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Abstract

Some personal perspectives on changing paradigms in inference are pre-
sented. The topics discussed include the changes from independence to de-
pendence, estimators to estimating functions and from adhoc methods to
Fisher information based methods. Recent trends in time series, general
theory of inference, estimating functions and information based techniques
are discussed.

1 Introduction

The advent of the new millenium gives us a particularly good excuse to take
stock of changing paradigms in inference, or more particularly inference for
stochastic processes. Our subject can reasonably be thought of as roughly
a century old, and it was strongly practical and model based from the out-
set. Our distinguished ancestors such as Pyotr En’ko in 1889 with the chain
binomial model for epidemics, Louis Bachelier in 1900 with Brownian mo-
tion and the modelling of the sharemarket and Filip Lundberg in 1903 with
collective risk for insurance application, were very much motivated by the
scientific needs of their times.

Any list of paradigms is, of course, rather subjective. The ones that I
will treat in this paper are undoubtedly important, and are ones which have
influenced me personally. But there are arguably others, and certainly one
other that I would have liked to discuss. That is the advent of the computer
as a tool for model exploration and simulation. I have learned a lot from
the newly available technologies. A lot about bad models, poor behaviour
of limit theorems, slow rates of convergence etc. But the constraints of the
occasion have precluded discussion of these issues. So let me pass to the
topics which I will discuss. These are the changes:

1. Independence = Dependence.
2. Estimators = Estimating Functions.
3. Ad hoc methods = Fisher Information based methods.
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In connection with the first of these, I should remark that I am not seek-
ing to minimize the role of independence in stochastic models. Regeneration
in stochastic models is a key phenomenon and our capacity to simulate is
strongly tied to independence. My focus is on what we can do in inference.

2 Independence to Dependence

The history of Inference for Stochastic Processes has two major strands of
development:

(1) General theory of inference.

(2) Inference for time series.
We shall examine the impediments to the development of each of these.

2.1 Time Series

Time series as an autonomous area, of study basically dates from the 1920s.
There were many contributors but I will particularly mention the name of
George Udny Yule who wrote papers in 1926, 1927 which laid the foundation
of autoregressive process theory. The idea of a linear model in terms of a
finite past of the process together with a stochastic disturbance was natu-
ral and immediately successful in a wide range of problems. The subject
exolved into the autoregressive moving average (ARMA) and autoregressive
integrated moving average (ARIMA) forms and entered the modern era in
large part through the computational implementation of Box and Jenkins
(1970).

From the outset there was a special focus on the case of Gaussian time
series. Indeed, the theory was developed for second order stationary Gaus-
sian processes, which are fully characterized by their means and covariances
{v(k) = cov(Xpn, Xn+k)}. Also, maximum likelihood (ML) and least squares
(LS) estimation procedures were used from the outset, and continue to be
used.

Amongst the most influential early results was the following:

Wold Decomposition (1938). If { X;} is a purely non-deterministic (phys-
ically realizable) stationary process with zero mean and finite variance it is
representable in the form

00
Xn = Z Qj€n_j
0

where {¢;} is a stationary, uncorrelated, zero mean process and Y720 aj? <
oo. If the X's are normally distributed the €'s can be taken as independent
and identically distributed (iid) and normally distributed.
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This theorem implicitly suggested that all second order stationary pro-
cesses could be reasonably approximated by ARMA processes of sufficiently
high order, a suggestion which was further reinforced by results such as the
following:

Theorem If {7(.)} is any covariance function such that y(k) — 0 as k — oo,
then there is a causal AR(K) process whose autocovariance function at lags
0,1,..., K coincides with v(5),7 =0,1,...K.

The results lulled users into a false sense of security concerning the
breadth of applicability of ARIMA models, and it was not for some decades
that the need to deal with long-range dependent processes, and various non-
linear phenomena, could no longer be denied. In the meantime, the subject
proceeded via development of inference for the Gaussian case and then the
Gaussian assumption was dropped and replaced by that of iid innovations e.
There was complete reliance on the Strong Law of Large Numbers (SLLN)
and Lindeberg-Feller Central Limit Theorem (CLT) for sums of independent
random variables to develop the consistency and asymptotic normality re-
sults which underpinned a useful inferential theory. This is where the subject
stood at the end of the 1960s.

The 1970s saw the development of limit theory, in particular the SLLN
and CLT, for martingales, subsuming the earlier results for independent
random variables. With the martingale theory it became possible to treat
issues such as when is a linear model appropriate.

There is, indeed, a simple answer to this question. Consider a stationary
finite variance process {X,} and write

€ = Xj — E(X;|Fj-1),

where the ¢; are the prediction errors, {F,} are the past history o-fields and
E(X;|Fj-1) is the best one-step predictor of X;. Then, it turns out that the
best linear predictor is the best predictor if and only if the €’s are martingale
differences (Hannan and Heyde (1972)).

In recent times there has been an increasing realization of the role of
non-linear models, but much of the development has been coming from other
professions, such as physicists (see for example Kantz and Schreiber (1997)).
Dynamical systems, often with striking associated properties such as chaos,
have attracted much attention and proponents of deterministic theory have
thrown out a challenge to the stochastic community to which there has been
all too little in the way of a reasoned response.

2.2 General Theory of Inference

This was developed in a setting of a random sample of iid rv (and is still
typically taught in that setting!). Much of the theory rests on asymptotic
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normality (or mixed normality) of estimators, and when it was developed
there were nice CLT results only for independent rv. The first attempts at
a discussion of inference for stochastic processes in a general setting came
only in the 1960s and 1970s. This can be seen in the books of Billingsley
(1961) and Roussas (1972) in a setting of stationary ergodic Markov chains.

Soon thereafter, general central limit results for martingales became
available subsuming independence results such as the Lindeberg-Feller CLT.
Only then did it become possible to give a very general discussion of inference
for stochastic processes in the traditional likelihood based setting.

The basic framework is as follows. We have a sample {X;, X»,...X,}
whose distribution depends on a parameter 6 (which we take as scalar for
convenience). The likelihood L,(f) is assumed to be differentiable with
respect to 6. Then, ordinarily, the score function

Un(6) = diogLa(6)/d0 = " ui(0)
=1

is a martingale. The whole classical theory of the maximum likelihood es-
timator (MLE) carries over in its entirety to the general setting. One uses
martingale limit theory on Uy, (€) and local linearity with a Taylor expansion
in the neighbourhood of the MLE. Details are given in Hall and Heyde (1980,
Chapter 6).

The essence of the results is as follows. If I,(8) = Y1 ; E(ui?|Fi-1) is
generalized Fisher information, and if I,,(0) % 0, and

I,(6)/EL,(6) &5 n*(9)

for some n(f) > 0 a.s., ‘up’ denoting uniform convergence in probability,
then with little else one has optimality of the MLE in terms of producing
minimum size asymptotic confidence intervals for 6 and the classical theory
is nicely subsumed.

Martingale theory provides the natural setting but - 20 years later - these
things have regrettably not yet become part of the statistical consciousness.
The consequence is that many contemporary developments in inference, for
example on the ”general” linear model, missing data and the EM algorithm,
multiple roots of the score function,... - are carried out in an independence
setting while a much more general treatment is possible. Martingales are not
yet part of the statistical mainstream. They are still regarded as belonging
to the domain of the probabilists. It is notable that, by contrast, the Econo-
metricians have not been reluctant to embrace the theory. See, for example,
Davidson (1994, p. xiii).
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3 Estimators to Estimating Functions

An estimating function (EF) is a function of data and parameter, typically
with mean zero, which when equated to zero gives a parameter estimator as
its root.

The use of estimating functions is close to universal in statistical practice.
It is just that there has been little focus to date on EF’s themselves. Their
usage dates back at least to Karl Pearson’s method of moments (1894). For
example, if X; are iid with EX; = p and varX; = o2, then

are estimating functions for 6 = (u,0?)".
Maximum likelihood (ML) and least squares and its variants (LS, WLS)
are basically EF methods, the parallel between them being shown below.

ML LS/WLS
Likelihood L(6) Sum(weighted sum) of squares S(6)
Form the score dlogL(6)/d0 Form dS(6)/d0
Equate to zero and solve Equate to zero and solve

The score function is a benchmark (eg. Godambe (1960)). It is the score
function, rather than the MLE which comes from it, which is fundamental.
Indeed, the optimality properties which we ascribe to the MLE are really
optimality properties of the score function. For example:

e Fisher information is an EF property (Fisher information is varU).

e The Cramér-Rao inequality is an EF property. It gives varU as a
bound on the variances of standardized estimating functions.

EF’s have significant advantages over the estimators derived therefrom.

e EF’s with information about an unknown parameter can be readily
combined.

e EF’s usually have straightforward asymptotics. That for the estimator
is derived therefrom using local linearity plus regularity.

For a discussion of optimal inference it is best to choose an EF setting and
to focus on optimality of the EF and not optimality of an estimator derived
therefrom. The origins of this theory go back to the 1960s but it began a
serious surge of development in the mid 1980s, much of the impetus being
provided by Godambe’s 1985 paper. A detailed treatment of the subject has
been provided in book form in Heyde (1997). The theory, labelled as quasi-
likelihood since it closely mimics the features of classical likelihood theory,
is outlined below.
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3.1 General QL Principles

The setting is of a sample {Z;,t € T} from some stochastic system whose
distribution involves 6. The 8 to be efficiently estimated is a vector of di-
mension p.

The approach is via a chosen family of EFs

G ={Gr(0) = Gr({Z:,t € T},0)},
the G being vectors of dimension p with EGT(6) = 0 and the p X p matrices
EGr = (EdGr;/06;), EGTGT'

being assumed nonsingular.

Comparisons are made using an information criterion (generalized Fisher

information)

E(Gr) = (EG) (EGrGr')  (EGT)
for Gr € G. We choose G*r € G to maximize £(G7) in the partial or-
der of non-negative definite matrices. (This amounts to a reformulation of
the Gauss-Markov theorem.) Such a G*r is called a quasi-score estimating
function (QSEF) within G.

It should be emphasized that the choice of the family G is open and
should be tailored to the particular application.

The estimator 8*r obtained from G*1(6*1) = 0, termed a quasi-likelihood
estimator, has under broad conditions, minimum size asymptotic confidence
zone properties for 0, at least within G. The basic properties are those of the
MLE, but restricted to G. The theory does not require a parametric setting,
let alone the existence of a score function Ur(6).

Important features of the theory include:

e It applies to general stochastic systems.

e It allows for the control of the problem of misspecification. This control
is in the hands of the experimenter. No more than means and variances are
required in many contexts.

e It carries with it all the classical theory of ML and LS.

There is no extra baggage required for the discussion of inference for
stochastic processes. But for this setting the detailed asymptotics does re-
quire modern limit theory (especially that for martingales).

QSEFs can usually be found with the aid of the following result (Heyde
(1997), Theorem 2.1, p.14):

Proposition G*r € G is a QSEF within G if

(EGr) *EGrG*r’ = Cr (3.1)

for all G € G, where Cr is a fixed matrix. Conversely, if G is convex and
G*r is a QSEF then (3.1) holds.
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3.2 Finding Useful Families of EF's

Statistical models can generally, perhaps after suitable transformation, be
described as

data = signal + noise

where the signal is a predictable trend term and the noise is a zero-mean
stochastic disturbance. This can then be conveniently reformulated in terms
of a special semimartingale representation as

Xt = Xo + At(9) + Mt(G)

where A, is a predictable finite variation process and M, is a local martingale.
This provides a natural route to estimating parameters in the signal. Discrete
time processes and most continuous time processes with finite means have
this kind of representation, via a suitable rewrite if necessary. Thus, for
example, if {X; = Zle z;} is a discrete time process, with past history
o-fields {F:}, it can be rewritten in special semimartingale form as

t t
X = ZE(:L‘ilfi_l) + Z(:Ez — E(z;|Fi—1))-
=1

=1

A general strategy is to try the Hutton-Nelson family of EFs

T T
G={Cr:Cr= /0 03 (8)dM, (6) = /0 s (0)d(Xs — 4,(6))}

for which the QSEF is

T
Z(E(msIfs—l))’(Emsms’|}.s—1)—ms
1

where M; = 3°t_; m; in the discrete time case and
T .
|| (Ba@viF)y @on,)-am,

in the continuous time case. Here (M), is the quadratic characteristic and
the minus superscript denotes the generalized inverse.

Example. The membrane potential V across a neuron is well described by
a stochastic differential equation

dV (t) = (—pV(t) + N)dt + dM (t)

(eg Kallianpur (1983)), where M (¢) is a martingale with a (centered) gener-
alized Poisson distribution. Here (M), = 02t,0 > 0.
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The QSEF for the Hutton-Nelson family on the basis of a single realiza-
tion {V(t),0 <t <T}is

T
| v @ - (v + Ve,
0
The estimators p and A are then obtained from the estimating equations

T T "
/ V(8)dV () = / (=pV () + NV (2)dt
0 0

T R
V(T) - V(0) = /0 (=pV(t) + A)dt.

For more details about this subject, including such things as how to deal
with parameters in the noise component of the semimartingale model, see
Heyde (1997, Chapter 2).

An important role for semimartimgales in inference for stochastic pro-
cesses has been evident since the papers of Hutton and Nelson (1986) and
Thavenaswaran and Thompson (1986). There are few contexts where these
methods cannot play a vital role.

Now there is a book on inference associated with semimartingale models
(Prakasa Rao (1999)), although not with a focus of the kind that has been
outlined above.

Amongst the (rare) processes which are not semimartingales is the frac-
tional Brownian motion By (t),0 < H < 1,H # 1. The case H = 3
corresponds to ordinary Brownian motion, which is a semimartingale. Frac-
tional Brownian motion has a Gaussian distribution and the self-similarity
property

By (ct) 4 By (t),c> 0.

It has been widely used to model possible long-range dependence (see for
example Beran (1994)).

An example where this process has been used is in modelling departures
from the standard geometric Brownian motion model of Black and Scholes for
the price of a risky asset which may now exhibit long-range dependence. Here
the price P; of the asset at time ¢ is modelled by the stochastic differential
equation (sde)

dP; = Py[pdt + 0dBg(t)]

where By (t),0 < H < 1, is a fractional Brownian motion process. The
standard model corresponds to the case H = % and the nonstandard model,
H # %, is not amenable to the analysis described above. Substitute meth-
ods, however, have recently been developed. See, for example, Mikosch and
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Norvaisa (2000) for a discussion of the above sde, and Norros, Valkeila and
Virtamo (1999) for a discussion of the parameter estimation.

All the methods of inference, semimartingale based or not, make use, in
some sense, of information or empirical information. Consistency results can
generally be obtained via the martingale SLLN and (asymptotic) confidence
intervals via the martingale CLT. For the latter, the most general results deal
with the self-normalized case [M "3 M, [M] being the quadratic variation
(Heyde (1997)). Ideas on information are the subject of the next, and last,
section.

4 Fisher Information as a Statistical ”Law of Na-
ture”

The essential points that I wish to make are:

(1) The role of Fisher information in the general theory of inference has
already been described (in the previous section).

(2) Fisher information has a key role as a scientific tool (for example in
Physics).

(3) Many, perhaps most, statistical procedures rely on Fisher information
in ways which have not hitherto been acknowledged.

Recently there has been some quite striking work in Physics based on
the idea of Fisher information. The book Frieden (1998) caught the interest
of the science journalist community. For example, it led to an article in New
Scientist (Matthews (1999)). On the basis of this I bought the book and I
found it both fascinating and frustrating. I wove consideration of it into a
seminar course which I gave at Columbia University in the Fall of 1999. The
ideas certainly warrant very serious consideration by the statistical commu-
nity.

Frieden’s thesis is that:

o All physical laws may be unified under the umbrella of measurement
theory.

e With each phenomenon there is an associated Lagrangian, natural to
the field. All Lagrangians consist entirely of two forms of Fisher information
- data information and phenomenological information.

An informal explanation is that each context requires solution to some
extremum problem. At the basis of this is a scalar function called the La-
grangian (like the likelihood). The solution of the problem can be phrased
in terms of a pde involving the Lagrangian.

The parallels with statistics look good at face value. But the reality
is much more complex. Much of the book treats physical systems where
information decreases over time. Of course, statistical problems are typically
ones where information increases over time - corresponding to the collection
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of more data. The sort of context where information decreases over time is,
say, when the position of a particle is observed subject to noise. Over time
the particle moves and its position is known with decreasing precision.

4.1 Procedures Involving Information

Most statistical procedures seem to be associated, directly or indirectly, with
measures of information, and it is arguably of value to make the connection
explicit as an aid to the development of useful methods. Also, it is important
to note that there is a close connection between comparisons of information
content and statistical distance. For example, the formulation of a quasi-
score estimating function in terms of maximizing generalized Fisher infor-
mation can be equivalently recast into a formulation in terms of minimizing
dispersion distance (from the (generally unknown) score function) (Heyde
(1997), p. 12). A new book focusing on the use of statistical distance is
Lindsay and Markatou (2001).

We now proceed to examine two applications in which information based
ideas are not immediately apparent, in order to see the role that they can
play.

Choosing the order of an autoregression
The most widely used procedure, AIC, involves choosing the order & to
minimize:

AIC(k) = —2logL(6y) + 2k (4.1)

where 6, is the MLE of 6 restricted to R* and 2k is a penalty function. It
is assumed that the order & < K for some fixed K.
Akaike’s original proof uses the Kullback-Liebler entropy KL given by

KL =- /p(m)ln%dm

measuring the distance between two pdf’s p,r and it should be noted that
Fisher information can be thought of as a form of local entropy (Friedan
(1998), pp. 31-32)).

The proof shows that, asymptotically, the order minimizing EK (6, 8;) is
the same as the one minimizing (4.1). It proceeds via the likelihood ratio
statistic for testing the null hypothesis Hy : 8 € RF versus the alternative
H, : 6 € RK — R* and suggests a QL generalization of AIC based on gener-
alized Fisher information.

Note the route to treating problems where one does not have estimating
functions differentiable with respect to the parameter of interest. Here the
variable in question is discrete.
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Stochastic Resonance

The core idea here is of a weak signal operating in a noisy environment
which is normally undetectable. However, by suitably increasing the noise
a "resonance” can be set up making the signal apparent. Resonance may
be a very important phenomenon scientifically. It has, for example, been
proposed as a possible explanation for the ice ages. There is a burgeoning
literature on the phenomenon which can be conveniently accessed via the the
stochastic resonance web site http://www.umbrars.com/sr based in Perugia,
Italy, which in turn has links to similar web sites in San Diego, USA and
Saratov, Russia.

A very simple example concerns the tunable model

dX; = (Asinwt)dt + odW (t) (4.2)

where W is standard Brownian motion and the amplitude A is subthreshold
(ie A < Ap). We want to estimate w and the issue is the optimum choice of
.

When estimating a frequency from discretely observed data z; = X; —
X1, the conventional wisdom is to work with the periodogram

2 &
Ip — ﬁ‘ Z mte—zwpt|2
1

where w, = 27p/N,p = 0,1,...[N/2]. The theory, which originated back
with Fisher (1929), tells us to use the estimator w corresponding to the wy
for which max, I, obtains. Consistency and rate of convergence results are
available.

An information formulation can proceed as follows. From the semi-
martingale representation

xte—zwpt — ”pe—lUth + Nte—zwpt’

say, derived from (4.2), we obtain the estimating function
N . .
Gp — Z(zte—zwpt _ p’pe—zwpt)
1

and the empirical information associated with this is ||Gp||?>. Asymptotically,
||Gp||? and I, are maximized for the same p.

Of course in the stochastic resonance problem we do not observe the {z;}
process, but rather the censored process {T; = z:I(|z:| > Ao)}. But it seems
that the periodogram based approach is still appropriate.

As a general conclusion, it seems profitable to think about statistical
problems in a setting of maximizing an information. I see this as an impor-
tant unifying principle.
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