
Random Vectors 

The basic object of study in this book is the random vector and its induced 
distribution in an inner product space. Here, utilizing the results outlined in 
Chapter 1, we introduce random vectors, mean vectors, and covariances. 
Characteristic functions are discussed and used to give the well known 
factorization criterion for the independence of random vectors. Two special 
classes of distributions, the orthogonally invariant distributions and the 
weakly spherical distributions, are used for illustrative purposes. The vector 
spaces that occur in this chapter are all finite dimensional. 

2.1. RANDOM VECTORS 

Before a random vector can be defined, it is necessary to first introduce the 
Borel sets of a finite dimensional inner product space (V, (., .)). Setting 
llxll = (x, x)'I2, the open ball of radius r about xo is the set defined by 
S,(xo> = {xIIIx - xoll < I>. 

Definition 2.1. The Borel a-algebra of (V, ( a ,  . )), denoted by %(V), is the 
smallest a-algebra that contains all of the open balls. 

Since any two inner products on V are related by a positive definite 
linear transformation, it follows that %(V) does not depend on the inner 
product on V-that is, if we start with two inner products on V and use 
these inner products to generate a Borel a-algebra, the two a-algebras are 
the same. Thus we simply call %(V) the Borel a-algebra of V without 
mentioning the inner product. 
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A probability space is a triple (8,  9 ,  Po) where 8 is a set, 9 i s  a a-algebra 
of subsets of 8 ,  and Po is a probability measure defined on 9. 

Definition 2.2. A random vector X E V is a function mapping 8 into V 
such that X-'(B) E 9 for each Borel set B E %(V). Here, X-'(B) is the 
inverse image of the set B. 

Since the space on which a random vector is defined is usually not of 
interest here, the argument of a random vector Xis  ordinarily suppressed. 
Further, it is the induced distribution of X on V that most interests us. To 
define ths, consider a random vector X defined on 8 to V where (8,  F, Po) 
is a probability space. For each Borel set B E %(V), let Q(B) = 

Po( X-'(B)). Clearly, Q is a probability measure on %(V) and Q is called 
the induced distribution of X-that is, Q is induced by X and Po. The 
following result shows that any probability measure Q on %(V) is the 
induced distribution of some random vector. 

Proposition 2.1. Let Q be a probability measure on %(V) where V is a 
finite dimensional inner product space. Then there exists a probability space 
(8 ,  4, Po) and a random vector X on 8 to V such that Q is the induced 
distribution of X. 

Proot Take 8 = V, 9 = %(V), Po = Q, and let X(w) = w for w E V. 
Clearly, the induced distribution of Xis Q. 

Henceforth, we write things like: "Let X be a random vector in V with 
distribution Q," to mean that X is a random vector and its induced 
distribution is Q. Alternatively, the notation C(X) = Q is also used-ths is 
read: "The distributional law of X is Q." 

A function f defined on V to W is called Borel measurable if the inverse 
image of each set B E % ( W )  is in %(V). Of course, if Xis a random vector 
in V, then f (X)  is a random vector in W when f is Borel measurable. In 
particular, when f is continuous, f is Borel measurable. If W = R and f is 
Borel measurable on V to R, then f (X)  is a real-valued random variable. 

Definition 2.3. Suppose Xis a random vector in V with distribution Q and 
f is a real-valued Borel measurable function defined on V. If f v l  f (x)lQ(dx) 
< + co, then we say that f (X) has finite expectation and we write & f (X)  
for lvf (x)Q(dx). 

In the above definition and throughout this book, all integrals are 
Lebesgue integrals, and all functions are assumed Borel measurable. 
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+ Example 2.1. Take V to be the coordinate space Rn with the usual 
inner product ( a ,  .) and let dx denote standard Lebesgue measure 
on Rn. If q  is a non-negative function on Rn such that jq(x)  dx = 1, 
then q  is called a density function. It is clear that the measure Q 
given by Q ( B )  = /,q(x) dx is a probability measure on Rn so Q is 
the distribution of some random vector X on Rn. If E , ,  . . . , E ,  is the 
standard basis for Rn, then ( E , ,  X )  = Xi is the ith coordinate of X. 
Assume that Xi has a finite expectation for i = 1,. . . , n. Then 
G 4  = jRn(q,  x ) q ( x )  dx = pi is called the mean value of X, and the 
vector p E Rn with coordinates p , ,  . . . , pn  is the mean vector of X. 
Notice that for any vector x  E Rn, & ( x ,  X )  = &(CX,E,, X )  = 

CX,G(E,,  X )  = L i p i  = ( x ,  p) .  Thus the mean vector p satisfies the 
equation & ( x ,  X )  = ( x ,  p )  for all x  E Rn and p is clearly unique. It 
is exactly t h s  property of p that we use to define the mean vector of 
a random vector in an arbitrary inner product space V. + 

Suppose X is a random vector in an inner product space (V ,  (., .)) and 
assume that for each x  E V,  the random variable ( x ,  X )  has a finite 
expectation. Let f ( x )  = G(x,  X ) ,  so f is a real-valued function defined 
on V. Also, f (a , x ,  + a 2 x 2 )  = &(a ,x ,  + a2x2 ,  X )  = G[a,(x , ,  X )  + 
a 2 ( x 2 ,  X ) ]  = a 1 F ( x I ,  X )  + a2G(x2, X )  = a,  f ( x I )  + a2 f ( x 2 )  Thus f is a 
linear function on V. Therefore, there exists a unique vector p E V such that 
f ( x )  = ( x ,  p )  for all x  E V. Summarizing, there exists a unique vector 
p E V that satisfies G(x,  X )  = ( x ,  p )  for all x  E V. The vector p is called 
the mean vector of X and is denoted by GX. This notation leads to the 
suggestive equation & ( x ,  X )  = ( x ,  GX) ,  which we know is valid in the 
coordinate case. 

Proposition 2.2. Suppose X E (V ,  (. , .)) and assume X has a mean vector 
p. Let (W, [., . I )  be an inner product space and consider A E C(V, W )  and 
W, E W. Then the random vector Y = AX + wo has the mean vector 
Ap + w,,-that is, GY = AGX + wo. 

Proof. The proof is a computation. For w E W ,  

& [ w ,  YI  = & [ w ,  AX + w0] = G [ w ,  A X ]  + [w, w,] 

Thus Ap + w0 satisfies the defining equation for the mean vector of Y and 
by the uniqueness of mean vectors, E Y  = Ap + wo. 



If X, and X, are both random vectors in (V, (., -)), whch have mean 
vectors, then it is easy to show that &(X, + X,) = GX, + GX,. The follow- 
ing proposition shows that the mean vector p of a random vector does not 
depend on the inner product on V. 

Proposition 2.3. If X is a random vector in (V, (., .)) with mean vector p 
satisfying &(x, X) = (x, p) for all x E V, then p satisfies &f (x, X) = 

f (x, p) for every bilinear function f on V x V. 

Proof: Every bilinear function f is given by f (x,, x,) = (x,, Ax,) for some 
A E C(V, V). Thus &f(x, X) = &(x, AX) = (x, Ap) = f(x, p) where the 
second equality follows from Proposition 2.2. 

When the bilinear function f is an inner product on V, the above result 
establishes that the mean vector is inner product free. At times, a convenient 
choice of an inner product can simplify the calculation of a mean vector. 

The definition and basic properties of the covariance between two 
real-valued random variables were covered in Example 1.9. Before defining 
the covariance of a random vector, a review of covariance matrices for 
coordinate random vectors in Rn is in order. 

+ Example 2.2. In the notation of Example 2.1, consider a random 
vector X in Rn with coordinates Xi = (E,, X) where E,, . . . , E, is the 
standard basis for Rn and ( a ,  a )  is the standard inner product. 
~ s s u m e  that Gx;' < + w,  i = 1,. . . , n. Then cov(&,, 3) = a,, ex- 
ists for all i, j = 1,. . . , n. Let Z be the n X n matrix with elements 
a,,. Of course, a,, is the variance of Xi and a,, is the covariance 
between Xi and X,. The symmetric matrix I: is called the covariance 
matrix of X. Consider vectors x, y E Rn with coordinates xi and y,, 
i = 1,. . . , n. Then 

= C C X , ~ , C O V ( ~ ,  x,) = C Cxiy,aij 
i j  j 

Hence cov{(x, X), (y, X)) = (x, Z y). It is this property of I: that is 
used to define the covariance of a random vector. + 

With the above example in mind, consider a random vector X in an inner 
product space (V, (., a ) )  and assume that &(x, X)' < w for all x E V. Thus 
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(x, X) has a finite variance and the covariance between (x, X) and (y, X) 
is well defined for each x, y E V. 

Proposition 2.4. For x, y E V, define f(x, y) by 

Then f is a non-negative definite bilinear function on V X V 

ProoJ: Clearly, f (x, y) = f (y, x)  and f (x, x)  = var{(x, X)) 2 0,  so it re-. 
mains to show that f is bilinear. Since f is symmetric, it suffices to verify that. 
f ( a lx l  + a2x2,  y) = a ,  f(x, ,  y)  + a, f(x,, y). This verification goes as fol- 
lows: 

By Proposition 1.26, there exists a unique non-negative definite linear 
transformation Z such that f (x, y) = (x, Z y ). 

Definition 2.4. The unique non-negative definite linear transformation 12 
on V to V that satisfies 

is called the covariance of X and is denoted by Cov(X). 

Implicit in the above definition is the assumption that &(x, X)' < + CC) 

for all x E V. Whenever we discuss covariances of random vectors, &(x, X)2 
is always assumed finite. 

It should be emphasized that the covariance of a random vector in 
(V, (., .)) depends on the given inner product. The next result shows how 
the covariance changes as a function of the inner product. 

Proposition 2.5. Consider a random vector X in (V, (., .)) and suppose 
Cov(X) = 2.  Let [., . ]  be another inner product on V given by [x, y]  = 

(x, Ay) where A is positive definite on (V, (- ,  .)). Then the covariance of X 
in the inner product space (V, [ . , a ] )  is ZA. 
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Proof. To verify that ZA is the covariance for X in (V, [., - I ) ,  we must 
show that cov{[x, XI, [y, XI )  = [x, ZAyj for all x, y E V. To do this, use 
the definition of [., . ]  and compute: 

cov{[x, XI,  [Y,  XI) = cov{(x, AX), ( y ,  AX)) = cov{(Ax, X),  (Ay, X)) 

Two immediate consequences of Proposition 2.5 are: (i) if Cov(X) exists in 
one inner product, then it exists in all inner products, and (ii) if Cov( X) = Z 
in (V, (., a)) and if Z is positive definite, then the covariance of X in the 
inner product [x, y] = (x, Z-'y) is the identity linear transformation. The 
result below often simplifies a computation involving the derivation of a 
covariance. 

Proposition 2.6. Suppose Cov(X) = Z in (V, (., a ) ) .  If Z, is a self-adjoint 
linear transformation on (V, (., -)) to (V, (-,  a ) )  that satisfies 

(2.1) var{(x, X)) = (x ,  Z ,x)  for x E V, 

then Z, = 2 .  

Proof. Equation (2.1) implies that (x, Z,x) = (x, Zx), x E V. Since Z,  
and Z are self-adjoint, Proposition 1.16 yields the conclusion Z, = 8 .  

When Cov(X) = Z is singular, then the random vector X takes values in 
the translate of a subspace of (V, ( a ,  a)) .  To make this precise, let us consider 
the following. 

Proposition 2.7. Let X be a random vector in (V, (., .)) and suppose 
Cov(X) = Z exists. With p = G X  and %(Z) denoting the range of 2 ,  
P{X E %(Z)  + p) = 1. 

Proof. The set %(Z)  + p is the set of vectors of the form x + p for 
x E %(Z); that is %(Z)  + p is the translate, by p, of the subspace %(Z). 
The statement P{X E %(Z)  + p) = 1 is equivalent to the statement P{X - 
p E %(Z)) = 1. The random vector Y = X - p has mean zero and, by 
Proposition 2.6, Cov(Y) = Cov(X) = Z since var{(x, X - p)) = var{(x, X)) 
for x E V. Thus it must be shown that P{Y E %(Z)) = 1. If Z is nonsingu- 
lar, then % ( 2 )  = V and there is nothing to show. Thus assume that the null 
space of Z, %(Z), has dimension k > 0 and let {x,, . . . , x,) be an orthonor- 
ma1 basis for %(Z). Since %(Z)  and %(Z) are perpendicular and %(Z)  @ 
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%(Z) = V, a vector x is not in %(Z) iff for some index i = 1,. . . , k ,  
(x,, x) * 0. Thus 

P{Y P %(Z))  = P{(x,,Y) * Oforsomei = 1 ,..., k )  
k 

=s Cp{(x , ,  Y) # 0). 
1 

But (xi,  Y) has mean zero and var{(x,, Y)) = (xi, Zx,) = 0 since xi E 

%(Z). Thus (xi, Y) is zero with probability one, so P{(x,, Y) * 0) = 0. 
Therefore P{Y P %(Z)) = 0. 

Proposition 2.2 describes how the mean vector changes under linear 
transformations. The next result shows what happens to the covariance 
under linear transformations. 

Proposition 2.8. Suppose X is a random vector in (V, (., .)) with Cov(X) 
= Z. If A E C(V, W) where (W, [., . I )  is an inner product space, then 

Cov( AX + wo) = AZA' 

for all wo E W. 

Proof: By Proposition 2.6, it suffices to show that for each w E W, 

var[w, AX + w,] = [w, AZA'w]. 
However, 

var[w, AX + wo] = var([w, AX] + [w, w,]) = var[w, AX] 

= var(A'w, X)  = (A'w, ZA'w) = [w, AZA'w]. 

Thus Cov( AX + w,) = AZ A' 

2.2. INDEPENDENCE OF RANDOM VECTORS 

With the basic properties of mean vectors and covariances established, the 
next topic of discussion is characteristic functions and independence of 
random vectors. Let X be a random vector in (V, (., .)) with distribution Q. 

Definition 2.5. The complex valued function on V defined by 

is the characteristic function of X. 
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In the above definition, e" = cos t + i sin t where i = and t E R. 
Since el' is a bounded continuous function of t ,  characteristic functions are 
well defined for all distributions Q on (V, (., .)). Forthcoming applications 
of characteristic functions include the derivation of distributions of certain 
functions of random vectors and a characterization of the independence of 
two or more random vectors. 

One basic property of characteristic functions is their uniqueness, that is, 
if Q, and Q, are probability distributions on (V, ( a ,  .)) with characteristic 
functions +, and +,, and if +, (x )  = +,(x) for all x  E V, then Q, = Q,. A 
proof of this is based on the multidimensional Fourier inversion formula, 
which can be found in Cramer (1946). A consequence of this uniqueness is 
that, if X I  and X, are random vectors in (V, (., .)) such that C((x, XI ) )  = 

C((x, X,)) for all x  E V, then C(Xl)  = C(X2). This follows by observing 
that C((x, XI ) )  = C((x, X,)) for all x  implies the characteristic functions of 
X, and X, are the same and hence their distributions are the same. 

To define independence, consider a probability space (a,  '3, Po) and let 
X E (V, (., .)) and Y  E (W,  [., .I) be two random vectors defined on a. 

Definition 2.6. The random vectors X and Y  are independent if for any 
Borel sets B, E % ( V )  and B, E % ( W ) ,  

In order to describe what independence means in terms of the induced 
distributions of X E (V, (., .)) and Y E (W, [., a ] ) ,  it is necessary to define 
what is meant by the joint induced distribution of X and Y. The natural 
vector space in which to have X and Y take values is the direct sum V @ W 
defined in Chapter 1. For {vi,  w,) E V @ W, i = 1,2, define the inner 
product (. , .), by 

That (., .), is an inner product on V @ W is routine to check. Thus {X ,  Y )  
takes values in the inner product space V @ W. However, it must be shown 
that { X ,  Y )  is a Borel measurable function. Briefly, this argument goes as 
follows. The space V @ W is a Cartesian product space-that is, V @ W 
consists of all pairs ( v ,  w )  with v  E V and w E W. Thus one way to get a 
a-algebra on V @ Wis to form the product o-algebra % ( V )  x % ( W ) ,  which 
is the smallest a-algebra containing all the product Borel sets B, x B, c V 
@ W where B, E % ( V )  and B, E %(W) .  It is not hard to verify that 
inverse images, under { X ,  Y ) ,  of sets in % ( V )  X % ( W )  are in the a-algebra 
'3. But the product a-algebra % ( V )  x % ( W )  is just the a-algebra %(V @ W )  
defined earlier. Thus {X ,  Y )  E V @ W is a random vector and hence has an 
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induced distribution Q defined on %(V @ W). In addition, let Ql  be the 
induced distribution of X on 93 ( V )  and let Q, be the induced distribution of 
Y on %(W). It is clear that Q,(B,) = Q(Bl X W) for B, E %(V) and 
Q2(B2) = Q(V X B,) for B2 E %(W). Also, the characteristic function of 
{ X , Y ) E  V @  Wis 

and the marginal characteristic functions of X and Y are 

and 

Proposition 2.9. Given random vectors X E (V, (., .)) and Y E (W, [., .I), 
the following are equivalent: 

(i) X and Y are independent. 
(ii) Q(B, X B,) = Q,(B,)Q,(B,) for all B, E % ( V )  and B, E %(W). 

(iii) +({v,w)) = +,(v)+,(w) for all v E Vand w E W. 

Proof: By definition, 

The equivalence of (i) and (ii) follows immediately from the above equation. 
To show (ii) implies (iii), first note that, i f f ,  and f2 are integrable complex 
valued functions on V and W, then when (ii) holds, 

by Fubini's Theorem (see Chung, 1968). Taking f,(v) = e i ( "~ , " )  for v 1 3  

v E V, and f2(w) = e'["l."] for w,, w E W, we have 



Thus (ii) implies (iii). For (iii) implies (ii), note that the product measure 
Q,  x Q ,  has characteristic function +,+, The uniqueness of characteristic 
functions then implies that Q = Ql X Q,. 

Of course, all of the discussion above extends to the case of more than 
two random vectors. For completeness, we briefly describe the situation. 
Given a probability space (3,9, Po) and random vectors X, E ( 7 ,  (., .),), 
j = I,. . . , k, let Q, be the induced distribution of X, and let +, be the 
characteristic function of X,. The random vectors XI,. . . , X, are independent 
if for all B, E a ( ? ) ,  

Po{? E B,,j = 1 ,..., k )  = n p O { X ,  E B,). 
/=  1 

To construct one random vector from XI,. . . , Xk, consider the direct sum 
V, $ . . . @ Vk with the inner product (., .) = Cf( . ,  .),. In other words, if 
{v l , .  . . , ok) and {w,,. . . , w,) are elements of V,  $ . . . $ Vk, then the inner 
product between these vectors is Ct(v,, w,)~. An argument analogous to that 
given earlier shows that {XI,. . . , X,) is a random vector in V, (3 . . . V, 
and the Bore1 a-algebra of V, @ $ Vk is just the product a-algebra 
%(V,) X . . . X %(V,). If Q denotes the induced distribution of {X,, . . . , Xk), 
then the independence of XI,. . . , X, is equivalent to the assertion that 

for all B, E % ( y ) ,  j = 1,. . . , k, and t h s  is equivalent to 

Of course, when XI,. . . , Xk are independent and f ,  is an integrable real 
valued function on 7 ,  j = 1,. . . , k, then 

T h s  equality follows from the fact that 

and Fubini's Theorem. 
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+ Example 2.3. Consider the coordinate space RP with the usual 
inner product and let Q,  be a fixed distribution on RP. Suppose 
X, , .  . . , Xn are independent with each E RP, i = 1 , .  . . , n ,  and 
C ( X , )  = Q,. That is, there is a probability space (52,F, Po), each 
is a random vector on 52 with values in RP, and for Bore1 sets, 

Thus { X , ,  . . . , X n )  is a random vector in the direct sum R* @ . . . @ 

RP with n terms in the sum. However, there are a variety of ways to 
think about the above direct sum. One possibility is to form the 
coordinate random vector 

and simply consider Y as a random vector in RnP with the usual 
inner product. A disadvantage of ths  representation is that the 
independence of X,,. . . , Xn becomes slightly camouflaged by the 
notation. An alternative is to form the random matrix 

Thus X has rows Xi', i = 1 , .  . . , n, which are independent and each 
has distribution Q,. The inner product on Cp, is just that inherited 
from the standard inner products on R n  and RP. Therefore X is a 
random vector in the inner product space (ep, ,,, ( . , .)). In the 
sequel, we ordinarily represent X, ,  . . . , Xn by the random vector 
X E Cp, n .  The advantages of this representation are far from clear 
at this point, but the reader should be convinced by the end of this 
book that such a choice is not unreasonable. The derivation of the 
mean and covariance of X E eP, given in the next section should 
provide some evidence that the above representation is useful. + 
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2.3. SPECIAL COVARIANCE STRUCTURES 

In this section, we derive the covariances of some special random vectors. 
The orthogonally invariant probability distributions on a vector space are 
shown to have covariances that are a constant times the identity transforma- 
tion. In addition, the covariance of the random vector given in Example 2.3 
is shown to be a Kronecker product. The final example provides an 
expression for the covariance of an outer product of a random vector with 
itself. 

Suppose (V, ( a ,  .)) is an inner product space and recall that B(V) is the 
group of orthogonal transformations on V to V. 

Definition 2.7. A random vector X in (V, ( 0 ,  .)) with distribution Q has an 
orthogonally invariant distribution if C(X) = C(rX) for all r E Q(V), or 
equivalently if Q(B) = Q(rB) for all Bore1 sets B and r E B(V). 

Many properties of orthogonally invariant distributions follow from the 
following proposition. 

Proposition 2.10. Let x, E V with llxoll = 1. If C(X) = C(TX) for r E 
O(V), then for x E V, /,C(X, X)) = C(IIxII(xO, X)). 

Proof. The assertion is that the distribution of the real-valued random 
variable (x, X) is the same as the distribution of Ilxll(xo, X). Thus knowing 
the distribution of (x, X) for one particular nonzero x E V gives us the 
distribution of (x, X) for all x E V. If x = 0, the assertion of the proposi- 
tion is trivial. For x == 0, choose r E Q(V) such that rx, = x/llxll. This is 
possible since x, and x/llxll both have norm 1. Thus 

where the last equality follows from the assumption that C(X) = C(rX) for 
all r E O(V) and the fact that r E B(V) implies I?' E Q(V). 

Proposition 2.11. Let x, E V with llxoll = 1. Suppose the distribution of X 
is orthogonally invariant. Then: 

(i) G ( ~ )  Ge'("? X )  = cP(llxllx0). 
(ii) If GX exists, then &X = 0. 
(iii) If Cov(X) exists, then Cov(X) = a21 where a 2  = var{(x,, X)), and 

I is the identity linear transformation. 
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Proof. Assertion (i) follows from Proposition 2.10 and 

For (ii), let p = &X. Since C(X) = C(rX), p = &X = &I'X = r & X  = r p  
for all r E O(V). The only vector p that satisfies p = r p  for all r E O(V) is 
p = 0. To prove (iii), we must show that a21 satisfies the defining equation 
for Cov(X). But by Proposition 2.10, 

var{(x, X)} = var{llxll(x,, X)) = ~lxll~var{x,, X) = a2(x ,  x )  = (x ,  a21x) 

so Cov(X) = a21 by Proposition 2.6. 

Assertion (i) of Proposition 2.11 shows that the characteristic function cp 
of an orthogonally invariant distribution satisfies cp(Tx) = cp(x) for all 
x E V and r E O(V). Any function f defined on V and taking values in 
some set is called orthogonally invariant iff (x) = f ( rx )  for all r E O(V). A 
characterization of orthogonal invariant functions is given by the following 
proposition. 

Proposition 2.12. A function f defined on (V, ( a ,  .)) is orthogonally in- 
variant iff f (x)  = f(llxllx,) where x, E V, ',lxoll = 1. 

Proof. If f ( x )  = f(llxllxo), then f ( r x )  = f(llrxllx0) = f(llxllx0) = f ( x )  so 
f is orthogonally invariant. Conversely, suppose f is orthogonally invariant 
and x, E V with llxoll = 1. For x = 0, f(0) = f(llxIIx,) since llxll = 0. If 
x == 0, let r E O(V) be such that rx, = x/llxll. Then f (x)  = f(rllxIIx,) = 

f (llxllxo). 

If X has an orthogonally invariant distribution in (V, (., .)) and h is a 
function on R to R, then 

f ( x )  = &h((x, X)) 

clearly satisfies f ( r x )  = f(x) for r E O(V). Thus f (x)  = f(llxIIx,) = 

Gh (\lxII(xo, X)), SO to calculate f (x), one only needs to calculate f (ax,) for 
a E (0, a). We have more to say about orthogonally invariant distributions 
in later chapters. 

A random vector X E V(., .) is called orthogonally invariant about x, if 
X - x, has an orthogonally invariant distribution. It is not difficult to 
show, using characteristic functions, that if X is orthogonally invariant 
about both x, and x,, then x, = x,. Further, if Xis orthogonally invariant 
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about x, and if GX exists, then G(X - x,) = 0 by Proposition 2.11. Thus 
x, = GX when &X exists. 

It has been shown that if X has an orthogonally invariant distribution 
and if Cov(X) exists, then Cov(X) = a21  for some u2 > 0. Of course there 
are distributions other than orthogonally invariant distributions for which 
the covariance is a constant times the identity. Such distributions arise in 
the chapter on linear models. 

Definition 2.8. If X E (V, (., a ) )  and 

Cov(X) = a21 for some a 2  > 0, 

X has a weakly spherical distribution. 

The justification for the above definition is provided by Proposition 2.13. 

Proposition 2.13. Suppose X is a random vector in (V, (., .)) and Cov(X) 
exists. The following are equivalent: 

(i) Cov(X) = a21 for some a 2  2 0. 
(ii) Cov(X) = Cov(rX) for all J? E Q(V). 

Proof. That (i) implies (ii) follows from Proposition 2.8. To show (ii) 
implies (i), let Z = Cov(X). From (ii) and Proposition 2.8, the non-negative 
definite linear transformation Z must satisfy Z = TZr '  for all l? E Q(V). 
Thus for all x E V, /,llxll = 1, 

But r 'x can be any vector in V with length one since I" can be any element 
of O(V). Thus for all x, y, llxll = llyll = 1, 

From the spectral theorem, write Z = Z;A,x,O xi and choose x = x, and 
y = x,. Then we have 

A, = (x,, Zx,) = (x,, Zx,) = A, 

for all j ,  k .  Setting a 2  = A,, 

That a 2  > 0 follows from the positive semidefiniteness of Z. 
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Orthogonally invariant distributions are sometimes called spherical distri- 
butions. The term weakly spherical results from weakening the assumption 
that the entire distribution is orthogonally invariant to the assumption that 
just the covariance structure is orthogonally invariant (condition (ii) of 
Proposition 2.13). A slight generalization of Proposition 2.13, given in its 
algebraic context, is needed for use later in this chapter. 

Proposition 2.14. Suppose f is a bilinear function on V x V where (V, ( . , . )) 
is an inner product space. Iff [ rx , ,  rx,] = f [x,, x,] for all x,,  x, E V and 
r E Q(V), then f [x,,  x,] = c(x,, x,) where c is some real constant. If A is a 
linear transformation on V to V that satisfies T'Ar = A for all r E O(V), 
then A = cI for some real c. 

Proof: Every bilinear function on V X V has the form (x,, Ax,) for some 
linear transformation A on Vto V. The assertion that f [ rx , ,  Tx,] = f [x,, x,] 
is clearly equivalent to the assertion that r 'Ar  = A for all r E B(V). Thus 
it suffices to verify the assertion concerning the.linear transformation A. 
Suppose r f A r  = A for all r E B(V). Then for x,,  x2 E V, 

(x , ,  AX,) = (x , ,  r fArx2)  = ( rx , ,  Arx,). 

By Proposition 1.20, there exists a r such that 

when x, and x, are not zero. Thus for x, and x, not zero, 

However, this relationship clearly holds if either x, or x, is zero. Thus for all 
x, ,  X, E V, (x,,  Ax2) = (AX,, x2), SO A must be self-adjoint. Now, using 
the spectral theorem, we can argue as in the proof of Proposition 2.13 to 
conclude that A = cI for some real number c. 

+ Example 2.4. Consider coordinate space Rn with the usual inner 
product. Let f be a function on [0, co) to [0, co) so that 

Thus f (11~11~) is a density on Rn. If the coordinate random vector 
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X E Rn has f(11~11~) as its density, then for r E 8, (the group of 
n x n orthogonal matrices), the density of r X  is again f(11~11~). This 
follows since 1 1  rxll = llxll and the Jacobian of the linear transforma- 
tion determined by r is equal to one. Hence the distribution 
determined by the density is On invariant. One particular choice for f 
is f ( u )  = ( 2 ~ ) - " / ~ e - ' / ~ "  and the density for X is then 

Each of the factors in the above product is a density on R 
(corresponding to a normal distribution with mean zero and vari- 
ance one). Therefore, the coordinates of X are independent and 
each has the same distribution. An example of a distribution on Rn 
that is weakly spherical, but not spherical, is provided by the 
density (with respect to Lebesgue measure) 

where x E Rn, x' = (x,, x,, . . . , x,). More generally, if the random 
variables XI,. . . , Xn are independent with the same distribution on 
R, and a 2  = var(X,), then the random vector X with coordinates 
XI,. . . , X, is easily shown to satisfy Cov(X) = a21, where In is the 
n X n identity matrix. + 

The next topic in this section concerns the covariance between two 
random vectors. Suppose Xi E ( y ,  ( a ,  .)i) for i = 1,2 where XI and X2 are 
defined on the same probability space. Then the random vector {XI, X2) 
takes values in the direct sum V, @ V,. Let [., a ]  denote the usual inner 
product on V, @ 6 inherited from (., .),, i = 1,2. Assume that Zii = 

Cov(Xi), i = 1,2, both exist. Then, let 

and note that the Cauchy-Schwarz Inequality (Example 1.9) shows that 

Further, it is routine to check that f (. , .) is a bilinear function on Vl X V2 
so there exists a linear transformation Z,, E C(V2, Vl) such that 
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The next proposition relates Z,,, ZI2, and Z2, to the covariance of (XI, X2) 
in the vector space (V, ', V2, [ a ,  .I). 

Proposition 2.15. Let 2 = Cov{X,, X,). Define a linear transformation A 
on V, @ V2 to Vl @ V2 by 

where Z;, is the adjoint of Z,,. Then A = 2.  

Proof. It is routine to check that 

~ 2 ) ,  ( ~ 3 ,  ~ 4 ) ]  = [{XI, ~ 4 ) ]  

so A is self-adjoint. To show A = Z, it is sufficient to verify 

[{XI, 4 ,  A{-%, xZ)] = [ { X I ,  x2), Z{XI, x2)l 

by Proposition 1.16. However, 

[{XI, xZ), Z{XI, x2)] = var[(x1, x2), {XI, ~ 2 ) l  

= var{(x,, XI), + (x2, x2>2) 

= var(x,, XI), + var(x2, X2)2 

+2cov{(x,, XI),? ( ~ 2 ,  x2)2) 

= (XI, Z,,x,),  + ( ~ 2 ,  Z22x212 + 2(x1, Z12x2)1 

= (XI, 211~1)l + (x2,222x2)2 

+(XI ,  Z12~2)l + (2;2x13 x2)2 

= [{XI, xz), {Z11x1 + 212~2,Z;zxI + 222~2)l  

= [{XI, x2), A(x1, x2)I. 

It is customary to write the linear transformation A in partitioned form as 



With t h s  notation, 

Definition 2.9. The random vectors XI and X2 are uncorrelated if Z12 = 0. 

In the above definition, it is assumed that Cov(Xi) exists for i = 1,2. It is 
clear that Xl and X2 are uncorrelated iff 

Also, if XI and X2 are uncorrelated in the two given inner products, then 
they are uncorrelated in all inner products on Vl and V2. This follows from 
the fact that any two inner products are related by a positive definite linear 
transformation. 

Given Xi E (I/;, (., for i = 1,2, suppose 

We want to show that there is a linear transformation B E C(V2, V,) such 
that XI + BX2 and X2 are uncorrelated random vectors. However, before 
this can be established, some preliminary technical results are needed. 

Consider an inner product space (V, (., a ) )  and suppose A  E C(V, V) is 
self-adjoint of rank k. Then, by the spectral theorem, A  = CtA,x, xi where 
X i  * 0, i = 1,. . . , k, and (x,, .  . . , x,) is an orthonormal set that is a basis 
for % ( A ) .  The linear transformation 

is called the generalized inverse of A. If A is nonsingular, then it is clear that 
A- is the inverse of A.  Also, A- is self-adjoint and A A - =  A - A  = ZfxiCi x,, 
which is just the orthogonal projection onto %(A). A routine computation 
shows that A-AA-= A-and A A - A  = A .  

In the notation established previously (see Proposition 2.15), suppose 
( XI, X2) E V, @ V2 has a covariance 

Proposition 2.16. For the covariance above, %(B2,) c %(Z12) and ZI2  = 

BI2Z322. 
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Proof. For x2  E %(Z2,), it must be shown that ZI2x2 = 0. Consider 
x,  E Vl and cr E R. Then Z2,(ax2) = 0 and since Z is positive semidefi- 
nite, 

As this inequality holds for all a E R, for each x,  E V, (x,, Z12x2), = 0. 
Hence ZI2x2 = 0 and the first claim is proved. To verify that Z12 = 

ZI2Z;Z2,, it suffices to establish the identity Z12(I  - ZGZ,,) = 0. How- 
ever, I - Z;Z2, is the orthogonal projection onto GSL(Z2,). Since %(Z2,) 
c %(El,), it follows that Z12(I  - Z;Z2,) = 0. 

We are now in a position to show that X, - ZI2Z;X2 and X2 are 
uncorrelated. 

Proposition 2.17. Suppose {XI, X2) E V, @ V2 has a covariance 

Then XI - Z12Z, X2 and X2 are uncorrelated, and Cov( XI - Z ,,Z; X2) = 

Z, ,  - ZI2Z;Z2, where Z2, = Xi2. 

Proof. For xi E T/;, i = 1,2, it must be verified that 

This calculation goes as follows: 
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The last equality follows from Proposition 2.15 since Z12 = Z12Z,Z22. To 
verify the second assertion, we need to establish the identity 

var(x1, XI - ZI2Z,X2), = (XI, (211 - Zl2~,Z2l)xl)l. 

But 

In the above, the identity Z;Z2,Z; = 2, has been used. 

We now return to the situation considered in Example 2.4. Consider 
independent coordinate random vectors XI,. . . , X, with each Xi E RP, and 
suppose that G 4  = p E RP, and Cov(4) = Z for i = 1,. . . , n. Form the 
random matrix X E ep, with rows Xi,. . . , XA. Our purpose is to describe 
the mean vector and covariance of X in terms of Z and p. The inner product 
on Cp, ., ( , .) is that inherited from the standard inner products on the 
coordinate spaces RP and Rn. Recall that, for matrices A, B E ep, ,,, 

(A, B) = tr AB' = tr B'A = tr A'B = tr BA'. 

Let e denote the vector in Rn whose coordinates are all equal to 1. 

Proposition 2.18. In the above notation, 

(i) & X = e p f .  

(ii) Cov( X) = In 8 2 .  

Here In is the n x n identity matrix and @ denotes the Kronecker product. 

Proof. The matrix ep' has each row equal to p' and, since each row of X 
has mean p', the first assertion is fairly obvious. To verify (i) formally, it 
must be shown that, for A E eP, ,, 

&(A, X) = (A, ep'). 
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Let a;, . . . , a:, a, E RP, be the rows of A. Then 

&(A, X) = & tr AX' = &C;aiX, = C;ai&X, = C;aip = tr Ape' = (A, epl). 

Thus (i) holds. To verify (ii) it suffices to establish the identity 

var(A, X) = (A, ( I  8 Z)A) 

for A E Cp, ,. In the notation above, 

The third equality follows from var(ajX) = aiZa, and, for i * j, aj4 and 
a; X, are uncorrelated. 

The assumption of the independence of XI,. . . , X, was not used to its 
full extent in the proof of Proposition 2.18. In fact the above proof shows 
that, if X,,. . . , X, are random variables in RP with &Xi = p, i = 1,. . . , n, 
then EX = ep'. Further, if XI,. . . , X, in RP are uncorrelated with Cov(X,) 
= Z, i = 1,. . . , n, then Cov(X) = I, 8 2 .  One application of t h s  formula 
for Cov(X) describes how Cov(X) transforms under Kronecker products. 
For example, if A E C,,, and B E gp,,, then (A 8 B)X = AXB' is a 
random vector in C,, ,. Proposition 2.8 shows that 

In particular, if Cov(X) = I, 8 2 ,  then 

Since A 8 B = (A 8 Ip)(In 8 B), the interpretation of the above covari- 
ance formula reduces to an interpretation for A 8 I, and I, 8 B. First, 
(I, 8 B)X is a random matrix with rows X,'Bf = (BT)', i = 1,. . . , n. If 
Cov(&) = Z, then Cov(B4) = BZB'. Thus it is clear from Proposition 
2.18 that Cov((I, x B)X) = I, 8 (BZB'). Second, (A 8 Ip) applied to Xis 
the same as applying the linear transformation A to each column of X. 
When Cov(X) = I, 8 Z, the rows of X are uncorrelated and, if A is an 
n x n orthogonal matrix, then 
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Thus the absence of correlation between the rows is preserved by an 
orthogonal transformation of the columns of X. 

A converse to the observation that Cov((A S I,)X) = I, S Z for all 
A E O ( n )  is valid for random linear transformations. To be more precise, 
we have the following proposition. 

Proposition 2.19. Suppose ( v ,  (., .)i), i = 1,2, are inner product spaces 
and X is a random vector in (C(V,, K), ( , .)). The following are equiva- 
lent: 

(i) Cov( X) = I, S 2. 
(ii) Cov((r S I ,)X) = Cov(X) for all I' E O(V, ) .  

Here, I, is identity linear transformation on v ,  i = 1,2, and Z is a 
non-negative definite linear transformation on V, to V,. 

Proof: Let \k = Cov(X) so \k is a positive semidefinite linear transforma- 
tion on C(V,, V,) to C(V,, V,) and \k is characterized by the equation 

cov{(A, X ) ,  (B, X)) = (A, \kB) 

for all A, B E C(Vl, V,). If (i) holds, then we have 

= I, S 2 = Cov( X), 

so (ii) holds. 
Now, assume (ii) holds. Since outer products form a basis for C(Vl, V,), it 

is sufficient to show there exists a positive semidefinite Z on V, to V, such 
that, for x,,  x, E V, and y,, y, E V,, 

Define H by 

for x,,  x, E V, and y,, y, E V,. From assumption (ii), we know that \k 
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satisfies 9 = (r €3 I,)\k(r €3 I,)' for all r E O(V2). Thus 

for all r E Q(V2). It is clear that H is a linear function of each of its four 
arguments when the other three are held fixed. Therefore, for x, and x, 
fixed, G is a bilinear function on V2 x V2 and this bilinear function satisfies 
the assumption of Proposition 2.14. Thus there is a constant, whch depends 
on x,  and x,, say c[x,, x2], and 

However, for y, = y2 * 0, H, as a function of x, and x,, is bilinear and 
non-negative definite on V, x V,. In other words, c[x,, x,] is a non-nega- 
tive definite bilinear function on V, X Vl, so 

for some non-negative definite 2 .  Thus 

The next topic of consideration in the section concerns the calculation of 
means and covariances for outer products of random vectors. These results 
are used throughout the sequel to simplify proofs and provide convenient 
formulas. Suppose is a random vector in (v, (., .),) for i = 1,2 and let 
pi = EX,, and Zii = Cov(X,) for i = 1,2. Thus {XI; X,) takes values in 
Vl @ V, and 

where I,, is characterized by 
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for xi E y ,  i = 1,2. Of course, Cov{X,, X,) is expressed relative to the 
natural inner product on V, @ V2 inherited from (V,, (., .),) and (V,, (. , .),). 

Proposition 2.20. For Xi E ( y , ( . , . )), i = 1,2, as above, 

Proof: The random vector XI X, takes values in the inner product space 
(c(V,, V,), ( . , .)). To verify the above formula, it must be shown that 

for A E C(V2, V,). However, it is sufficient to verify this equation for 
A = x, x, since both sides of the equation are linear in A and every A is a 
linear combination of elements in C(V,, V,) of the form x,  x,, xi E y ,  
i = 1,2. For x, x, E C(V2, V,), 

A couple of interesting applications of Proposition 2.20 are given in the 
following proposition. 

Proposition 2.21. For XI, X,  in (V, ( . , . )), let pi = &Xi, Xii = Cov(X,) for 
i = 1,2. Also, let XI, be the unique linear transformation satisfying 

for all x,, x, E V. Then: 

(i) GX, XI = X I ,  + p, p,. 
(ii) &(XI, X,) = (I ,  XI,) + (PI, ~ 2 ) .  
(iii) &(XI, XI) = (I ,  XI,) + (P,, pl). 

Here I E C(V, V) is the identity linear transformation and ( . , .) is the 
inner product on C(V, V) inherited from (V, (. , .)). 
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Proof. For(i), takeX, = X2and(Vl,(.,.),)=(V2,(.,.),)= (V,( . , . )) in 
Proposition 2.20. To verify (ii), first note that 

by the previous proposition. Thus for I E C(V, V), 

&(I ,  XI X2) = ( I ,  El,) + ( I ,  P I  P2). 

However, (I ,  XI X2) = (X,, X2) and (I ,  p1 p2) = (pl ,  p2) SO (ii) holds. 
Assertion (iii) follows from (ii) by taking XI = X2. 

One application of the preceding result concerns the affine prediction of 
one random vector by another random vector. By an affine function on a 
vector space V to W, we mean a function f given by f ( v )  = Av + w, where 
A E C(V, W) and w, is a fixed vector in W. The term linear transformation 
is reserved for those affine functions that map zero into zero. In the 
notation of Proposition 2.21, consider X, E (v, (- ,  .), for i = 1,2, let pi = 

&Xi, i = 1,2, and suppose 

exists. An affine predictor of X2 based on X, is any function of the form 
AX, + x, where A E C(V,, V2) and x, is a fixed vector in V2. If we assume 
that p,, p2, and 2 are known, then A and x, are allowed to depend on these 
known quantities. The statistical interpretation is that we observe X,, but 
not X2, and X2 is to be predicted by AX, + x,. One intuitively reasonable 
criterion for selecting A and x, is to ask that the choice of A and x, 
minimize 

&IlX2 - 0x1 + x0)ll;. 

Here, the expectation is over the joint distribution of XI and X2 and 1 1  . 1 1 ,  is 
the norm in the vector space (V2, ( - , a),). The quantity & 1 1  X2 - (AX, + 
x,)ll; is the average distance of X2 - (AX, + x,) from 0. Since AX, + x, is 
supposed to predict X2, it is reasonable that A and x, be chosen to minimize 
this average distance. A solution to this minimization problem is given in 
Proposition 2.22. 

Proposition 2.22. For X, and X2 as above, 

with equality for A = 2;,Z, and x, = p2 - 2 i 2 2 i p l .  
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Proof. The proof is a calculation. It essentially consists of completing the 
square and applying (ii) of Proposition 2.21. Let I: = X, - pi for i = 1,2. 
Then 

The last equality holds since &(Y2 - AY,) = 0. Thus for each A E C(V,, V2), 

with equality for x, = p2 - Ap,. For notational convenience let Z2, = Xi2. 
Then 

The last equality holds since &(Y2 - Z2,2,Y,) = 0 and Y2 - 2,,Z,Y1 is 
uncorrelated with Yl (Proposition 2.17) and hence is uncorrelated with 
(Z2,Z, - A)Yl. By (ii) of Proposition 2.21, we see that &(Y2 - 
Z2,2,Y1, (Z2,Z, - A)Y1), = 0. Therefore, for each A 6 C(Vl, V2), 

with equality for A = Z2,2,. However, Cov(Y2 - Z2,2, Y,) = Z2, - 
Z2,2;2,, and &(Y2 - Z2,2; Y,) = 0 so (iii) of Proposition 2.21 shows that 

GIIY2 - ~ 2 1 ~ i Y I l I ;  = ( 1 2 9  2 2 2  - 2 2 1 2 1 1 2 1 2 ) .  

Therefore, 

611x2 - (AX1 + xo)lli 2 (I2,222 - 2 2 1 2 1 1 2 1 2 )  

with equality for A = 2,,2, and x, = p2  - Z2,Z,p,. 



% RANDOM VECTORS 

The last topic in this section concerns the covariance of XU X when X is 
a random vector in (V, (. , .)). The random vector XU Xis an element of the 
vector space (C(V, V), ( . , -)). However, XU X is a self-adjoint linear 
transformation so XO Xis also a random vector in (M,, ( . , .)) where M, 
is the linear subspace of self-adjoint transformations in C(V, V). In what 
follows, we regard XU X as a random vector in (M,, ( , a ) ) .  Thus the 
covariance of XU Xis a positive semidefinite linear transformation on (M,, 
( . , . )). In general, this covariance is quite complicated and we make some 
simplifying assumptions concerning the distribution of X. 

Proposition 2.23. Suppose X has an orthogonally invariant distribution in 
(V, (., .)) where &1(X1l4 < + co. Let u, and v, be fixed vectors in V with 
llvill = 1, i = 1,2, and (v,, v,) = 0. Set c, = var{(v,, X),) and c, = 

cov{(u,, X)2, (u,, x ) ~ ) .  Then 

Cov(X0 X) = (c, - c,) I 8 I + c2T,, 

where TI is the linear transformation on M, given by T,(A) = (I ,  A)I. In 
other words, for A, B E M,, 

cov((A, XO X), (B, XU X)) = (A, ((c, - c , ) ~  8 I + C,T,)B) 

= (CI  - c2)(A, B) + c2(I, A)(I, B). 

Proof: Since (c, - c,)I 8 1 + c2T, is self-adjoint on (M,, ( - , . )), Pro- 
position 2.6 shows that it suffices to verify the equation 

var(A, XU X) = (c, - c,)(A, A) + c2(I, A), 

for A E M, in order to prove that 

Cov(X0 X) = (c, - c 2 ) I  @ I + c,T,. 

First note that, for x E V, 

This last equality follows from Proposition 2.10 as the distribution of X is 
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orthogonally invariant. Also, for x , ,  x ,  E V with ( x , ,  x , )  = 0, 

Again, the last equality follows since C ( X )  = C(*X)  for \k E B(V)  so 

and can be chosen so that 

For A  E M,, apply the spectral theorem and write A  = C;aix,O xi where 
x , , .  . . , x ,  is an orthonormal basis for (V, (., .)). Then 

= ( c ,  - c 2 ) ( A ,  A )  + c , ( I ,  A ) 2 .  q 

When X has an orthogonally invariant normal distribution, then the con- 
stant c2 = 0 so Cov(X0 X )  = c , I  @ I .  The following result provides a 
slight generalization of Proposition 2.23. 

Proposition 2.24. Let X, v , ,  and v ,  be as in Proposition 2.23. For C E 

C(V, V), let Z = CC' and suppose Y is a random vector in (V, (., .)) with 
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c(Y) = c(CX). Then 

Cov(Y0 Y) = (c, - c,)Z €3 2 + c,T2 

where T,(A) = (A, 2 ) Z  for A E Ms. 

Proof. We apply Proposition 2.8 and the calculational rules for Kronecker 
products. Since (CX) q (CX) = (C €3 C)(XO X), 

Cov(Y0 Y) = c o v ( ( c x 0  c x ) )  = Cov((C €3 C)( xu X)) 

= (C €3 C)Cov(X0 X)(C €3 C)' 

= (C €3 c)((c, - c,)I €3 I + c,T,)(c' €3 C') 

= (c, - c*) (c  €3 C ) ( I  €3 I ) (C '  8 C') 

+c,(C €3 C)T,(C' €3 C') 

= (c, - c2)2  €3 2 + c,(C €3 C)T,(Cf €3 C'). 

It remains to show that (C €3 C)Tl(C' €3 C') = T,. For A E M,, 

= ((c 8 c) I ,  A)(C €3 C ) ( I )  = (CC', A)CC' 

PROBLEMS 

1. If x,,. . . , x ,  is a basis for (V,(., .)) and if (xi, X) has finite expecta- 
tion for i = 1,. . . , n, show that (x, X) has finite expectation for all 
x E V. Also, show that if (xi, X)' has finite expectation for i = 1,. . . , 
n, then Cov(X) exists. 

2. Verify the claim that if X,(X,) with values in Vl(V2) are uncorrelated 
for one pair of inner products on V, and V,, then they are uncorrelated 
no matter what the inner products are on V, and V,. 

3. Suppose Xi E y ,  i = 1,2 are uncorrelated. Iff, is a linear function on 
y ,  i = 1,2, show that 

Conversely, if (2.2) holds for all linear functions f ,  and f,, then XI and 
X, are uncorrrelated (assuming the relevant expectations exist). 
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4. For X E Rn, partition X as 

with x E Rr  and suppose X has an orthogonally invariant distribution. 
Show that x has an orthogonally invariant distribution on Rr. Argue 
that the conditional distribution of x given x has an orthogonally 
invariant distribution. 

5. Suppose XI,. . . , Xk in (V, (. , -)) are pairwise uncorrelated. Prove that 
Cov(C:xi) = c: Cov( Xi). 

6. In R ~ ,  let el,. . . , ek denote the standard basis vectors. Define a random 
vector U in Rk by specifying that U takes on the value ei with 
probability pi where 0 G pi G 1 and Cfpi = 1. (U represents one of k 
mutually exclusive and exhaustive events that can occur). Let p E Rk 
have coordinates p i , .  . . , p,. Show that GU = p, Cov(U) = Dp - pp' 
where Dp is a diagonal matrix with diagonal entries p, ,  . . . , pk. When 
0 < p i  < 1, show that Cov(U) has rank k - 1 and identify the null 
space of Cov(U). Now, let XI,. . . , Xn be i.i.d. each with the distribu- 
tion of U. The random vector Y = CYX, has a multinomial distribution 
(prove ths) with parameters k (the number of cells), the vector of 
probabilities p, and the number of trials n. Show that GY = np, 
Cov(Y) = n(D, - pp'). 

7. Fix a vector x in Rn and let n- denote a permutation of 1,2,. . . , n (there 
are n! such permutations). Define the permuted vector r x  to be the 
vector whose ith coordinate is x(vF'(i)) where x( j )  denotes the j th 
coordinate of x. (This choice is justified in Chapter 7.) Let X be a 
random vector such that Pr{X = n-x) = l/n! for each possible permu- 
tation n-. Find GX and Cov(X). 

8. Consider a random vector X E Rn and suppose C(X) = C(DX) for 
each diagonal matrix D with diagonal elements dii = 1, i = 1,. . . , n. 
If &llX112 < + oo, show that GX = 0 and Cov(X) is a diagonal matrix 
(the coordinates of X are uncorrelated). 

9. Given X E (V, ( - ,  .)) with Cov(X) = 2,  let A, be a linear transforma- 
tion on (V , ( . ,  a ) )  to (K, [ a ,  .Ii), i = 1,2. Form Y = {AIX, A2X) with 
values in the direct sum W, $ W2. Show 

in W, $ W2 with its usual inner product. 
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10. For X in (V, -, .)) with p = GX and Z = Cov(X), show that 
&(X, AX) = (A, 2 )  + (p, Ap) for any A E C(V, V). 

11. In (Cp, ,, ( . , . )), suppose the n X p random matrix X has the covari- 
ance I, @ Z for some p X p positive semidefinite 2. Show that the 
rows of X are uncorrelated. If p = GX and A is an n x n matrix, show 
that GX'AX = (tr A)X + p'Ap. 

12. The usual inner product on the space of p X p symmetric matrices, 
denoted by Sp, is ( . , .), given by (A, B) = trAB'. (This is the 
natural inner product inherited from (Cp, ,, ( . , . )) by regarding Sp as 
a subspace of C,,,.) Let S be a random matrix with values in Sp and 
suppose that C(rSr') = C(S) for all r E flp. (For example, if X E RP 
has an orthogonally invariant distribution and S = XX', then C(rSr') 
= C(S).) Show that GS = cIp where c is constant. 

13. Given a random vector X in (C(V, W), ( . , . )), suppose that C(X) = 

C((r @ +)X) for all r E O(W) and+ E O(V). 

(i) If X has a covariance, show GX = 0 and Cov(X) = cI, 8 I, 
where c >, 0. 

(ii) If Y E C(V, W) has a density (with respect to Lebesgue measure) 
given by f(Y) = P((Y, Y)), Y C(V,W), show that C(Y) = 

C((T 8 +)Y) for r E Q(W) and + E Q(V). 

14. Let X,, . . . , Xn be uncorrelated random vectors in RP with Cov(Xi) = 

Z, i = 1,. . . , n. Form the n x p random matrix X with rows Xi,. . . , XA 
and values in (C,, ., ( . , .)). Thus Cov(X) = In @ 2 .  

(i) Form k in the coordinate space RnP with the coordinate inner 
product where 

In the space RnP show that 

where each block is p x p. 
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(ii) Now, form 2 in the space RnP where 

and Zj has coordinates X,,,. . . , Xnj for i = 1,. . . , p. Show that 

where each block is n x n, Z = {a,,}. 

15. The unit sphere in Rn is the set {xlx € Rn,llxll = 1}= %. A random 
vector X with values in % has a uniform distribution on % if C(X) = 

C(I'X) for all I' E 8,. (There is one and only one uniform distribution 
on %-this is discussed in detail in Chapters 6 and 7.) 

(i) Show that & X =  0 and Cov(X) = (l/n)I,. 
(ii) Let XI be the first coordinate of X and let x E Rn-' be the 

remaining n - 1 coordinates. What is the best affine predictor of 
Xl based on X ?  How would you predict XI on the basis of X ?  

16. Show that the linear transformation T2 in Proposition 2.24 is Z O  Z 
where denotes the outer product of the vector space ( M , ,  ( . , .)). 
Here, ( . , -)  is the natural inner product on C(V, V). 

17. Suppose X E R2 has coordinates X, and X, that are independent with 
a standard normal distribution. Let S = XX' and denote the elements 
of S by s,,, s,,, and s12 = s,,. 

(i) What is the covariance matrix of 

(ii) Regard S as a random vector in (S,, ( . , .)) (see Problem 12). 
What is Cov(S) in the space (S,, ( . , .))? 

(iii) How do you reconcile your answers to (i) and (ii)? 
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NOTES AND REFERENCES 

1 In the first two sections of this chapter, we have simply translated well 
known coordinate space results into their inner product space versions. 
The coordinate space results can be found in Billingsley (1979). The 
inner product space versions were used by Kruskal (1961) in his work 
on missing and extra values in analysis of variance problems. 

2. In the third section, topics with multivariate flavor emerge. The reader 
may find it helpful to formulate coordinate versions of each proposi- 
tion. If nothing else, this exercise will soon explain my acquired 
preference for vector space, as opposed to coordinate, methods and 
notation. 

3. Proposition 2.14 is a special case of Schur's Lemma-a basic result in 
group representation theory. The book by Serre (1977) is an excellent 
place to begin a study of group representations. 
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