric stability of its skeleton (Petruccelli and
Woolford (1984), Chan et al (1985), Guo and Petruccelli (1991)).

This example and others naturally bring the following questions to mind:
when are stability of the time series and stability of the skeleton equivalent?
That is, when is stability determined independently of the errors? Is it usual
for stability of the time series and stability of the skeleton to be equivalent
or does the error distribution normally play a critical role?

4. The Foster-Lyapounov Drift Condition.

The connection between stability of a stochastic process and stability of
a dynamical system is not superficial, even if it is not always as simple as one
might like. To verify that a dynamical system is stable, one approach is to
show that within some finite time the system (or some appropriate function
of it) is sure to “drift” toward an attracting set. (See (5), for example.) A
simple condition to check this is known as Lyapounov’s drift condition (La
Salle (1976)): for some nonnegative function V', K < oo and compact set C

V(zy) < V(zi_,)+ Klc(z;_,) forallt>1.

Foster (1953) likewise showed that if the mean transition of a Markov chain
on the nonnegative integers was uniformly negative for large states then the
chain is certain to drift toward the origin whenever it gets too large, and
therefore is ergodic.

The method was generalized by Tweedie (1975,1976,1983a), Popov (1977),
Nummelin and Tuominen (1982), Meyn and Tweedie (1992) and others
(cf. Nummelin (1984), Meyn and Tweedie (1993)) to what is now called the
Foster-Lyapounov drift condition for ergodicity of an irreducible, aperiodic
Markov chain {X;}: for some function V taking values in [1,00), K < oo
and “small” set C,

E(V(Xy) - V(X¢-1) | Xy 1 =1) < Klg(z) - 1. (9)
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(A set C is small if there exists m > 1 and measure v such that P(X,, € B |
Xo =z) > v(B) for all z € C and all B (cf. Nummelin (1984), Meyn and
Tweedie (1993)). Typically, compact sets on an appropriately defined topo-
logical space are small.) The function V is then called a Foster-Lyapounov
test function.

Furthermore, a Markov chain (or more precisely, the sequence of distri-
butions generated by the transition kernel from an initial distribution) is in
fact a dynamical system on the space of probability distributions and thus
(9) can be interpreted as an ordinary Lyapounov drift condition for that
system. This is the connection with dynamical systems, therefore, to be
exploited. Indeed, Meyn and Tweedie (1992,1993) have explored the depth
of this concept, and especially for the stronger drift condition for geometric
ergodicity: for some function V taking values in [1,00), K < 00, p < 1 and
small set C,

E (VX)) | Xe-1 = ) < pV (@) + K1c(2). (10)

This drift condition ensures, among other things, V-uniform ergodicity and a
geometric rate of convergence of the marginal distributions to the stationary
distribution (Nummelin (1984), Chan (1989), Meyn and Tweedie (1992)), a
strong law of large numbers for £ 7, h(X;) if |h(z)| < V(z) (Meyn and
Tweedie (1992)), and a central limit theorem for 1 "7 h(Xy) if (h(z))? <
V(z) (Meyn and Tweedie (1992), Chan (1993a,b)).

If the test function satisfies ||z||” < V(z) < M + K]||z||" for some finite
K and M then (10) is a condition for geometrically stable drift of the chain.
(See Theorem 1 in the next section.)

Ezample 5. An example of the application of the drift condition (10)
is to the FCAR model (6). Chan and Tong (1985, 1986) have shown that if

p
>_suplai(z)| <1 (11)
=1

then (10) may be verified for a test function of the form V(z) = 1+
P ,cilzi|. Chen and Tsay (1993a) prove geometric ergodicity with the
same condition using a slightly different approach. Condition (11) depends
on the FCAR representation but An and Huang (1996) have shown that the
somewhat weaker
lim su la(z)
P

_la@l (12)
lle|| o0 MAXi<p |Zi]

also suffices, using V' (z) = 1+max;<p |z;| and the m-step approach discussed
in the next section. Unfortunately, not even (12) includes all geometrically
stable linear models. For example, the AR(2) model & = a1&t—1+a26i—2+€¢
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is stable if and only if max(|az|,|a1]| + a2) < 1 but (12) holds only if |a;| +
laz| < 1.

5. Approaches to Using Drift Tests.

The benefit realized in applying a drift condition clearly relies on the
nature of the test function. The choice of a test function has been described
as something of an art and the functions are often constructed specifically
for the model at hand. Test functions which are based on a simple kind of
norm (e.g., V(z) = 1+ ||z|]|” or V(z) = 1 4+ max;<p|z;|") usually do not
provide sharp conditions for stability.

Tjgstheim (1990) suggested the m-step approach for overcoming this dif-
ficulty. The idea is to apply a drift condition such as (9) or (10) to the
m-step process { Xy} rather than to {X;} and to employ the useful result
that, under irreducibility and aperiodicity, stability of { X,,;} is equivalent to
stability of {X;}. This approach is theoretically optimal if m is chosen large
enough but it obviously requires higher order transitions and computation
of the resulting expectations.

Another approach we call the directional method has proved useful for
certain SETAR models (Petruccelli and Woolford (1984), Chen and Tsay
(1991), Lim (1992), Cline and Pu (1999b)). Here we use V(z) = 1 +
A(z)||z||", where r > 0 and X is bounded and bounded away from 0. Typi-
cally A is primarily a function of the direction of z rather than its magnitude.
Optimally choosing ) is equivalent to optimally choosing Tjgstheim’s m (see
below). Furthermore, the geometric drift condition can be expressed in terms
of the drift of the logarithm of V(X};) (the log-drift condition).

For the following theorems let A be the class of all nonnegative measur-
able functions on RP that are bounded and bounded away from 0.

Theorem 1 Assume {X:} is an aperiodic, ¢-irreducible T-chain in RP such
that E (||X1||"/(1 + ||z]|") ) is bounded for some r > 0. The fol-
lowing are equivalent conditions, each sufficient for {X.} to be geometrically

ergodic.
Xa|I" _ ,,
A;)w”lr IXo—z)<lforsome/\eA,r>0,

)<1forsomer>0,n>m20.

(i) lim SuP||a:||—>oo

S
(ZZ) hmsup”z”_,oo (
(i) hmsup”z“_,ooE (log( %%)L!%llru) lXo = a:) < 0 for some § > 0,
AEA
(

(iv) hmsup”w”_,oo log ( 1+ |X ) I Xo = :1:) < 0 for somed >0, n >

m 20
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Proof The equivalences follow from Cline and Pu (1999a, Lem. 4.1, Lem.
4.2) and the sufficiency for geometric ergodicity from condition (10) with
test function V(z) = 1 + A(z)||z||". ]

If the noise terms in a FCAR(p) model do not dominate when the time
series is very large then they may be at least partly ignored, as the following
theorem suggests.

Theorem 2 Assume {X;} is an aperiodic, ¢-irreducible T-chain defined by
(1) and (6) such that ay,...,ap are bounded, sup,<p E (Ic(e1;2)]") < oo
for some r > 0 and all M < 00, and limjz)0 E (|c(er; z)|"/|z]|") =

Let a be given by (8) and 6(z) = (a(z),z1,...,2p-1)/(1 + ||z]|) for z =
(z1,...,zp). The following are equivalent conditions, each sufficient for {Xt}
to be geometrically ergodic.

(i) imsupy|z||00 £ (&,\%}))- | Xo = m) [16(z)||" <1 for somer >0, A € A.

(1) hmsup”z”_)ooE = 1O(XH)I"
m2>0

(
(41i) limsup|jg|00 B (log (5 + J/\(_z_jlng H) ‘ Xo = :L') < 0 for some é > 0,
(

Xo—a:)<1f0'rsomer>0 n >

A€EA.

() imSup)jg||_y00 £ (X j=m log (6 + 6(X;)][) [Xo = a:) < 0 for some & >
0,n>m>0.

Proof This essentially is Theorem 3.2 in Cline and Pu (1999a). O

Similar theorems express equivalent conditions for transience of a Markov
chain (e.g., Cline and Pu (2001, Thm. 2.2)).

Ezample 6. We refer to conditions (iii,iv) in Theorem 1 and (iii,iv) in
Theorem 2 as “log-drift” conditions. A model which illustrates the benefits
of using a log-drift condition is the Periodic FCAR(1) model,

& = ag(§4—1) + a1(€e—1)&—1 + e,

where the coefficient function a;(z) is periodic with period 7. This is an
unusual model but there is a suggestion of periodicity in the coefficient func-
tions fitted by Chen and Tsay (1993a) for the sunspot number data, and it
was at the urging of Prof. Chen that we studied the stability of this particular
model. At any rate, it is a useful example.

With n = m = 1, the condition in Theorem 2(iv) can be reexpressed as

limsup E (log(é + |a1(&1)]) ‘ & = z) <0 for some § > 0. (13)

ll||—2o00
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(This can also be determined from the 2-step condition with V(z) = 1 +
|z|].) The function E (log(é + |a1(é1)]) | o = z) is close to being periodic in
|a1(z)z|. Thus the left-hand side of (13) is only a limsup, not a limit, which
has the unfortunate consequence that condition (13) is not sharp.

The solution is to choose n = m = 2 instead. Assume a;(z) is con-
tinuously differentiable with a derivative that is 0 on a set of measure 0.
Then the function E (log(é + |a1(£2)]) | o = z) does in fact have a limit and
therefore does lead to a sharp condition, namely if

| tog(lar(wl)du < 0 (14)

then {£:} is geometrically ergodic and if [j log(|ai(u)|)du > 0 then {&} is
transient (Cline and Pu (1999a, Thm. 3.4; 2001, Thm. 3.2)).

Note that the skeleton process, z; = ag(zi—1) + a1(z¢—1)Tt—1 is geomet-
rically stable if and only if sup|a;(z)] < 1. Therefore, this is an example
where stability of the time series does not coincide with stability of its skele-
ton. For a specific example, suppose a1(z) = ¢ + dcos(z) with |c| + |d| > 1,
le] < |d| < 2. Then the time series is geometrically ergodic but the skeleton
is not stable.

Although condition (14) does not explicitly refer to the noise distribution,
the noise does play a major role in determining the condition by causing the
drift to be averaged.

Ezample 7. The directional method, on the other hand, seems to work
well with many threshold models of order 1, including ones that employ a
delay. Consider, for example, the TAR(1) time series with delay d given by

& = ao(Xi—1) +ar1(Xe—1)&—1 + et Xi—1=(&-1,---»&t-d),

ap(z) bounded and a;(z) depends only on (sgn(zi),...,sgn(zq)),
z = (z1,...,24). There are thus 2¢ regions Ry,..., R, each correspond-
ing to a coefficient: a; = ai(z), £ € R;. Notice that the thresholds —
boundaries of the regions — are the axial hyperplanes.

As long as the time series remains large (which is all that is of concern for
stability), & avoids the thresholds and hence X; cycles among some subset
of the regions. There may be several such subsets possible, depending on
the signs of the ay;’s, and it is the drift of the “worst case” cycle that is
critical. Thus the geometric drift condition for stability is exactly (Cline
and Pu (1999b, Cor. 2.4))

Halh <1,

cycle(R“, Ry ) -1
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where the maximum is taken over the possible cycles described above. This
corresponds precisely to the geometric stability of the skeleton. The test
function for establishing this condition takes the directional form, V(z) =
1+ M(z)||z||", and the optimal choice for A(z) is constant on each of the 24
regions.

6. The Piggyback Method.

To this point we have presented examples studied with what one might
call the traditional methods of drift analysis. Not all models yield to this
analysis, however, including some surprisingly simple models. In this section
we present a new approach, as yet somewhat informal, that employs a much
more sophisticated m-step test function. We call it the piggyback method
because it relies on finding a stable Markov chain similar to a process em-
bedded in the one of interest and building a new test function on top of one
that works for the known stable chain.

We will first present a sketch of the piggyback method and then provide
three examples. The sketch, however, is quite rough because in fact the
method is applied somewhat differently for each of the examples. (See the
papers referenced below.) Indeed, the concept is elegant but its application
is messy and as yet we do not know how generally useful it may prove to be.

The time series {¢;} is embedded in a Markov chain {X;}. At the same
time we consider another Markov chain {Y;} similar to a simpler process
embedded in {X;}. The chain {Y;} is assumed to be geometrically ergodic
and, in particular, to satisfy the geometric drift condition with test function
Vi(y). Its stationary distribution we denote G. If there is a function H(y)
which somehow exemplifies (or bounds) the relative change in magnitude of
X, when X is large and Yy = y then, intuitively, the stationary value of
H(Y:) will measure the geometric drift of {X;}. Thus, a log-drift condition
for geometric stability would be

exp (/ log(é + H(y))G(dy)) <1 for some d > 0. (15)

To obtain a test function that will yield such a condition, we first define

h(y) = E((6 + H(Y1))"[Yo = y)N1(y)

and let y(z) identify the “embedding” of Y; into X;. An integer m is chosen
suitably large, a “correction” function ¢(z) constructed and the ultimate test
function is (something like)

1/m
V() = cla (HE(h |Y0=y(f'3))) .
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The key point for this paper is that the piggyback method and the re-
sulting condition for ergodicity capture the implicit stochastic behavior of
{Y:}, not the behavior of a deterministic skeleton of {X;} or {¢;}. Even if
such a skeleton can be identified, its stability properties will not coincide
with those of {¢;}. Alternatively, one may think of {X;} as having a sort of
stochastic skeleton which must be analyzed for stability.

Ezample 8.  Our first example is a bivariate threshold model (Cline
and Pu (1999a, Ex. 3.2; 2001, Ex. 3.2)). Indeed it is the simplest such model
that is not just two independent univariate models joined together. Suppose

X, = (Xt,l) _ <al(Xt—1,1)Xt—-l,1) + (et,1>
Xt2 az(Xt-1,1)Xt-1,2 et2)’
where a;(z1) = aj1lz; <0 + @i2lz; >0, 2 = 1,2. Note that the nonlinearity

of the second component X1 is driven by the univariate TAR(1) process
{X¢1}. The latter is our “embedded” process and is stable when

max(a,a12,011012) < 1. (16)

Let G be its stationary distribution. The function |a2(z;)| plays the role of
H(y) so that the resulting (sharp) stability condition is, in addition to (16),

|ag1|®@|age|'=¢©® < 1,

which represents the stationary value of the relative change in magnitude of
Xt 2 when it is very large. This condition neither implies nor is implied by
the stability condition for the corresponding skeleton process: (16) plus

max(|021|1a11>0a la22|1a,5>0, |a21a22'1011 <0,012<0) <L

Ezample 9. The second example (cf. Cline and Pu (1999c)) is the
threshold ARMA(1,q) model (TARMA) with a delay d:

& = ap(Xi—1) + a1(Xe—1)€t—1 + et + b1 (Xi—1)es—1 + - - - + bg(X¢—1)et—qg,

where X;_1 = (éi-1,---,&—a), G0, b1, ..., by are bounded and a; (z) is (asymp-
totically) piecewise constant. We further assume the thresholds are affine
which implies the regions on which a; (z) is constant are cones in R¢. This is
the simplest interesting example of a TARMA process. See also Brockwell,
Liu and Tweedie (1992) and Liu and Susko (1992). In the case ¢ > 0, the
time series must be embedded in the Markov chain {(X;,U;)} where X; is
as above and U; = (e¢,...,€t—g+1)-

Threshold ARMA models have not seen a lot of study, perhaps in part
because the moving average terms can affect the irreducibility and periodicity
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properties of the chain in complicated ways as yet not well understood. (See,
for example, Cline and Pu (1999c)). This by itself is a major role played by
the noise but we will pass by it here.

Let the regions Ry, ..., Ry be the partition of RP such that a;(z) is con-
stant on each region, with a;;,...,a1, being the corresponding constants.
There are basically two types of situations that arise in these models when
& is very large: cyclical and noncyclical. For the cyclical situation, {X}}
essentially cycles close to certain rays having the form

( f_—?ll a15;5 Hf;f Aljis--s 1):1:1, (17)

if all are in the interior of the conical regions. Noise plays no role in de-
termining the stability in this situation since X; avoids the thresholds; all
that matters is the product of coefficients realized by moving through the
cycle. For a model which is purely cyclical the stability condition is based
on the “worst case” cycle, it is deterministic and corresponds to that of the
skeleton process, and it is very much like that of the TAR(1) process with
delay discussed in section 5.

The model may also have, however, situations where one or more of the
rays of type (17) actually lie on a threshold. In such a case, X; can fall
on either side of the threshold, and thus into one of two possible regions,
at random but depending on both the present error e; and the past errors
€t—1,...,€et—q. If J; denotes the region that X; is in then {(J;, U;)} behaves
something like a Markov chain where the first component is one of a finite
number of states and the second component is stationary. (If ¢ = 0 then
{Ji} itself is like a finite state Markov chain.) We relate {(J;, U;)} to such
a Markov chain denoted, say, {(J;,U;)}. This chain is not necessarily irre-
ducible or aperiodic but clearly every invariant measure is finite. Indeed it
may be decomposed into a finite number of uniformly ergodic subprocesses.
The coefficients |a,;| play the role of H(y) in this model.

Now let G be any stationary distribution for {(J;,U;)} and define m; =
Jre G4, du). If (condition (15))

H laljlﬂj <1
J

regardless of the choice of G then {(X;,U;)} is geometrically ergodic and,
again, the condition is sharp. Because at least one ray lies on a threshold,
the noncyclical models are special cases, but the stability condition for a
noncyclical process can be quite different from that of nearby purely cyclical
processes. See the parameter spaces for the TARMA(1,1) with delay 2 in
Cline and Pu (1999c).
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Ezample 10. The third example combines the nonlinearity of piecewise
continuous coefficient functions with a piecewise conditional heteroscedasc-
ity, a model called the threshold AR-ARCH time series:

& = a(Xi—1) + b(Xe—1)et + cles; Xe—1),

where a(z) and b(z) are piecewise linear, {c(e1;z)} is uniformly integrable
and X1 = ({t-1,.--,&—p). We further suppose a(z) and b(z) are homoge-
neous, b(z) is locally bounded away from zero except at z = 0, the thresholds
are subspaces containing the origin and the regions of constant behavior are
cones. Note that these assumptions need only hold asymptotically (in an ap-
propiate sense) as z gets large. Once again, the Markov chain under study
is {Xt}

The basic idea on which we piggyback is that the process {X;} collapsed
to the unit sphere behaves very much like a Markov chain. The compactness
of the unit sphere serves to make this chain stable and then the stability
condition for the original chain can be computed. More specifically, define

& = a(Xe1) +b(Xe)er, XP=(&,-.1 & py1) and 67 = X7/||X7]|.

Then, due to the homogeneity of a(z) and b(z), {07} is a Markov chain on
the unit sphere and is uniformly ergodic with stationary distribution G, say.
By the piggyback method, therefore, X; has geometrically stable drift if

B ( [ 108(1a(6) + b®)e1 /161G d8) ) <.

For a simple demonstration, suppose p = 1, a(z) = (a1l;<0 + a2lz>0)z
and b(z) = (b11g<o+b2lz>0)x, bi # 0,4 =1,2. Then {67} is a Markov chain
on {—1,1} with transition probabilitiesp_; 1 = P(a1+be;1 <0) =1-p_1 1
and P1,—-1 = P(ag + boe; < 0) =1 —Pp1,1- If

P1,-1 P-11
E | ————1log(la1 + bie1|) + ————1log(|az + bee <0
(P—1,1 +P1,-1 Bllas +brea) P-1,1 tP1,-1 8llaz +bz 1|))
then {&:} is geometrically ergodic. This example and generalizations of it

will be considered fully in a forthcoming paper (Pu and Cline (2001)).

Ezample 11. A very simple model which has not been analyzed fully
is the ordinary TAR(2) model with additive noise,

& = a1(Xi—1)&—1 + ao(Xi—1)€—2 + e,

where X;_1 = (§-1,&—2) and a1(z) and ay(z) are piecewise constant. The
precise stability condition is not known even when there is but one affine
threshold. The results of this section, however, suggest that the key will be
to identify an appropriate stochastic skeleton process to study.
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7. The Role of the Noise Distribution Tails.

Spieksma and Tweedie (1994) pointed out how, with appropriate as-
sumptions on the error distribution tails, an ordinary drift condition (such
as (9) with V(z) = 1+ |z|) can be boosted to ensure geometric ergodicity of
the process. We generalize the result as follows.

Theorem 3 Assume {X:} is an aperiodic, ¢-irreducible T-chain in RP and
V: RP — [1,00) is locally bounded. Suppose there ezists a random variable
W (z) for each z such that V(X;) < W(z) whenever Xy = z,

(W (z) — V(z)| + W @-VED} is uniformly integrable for some r > 0 and

limsupE (W(z) — V(z)) < 0. (18)

llz||—2o0

Then there ezist s > 0 and Vi(z) = e*V® such that {X;} is Vi-uniformly
ergodic (and hence geometrically ergodic).

Proof This follows directly from the drift condition for V-uniform ergod-
icity (cf. Meyn and Tweedie (1993, Thm. 16.0.1)) and uniform convergence
(cf. Cline and Pu (1999a, Lem. 4.2)). (See also the proof to Theorem 4.) O

Essentially, this is the log-drift condition in another guise: if the test
function in (10), for example, is replaced with Vi(z) = e°V(®) with some
sufficiently small s > 0 then (18) is a log-drift version of the condition. As
a bonus, if V(z) is norm-like, satisfying ||z|| < V(z) < M + K||z||, one gets
strong laws and central limit theorems for all the sample moments (Meyn
and Tweedie (1992), Chan (1993a,b)) and exponentially damping tails in the
stationary distribution (Tweedie (1983a,b)).

Ezample 12.  For example, consider the FCAR(p) model discussed in
section 3. If the noise term c(es; X;—1) is such that sup, E(e"(e1:?)) < oo
for some r > 0 then it frequently is possible to satisfy the requirements of
Theorem 3 with a norm-like V' (z). To illustrate how this can work, consider
the FCAR(1) process, X; = & = a1(&—1) + c(et; &—1) with

—L<ai(z) <anz+ap ifz < —L, (19)
L > ai(z) > appx +agy if ¢ > L,

where aj1a12 = 1, a1 < 0 and L < co. We assume here that E(c(e;;z)) =0
for all z € R and sup, E(e"1(¢1®)]) < oo for some r > 0. For the special case
of equality on the right in (19) (the SETAR(1) model of Example 4), Chan
et al (1985) showed {¢;} is ergodic if and only if def ai1ag2 +ag1 < 0. We
thus assume v < 0. Let A\; = )\2_1 = /—ay; and choose §; > 1,7 =1,2 so
that —A\jag2 + 01 — 9 = Agagr + 92 — 61 = Ag’)’/Z. Define

V(z) = (Mlz| + 61)1a<o + (Ao|z| + 62) Lao.
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Then it is a simple computation to show that for some ¢ > 0 and K < oo,
V(X1) —V(z) £ (Aele<o — A113320)‘3(31; z) + Ay/2 + K|c(er; m)lllc(e1;z)|>e|a:|
when | Xgo| = |z| is sufficiently large, which satisfies the conditions of Theorem
3 with the limit in (18) being A27y/2. The time series is thus geometrically
ergodic. On the other hand its skeleton, while stable, is not geometrically
stable since a11a12 = 1. In fact we would say both have only a linear drift.

Tanikawa (1999) studied this example and Cline and Pu (1999b) looked
at similar first order threshold-like models, but with a possible delay. Using a
similar approach but with stronger stability conditions, Diebolt and Guégan
(1993) studied multivariate examples and An and Chen (1997) investigated
FCAR(p) models with p > 1.

One of the drawbacks to a log-drift condition such as the one in Theorem
1(iii) is that it guarantees geometric ergodicity only with test functions of
the form V' (z) = 1+ A(z)||z||” where r may be arbitrarily small and therefore
it fails to imply needed limit theorems for sample moments. To be able to
conclude Vj-uniform ergodicity with an exponential-like V}, the condition
must again be boosted and then the desired limit theorems will hold.

Theorem 4 Assume {X.} is an aperiodic, ¢-irreducible T-chain in RP and
V: RP — [1,00) is locally bounded and V(z) — oo as ||z|| — oo. Suppose
there erists a random variable W (z) for each z such that V(X;) < W(z)
whenever Xy = z, {|log(W(z)/V (z))| + eW @) =(V@)"Y 45 uniformly inte-
grable for some r > 0 and

limsup E (log(W(z)/V (z))) < 0. (20)

lll| o0

Then there ezist s > 0 and Vi(z) = eV @) such that {X;} is Vi-uniformly
ergodic (and hence geometrically ergodic).

Proof Foerleand0<s<r,wehave%(ew""’—1)§§('g—:—l)

and log(w/v) < % (’1‘,’—: - 1) < 0. By the uniform integrability of
{log(W(z)/V (z))}, truncation and uniform convergence (as s | 0),

limsup E (1 (e(W(m))‘—(V(z))" - 1) 1w () gV(z))

llzl| 00 s
. 1 ((W(2))*
S b (E ( V@) ~ 1) IW‘”)SV“’)

< limsup E (log(W (2)/V (2)) lwm)zv()) +€ < =€ (21)

llz|—00

for € > 0 and s > 0 small enough.
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For w >wv >1and 0 < s <r/2, we have

0 < log(w/v) < % (e"’s_”s - 1) < % (ewr"”r — 1)

and if w"—v" < K,v > M > 1 then % (e¥'—*" —1) < ':{;;:;i By the uniform

integrability of {e(" (@) =(V(#)"}, truncation and V() — oo as ||z|| — oo,

0 < limsupE (log(W (2)/V (2)lw(e)>v(z) )

||| =00
< limsupFE (l (e(W(z))s—(v(z))s - 1) lw(z)>v(z)) <e (22
[lzl|—00 s -

for € > 0 and s > 0 small enough.
From (20)-(22), therefore, we conclude there exists s > 0 small enough

that )
limsup £ (— (e(V(Xl))s"(V(z))s - 1) l Xo = m) <0.

[le||—00 s

Also, Sup|izjj<m B (e(V(Xl))s l Xo= z) < oo for all M < oo, and hence geo-
metric ergodicity is assured with test function V;. o

Ezample 13.  We again consider an FCAR(1) model, & = a1 (&-1) +
c(et; &t—1), satisfying (19) but now we assume a;; < 0 < ajja12 < 1 and
lc(e1;z)| < c1]z|Pler| where ¢; > 0, 0 < B8 < 1 and E(e"!l) < oo for some
n> 0. Let Al = \/?11, AQ = \/171_2— and V(il?) =14 (A11z<0 + AleZQ)IfL".
Then for | Xo| = |z| sufficiently large and some ¢ > 0 and K < o0, V(X;) <
(1 — €)V(z) + K|z|P|e;|, which satisfies Theorem 4 with 7 < 1 — 3. See
also Diebolt and Guégan (1993) and Guégan and Diebolt (1994) for related
results.

When the errors are bounded, an otherwise unstable model can some-
times be stable. See Chan and Tong (1994) for an example.
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