
CHAPTER 8 

Magic Formula, 
Bartlett Correction and 
Matching Probabilities 

8.1. Introduction. The magic formula of Barndorff-Nielsen (1983) is a 
beautiful formula in higher order asymptotics for calculating the density of 
the mle, or its conditional density given an ancillary statistic, which was 
called a magic formula because it seemed magical when it first appeared. It 
still retains some of its magical quality, though it is much better understood 
now than when it first appeared. For example it is still unclear why it is so 
good an approximation even for very small values of n like n = 3 or 4. 
Barndorff-Nielsen and Cox (1989) provide a nice exposition as well as many 
interesting applications. The magic formula is a special case of saddle point 
formulas. For an excellent introduction as well as exposition of recent results, 
see Reid (1988) and Field and Ronchetti (1990). In Section 8.2 we present the 
magic formula in the general case, along with a proof in a simple case, and 
pose a number of open problems. 

Bartlett's correction is another formula in higher order asymptotics with a 
magical quality. We provide a Bayesian argument in Section 8.3 which is 
natural, general and rigorous. The proof makes clear that the correction is 
natural in the Bayesian context and the frequentist correction can be derived 
from this. In Section 8.4 we use the Bayesian argument to generate confi
dence sets which have the correct coverage probability of 1 - a up to O(n 2 ) 

(uniformly on compact 8 sets). These sets have the attractive property of also 
having posterior probability of 1 ·- a to O(n 2 ) of covering the true value of 
8. We show also how the frequentist Bartlett correction can be calculated 
through a Bayesian route. 

8.2. The magic formula. Consider i.i.d. continuous r.v.'s X 1 , X 2 , ... , Xn 
with (linear) exponential density (with respect to Lebesgue measure) 

p(xl8) = c(8)e 11xA(x). 
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Let L( e) = L = IIi'~ 1 p( Xi I e). Then the likelihood equation is 

(8.1) 0 = d log L I = nc'\B) + f.x;, 
de t! c(O) 1 

which is equivalent to 

(8.2) 

where J.L(O) = E(X1IO) = -c'(O)jc(O). 
From (8.2), 

(8.3) bde = dx, 
where 

(8.4) b = _ d 2 log c( 0) I· 
d0 2 ii 

By sufficiency of X, 
p(xiO) p(x 1 ,x2 , •.. ,xnl0) 
~(xiB) = p(x1, Xz, ... , xnle)·, 

(8.5) 

where in (8.5), p(xiO) stands for the density of x under 0. Hence 

p(x 1 ,x2 , •.• ,xn10) A 

(8.6) p(xlo) = A p(xle). 
P( x1,Xz,•··' xnlo) 

If we use the one-term formal Edgeworth expansion to evaluate the density of 
vn(X- J.L(O)) at X= X and put e = B(x), we get 

(8.7) 
A 1 

p(xiO) = /2 (1 + O(n 1 )). 
27Tnb 

The validity of (8.7) does not follow from Theorem 2.1 or results like that 
which provide valid expansions for probabilities only. Technically, we need a 
valid expansion of the density in the sup-norm rather than the Lrnorm, and 
some uniformity in 0 to justify the substitution of 0 = e. Necessary assump
tions are stronger than those of Theorem 2.1. 

If we assume (8. 7) as valid and substitute in (8.6), we get 

p(x1,x2 , .•. ,xnl0) 1 
(8.8) p(xiO) = A {1 + O(n 1)}. 

P( x1 , x2 , •.. , xniO) V27Tnb 

If we now use (8.3) in (8.8) to switch from x to e, we get a special case of 
the magic formula: 

(8.9a) 
A p(x 1 ,x2 , ... ,xnl8) /b { 1 } 

p(OIO)= A ·--1+0(n-). 
p(x 1 ,x2 , .•. ,xnlo) V27Tn 

If we do not assume exponential density, e is not sufficient and it will not 
be sufficient even up to O(n -l ), so formula (8.9a) cannot hold for nonexponen-
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tial densities without a suitable modification. It is clear we should have on 
the left-hand side of (8.9a), in addition to 0, additional statistics, which 
together with fj ensure sufficiency up to O(n - 1 ). It turns out that if one 
chooses ancillary statistics suitably, this can be done and the magic formula 
in the general case will look like 

A • p(x 1 ,x2 , ... ,xnl0) lb 1 
(8.9b) p( elanclllary, e)= ( A) ;;:;--:-:-- (1 + O(n )). 

p x 1 ,x 2 , ••• ,xnle v21rn 

If one believes, as recommended by Fisher, on working in the framework of 
conditional inference, where an ancillary statistic is held fixed, then (8.9b) 
seems to be the right tool to use. Note that (8.9b) is very easy to use since 
p(x 1,x2 , ••. , xniO) is easy to calculate for i.i.d. r.v.'s. 

If p(xiO) is a location family g(x 1 - 0), and the ancillary is what Fisher 
recommended here, that is, (x 2 - x1, x 8 - x1, ... , xn -- x1), then (8.9b) is 
exact, and Fisher knew this formula. Barndorff-Nielsen has shown his for
mula is exact when a (locally compact) group of transformations leaves the 
family {p(xiO), 0 E @} invariant and {j and the maximal invariant are to
gether a one-to-one function of x = (x 1, x 2 , ... , xn). 

In many examples, by the right choice of an ancillary statistic and renor
malization of the right-hand side of (8.9b) to make it integrate to 1, the error 
can be made O(n- 3 12 ). 

We conclude with a few open questions. Only the second question is new. 

1. Characterize multiparameter exponentials for which the formula is exact. 
The one-parameter exponentials for which the formula is exact were 
characterized by Daniels. 

2. Are solutions to question 1 always infinitely divisible? At least for in
finitely divisible multiparameter exponentials, solve question 1. 

3. Why are the formulas so good even for small n (sometimes as small as 3 or 
4)? 

8.3. Bayesian and frequentist Bartlett correction. Consider two 
nested null hypotheses on a two-parameter density p(x 1 , x 2 , ••• , xnl0 1 , 82 ), 

the case of k parameters being exactly similar. Let L(O) = p(X1, X 2 , •.. , 

XniO). Consider 

(8.10) H1:81=01o' I-lz:OI=(:}to' Oz=()zo· 

Let {j be the (unrestricted) mle of() and 0(810 ) the mle of() assuming H 1 IS 

true. Let 

(8.11) 
A1( () 10 ) = (log) likelihood ratio statistic for testing H 1 

= 2[1ogL(8) -logL(e(e10 ))], 

A2 ( 010 , 020 ) = (log) likelihood ratio statistic for testing H 2 

(8.12) [ A ] 

= 2 logL(e) -logL(00 ), 
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where 80 = (810 , 020 ). In the context of Hu 82 is a nuisance parameter. 
Here are some basic facts. 

1. Under standard regularity conditions, that is, Assumption A1 of Chapter 
1, \ converges in distribution to x? under H;, where x? is a x 2 with i 
d.f. 

2. Under stronger regularity conditions, suitable moment assumptions and 
Condition D (or C) of Chapter 2 [see Chandra and Ghosh (1979)] there is a 
valid asymptotic expansion for the probability that PO.; E BlfJ) (where fJ 
satisfies H; ). There is an expansion of the density, which is to be inte
grated over the Borel set B, the Borel set B satisfying suitable conditions 
on its boundary if Condition C, rather than Condition D, holds. The 
expansion of the density is of the form 

(8.13) t;(xn[1 + <nl + ~nl- + o(n-z)], 

where (; is the density of x 2 with i d.f. and the coefficient ( ) of n-,. is a 
polynomial in X;2 whose coefficients do not depend on n. 

3. Let EO.)H) = i + bjn + O(n- 2 ) as calculated from (8.13); see the first 
interpretation of such expansions in Section 2.7. The random variable 

X o= ill.-j(i + bjn) = ll.-/(1 + bjin) 
1. def 1 ' 1 ' 

is X;2 up to o(n · 1 ) in the sense that 

(8.14) P(A'; E BIH;) = P{x? E B} + O(n- 2 ) 

under the same assumptions as in the previous paragraph. The transfor
mation A; ~ A'; is the (frequentist) Bartlett correction and was first pro
posed by Bartlett (1937) more than 50 years ago. For some of the history of 
this, see Bickel and Ghosh (1990). Some of the early references are 
Bartlett (1937), Box (1949) and Lawley (1956). That a valid expansion of 
the probability in the following sense is true follows immediately from 
(8.13) and Lemma 2.1: 

(8.15) P{A'; E BIH;} = j8 t;(xl)(1 + (n) + ~1) dxl + O(n- 2 ), 

where the coefficient of n -r( ) is a polynomial in xl, with coefficients free 
of n, and the polynomials are different from those in (8.13) and, in 
principle, can be calculated from (8.13) through tedious algebra. Through 
long and tricky cumulant calculations, Lawley (1956) showed the coeffi
cient of n- 1 in (8.15) is zero. This and (8.15) show the truth of(8.14). 

It is surprising that merely adjusting the bias produces such dramatic 
improvement in the x? approximation, from an error of O(n- 1 ) according to 
(8.13) to an error of O(n- 2 ) according to (8.14). Such a correction does not 
exist for the two most popular competitors of the likelihood ratio statistic, 
namely, Rao's score statistic, which is a quadratic form in a log L I riO; loo, 
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i = 1, 2, for H 2 , and Wald's statistic, which is a quadratic form in e. On the 
other hand, facts 1 and 2 hold for them; see Chandra and Ghosh (1979). 

Lawley's proof is tricky and computational, but does not throw light on 
why one should expect a relation like (8.14) to hold for the likelihood ratio 
statistic rather than Rao's or Wald's statistic. In this context, the following 
lemma is of interest. We omit the simple proof. 

LEMMA 8.1. Equation (8.15) is true if and only if the coefficient of n - 1 in 
(8.13) is linear in xr 

More recently Barndorff-Nielsen and Cox (1984) prove (8.14) using 
Barndorff-Nielsen's magic formula. However, the magic formula has not been 
proved rigorously in all cases and a rigorous proof of a saddle point formula 
seems to require rather strong assumptions, as indicated even for the sim
plest case [see (8.6) through (8.8)]. 

We reproduce below the Bayesian argument of Bickel and Ghosh (1990), 
which is both rigorous and seems to make clear intuitively why the correction 
works. We will explain only the main ideas and in the process also develop a 
Bayesian Bartlett correction based on the posterior distribution of ,\1 , ,\2 

given X1, X2, ... , Xn- It turns out that it is relatively easy to see why the 
posterior distribution of,\ should have the structure in Lemma 8.1. 

STEP 

d.f.: 
1. Use signed square roots of the likelihood ratio statistics with 1 

( 8.16) 

1/2 o A 

(8.17) T2 = {,t2 - ,\1(0 10 )} s1gn(02(010)- 020 ). 

Note that T:j = (,\2 - ,\1(010 )) is the likelihood ratio statistic for 

Ha: 02 = 02o 

assuming H 1: 01 = 010 is true. 
The signed square roots, being asymptotically normal, are convenient to 

work with in many problems involving r.v.'s which have asymptotically x2 

distribution. Their use goes back to Lawley (1956); see also Chandra and 
Joshi (1983). For the justification of Bartlett correction, T;'s are convenient, 
but not essential. One reason for considering T;'s in Bickel and Ghosh (1990) 
was to prove an extension of a result of Efron (1985) and possibly others (folk 
theorem?): The normal approximation to T;'s is correct to a higher order than 
the normal approximation to {n-(e- 0). Various people, including Efron, 
have recommended the use of T;'s or A;'s, rather than the mle, for setting up 
confidence intervals. 

STEP 2. Note that T;'s arc functions of 010• {)20 as well as X1, x2, ... ' Xn. 
We now treat 010 , 020 as r.v.'s with a prior distribution 1r and write 0 for 00 . 

Let 1r Q9 P0 stand, as before, for the joint distribution of 0 and X's and P = P"ll" 
for the marginal distribution of the X's. 
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STEP 3. The posterior density of 81, 82 is proportional to 

( 8.18) 7T( 8 )exp{log L( 8) - log L( e)} = 7T( 8 )exp{- ~T12 -- ~Tn. 

The posterior density of Vn(8- e) is also proportional to (8.18) and the 
posterior density ofT1, T2 (given X 1, X 2 , •.. , X,) is proportional to 

(8.19) 7T( 8)exp{- ~T12 -- ~Tl} J, 

where J is the Jacobian of transformation to T1, T 2 from 8 or /n-(8- e). 
It is easy, though tedious, to show by a Taylor expansion, that is, the delta 

method, that T = (T1, T2 ) is a nonsingular linear transformation of /n-(8-
e)= /n(81 -- el, 82- e2) plus terms of order (/n)-- 1 . Since this is obtained 
by Taylor expansion, it is clear that the coefficient of ( Vn) r is a polynomial 
in Vn(8; - fJ) of one degree more than r. Since calculation of the Jacobian 
involves a differentiation, the Jacobian J is a constant plus expansion in 
powers of (/n)- 1 with coefficient (Vn) r a homogeneous polynomial in 
/n ( 8; - e) of the same degree r. Reexpressing this in terms of T, it can be 
seen that the Jacobian J is a constant plus an expansion in powers of ( {n) -1 , 

with the coefficientof({n) r a homogeneous polynomial in T1, T2 of degree r. 
If one expands 7T(8) around e, then again one gets 7T(e) plus an expansion 

in powers of ( 0; - e). Hence, if one writes this in terms of (In ( 8; - e) I /n), 
one gets 7T(e) plus an expansion in powers of (Vn)- 1 with coefficients that 
are polynomials in /n ( 8; -- e;) of the same degree. Finally, once again 
switching to T, one sees, as in the case of the Jacobian, that the degree of a 
coefficient polynomial matches the power of ( Vn-) -1. 

From the above considerations it follows that a formal expansion up to 
O(n 2 ) of the numerator in the posterior of (T1 , T 2 ) has the form 

7T3 (t' X 1' X 2 ' · · · ' X n) 

= exp(- ~tr -- ~t~){ 1 + a polynomial of degree 3 in t 1/Vn, td/n} 

+ O(n- 2 ). 

If one integrates out t and divides, then one gets a formal expansion of the 
posterior as 

7T3(t, XI, Xz, ... , Xn) 

(8.20) 

+Qs(n-112t1,n-112t2,xl,x2, ... ,xn)} + O(n-2), 

where P3 is a cubic in (Vn) 1 and Q3 is a cubic in td Vn, td /n. 
The expansion (8.20) is justified in the following theorem in Bickel and 

Ghosh (1990). 

THEOREM 8.1. Under regularity conditions on the density and conditions 
on 7T as in Chapter 5, 
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(i.e., the Lrdistance between the posterior and its formal expansion goes to 
zero like n- 2 ). 

STEP 4. Using Theorem 8.1, one can show that the posterior density of 
A. 2 = (T12 + T22 ) is of the form 

(8.22) 

where ( ) is linear in xi and similarly for A.1• It follows from Lemma 8.1 that 
the posterior density of 

(8.23) 
iA.; 

A.*=----
l 1 + b£ jn 

can be approximated by ax/ density up to O(n- 2 ); here 

E(A.;Ix1 , x 2 , ..• , xn) = i + b£(x1 , x 2 , ••• , xn)/n + O(n- 2 ) 

as calculated from (8.22). This is what we call the Bayesian Bartlett correc
tion. 

STEP 5. Making 1T converge weakly to the measure putting all the mass 
at 00 (as in the proof of third order efficiency in Chapter 6), and using (8.22), 
it can be shown that the density of A.7 under 00 satisfies the condition of 
Lemma 8.1 and, hence, the frequentist Bartlett correction works also. 

One may ask why such an argument would fail for Rao's or Wald's 
statistic. To get the posterior density for A.1 ,A.2 (via T1, T2 ), we had to expand 
only 7T( e) and the ,Jacobian, but not 

exp{log L(O) -log L(fJ)} = exp{ -J(T12 + rn} = exp{ -A.d2}. 

However, for Rao's or Wald's statistic, one has also to expand the exponential 
term; hence, the posterior of those statistics will not have the structure 
required by Lemma 8.1. 

One can derive an elegant formula for the quantity b; = b;(00 ) appearing 
in the frequentist Bartlett correction by making 1T converge weakly to the 
probability measure 800 sitting on 00 ; see Ghosh and Mukerjee (1991) and the 
next section for details. A similar argument appears in Dawid (1991). 

8.4. Matching probabilities and confidence sets. We indicate how 
the Bayesian and frequentist Bartlett correction can be used to choose a prior 
1T such that the confidence set obtained from A.1 or A2 has the same frequen
tist and posterior probability of covering the true value up to 0( n 2 ). This 
topic will be discussed in more detail in the next chapter. 

We will need the following analogue of Theorem 8.1, which can be obtained 
in a similar way. 
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THEOREM 8.2. Under regularity conditions on p(xl8), and the assumption 
that 7T is positive and four times continuously differentiable, 

(8.24) 
J 17T ( t I X 1 , X 2 , ... , X 11 ) - 7T 3 ( t I X 1 , X 2 , ... , X n) dt 

= O(n-- 2 ) a.s. (P0 ). 

Compare with Johnson (1970) and Ghosh, Sinha and Joshi (1982) and note 
that one can have versions of this which are uniform on compact sets of 8. 
The difference between Theorems 8.1 and 8.2 consists in replacing 7T 0 P0 by 
Po. 

We illustrate only with A1, that is, we seek a confidence set (or interval) 
only for the parameter of interest 0 1, treating 82 as a nuisance parameter. 

Fix a prior 7T and consider 

(8.25) 

A 1 "(x1 ,x2 , ... ,x,) = {e~;A1(x 1 ,x 2 , •.• ,x,,ef) 

where xf" is the 100(1 - a)% point of a x 2 with 1 d.f. and bi is the 
quantity 'appearing in the Bayesian Bartlett correction in Step 4 in the 
previous section. Then, by Theorem 8.2, 

(8.26) -2 posterior probability of 01 E A 1 " = 1 -- ex + 0( n ) . 

Now choose 7T and, hence, A 1 "'such that the frequentist probability 

( 8.27) 

(uniformly on compact sets of f)). 
The point of doing this is that a Bayesian using such a prior will be in close 

agreement with the frequentist about the coverage probability. In some sense 
such a prior may be called noninformative. The idea of matching frequentist 
and posterior probability, which goes back to Welch and Peers (1963), is 
discussed in more detail in the next chapter. 

We will need the marginal posterior of T1. The proof in Bickel and Ghosh 
(1990) is not constructive and does not lead to explicit formulas. One has, 
therefore, to use expansions of posteriors of Vn-( 8 - (J) (see Chapter 5) and 
switch to T1 , Vn(82 - 02 ) and integrate out Vn(fJ2 - 02 ). For this purpose it 
is convenient to have orthogonality of 81 and 82 . We will need the concept of 
orthogonality also in the next two chapters. The idea of orthogonal parame
ters seems to be owing to Huzurbazar [see Huzurbazar (1992)]. The following 
treatment is based on Cox and Reid (1987). 

The parameters 01 and 82 are orthogonal if the Fisher information matrix 
is diagonal for all 8. Given a scalar parameter of interest, 81, and a nuisance 
parameter of arbitrary dimension, in general, one can reparametrize 82 to 
have 01 and 7](01 , 02 ), where 01 and YJ are orthogonal. Let fl2 = 02(01, r7). 
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Then the function 82 must satisfy 

d82 
lzz(8)- = -l~Ae). 

d(Jl 
(8.28) 

Here is an example from Cox and Reid (1987). 

EXAMPLE 8.1. xl ~ (Yl, Y2), Yl, y2 are independent exponential with 
means 02 and fi 1 82 . The ratio of means is the parameter of interest. The 
equation (8.28) reduces to 

1 
( 8.29) 

which is equivalent to 

(8.30) 

and the solution is 

(8.31) 

so that 

log fi2 + ~log fi 1 = YJ (say) 

(8.32) 

If we assume, as we may without loss of generality, that fi 1 , fi 2 are 
orthogonal, then, after some algebra, we get the marginal of T1 as 

1r(t1 lx 1 , x 2 , ... , x,) 

( 8.33) = <P(t 1 )[1 + n- 112 (Gdt1 + n- 1 (G2 )(t~- 1) 

+n -3 / 2 {a cubic in t 1} + O(n- 2 )], 

where G1 , G2 depend on 1T and its derivatives at 0. [The corresponding 
marginal posterior for h 1 = Vn ( 01 -- 01) involves a cubic in t 1 as coefficient of 
n 1 ;z and a polynomial of degree 6 in h 1 as coefficient of n- 1.] Explicit 
formulas are given in Ghosh and Mukeijee (1992a). 

Using (8.33), one can calculate bf from 

(8.34) E(T12 Ix1 , x 2 , .•• , x 11 ) "= 1 + bi/n + O(n 2 ). 

One then chooses 1r such that 

( 8.35) 

where b1 is the frequentist Bartlett correction. 
We provide some details of the calculations, illustrating in the process how 

the frequentist Bartlett correction b1 can be calculated in a Bayesian way. 
We first note that integrating t~ with respect to the right-hand side, we 

get 
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We write down G2 explicitly below, after introducing some notations. By 
orthogonality, 

( 8 .36) I = Fisher information matrix = [ 1~0 
Let L =log p(x1 , x 2 , •.. , xniH) and let 

(8.37) A l(ai+ilogLJI l(0)=-
'1 n ae{ ae£ a' 

(8.38) 

(8.39) 

(8.40) 

(8.41) 

KiJ"i'J'·i"f'' and so forth, are similarly defined. We will need the following 
relation (in proving which one uses differentiation under the integral sign): 

a 
(8.41a) -. -K;1· = K; 1·. 10 + K; + 11· ae1 · · 

(8.41b) 

Then 

G2 = *D 2 {l4o(e) + *D 1 l~0 (e)- 3(l02 (H)) 1 (l21(H)) 2 

(8.42) 

(8.43) 

- 2 (l 02 ( e) ) 1 l12 ( e) l30 ( e ) } 
+ ~{ D( loz( H) )2

} .
1 {2lo:3( e)lz1( e)} 

+3{ldb))2
}- HDl02 (B)) 1l 22 (B) + k(D7T(0)) 1 

X { 7Tzo( 0) - (lo2( B)) \rrlO( H)l12( e) + 7T(n( H)l21( H)) 

+D 17Tw( H) lao( e))} + op(l) 

= ~1 + ~(D7T)- 1 {77-2o- fol(77-I0[12 + noJ21) + D 177-JOf:JO} 
+op(l), 

where ~1 is free from 7T (and its derivatives) and 71-iJ = 7TJ {}), lu = l i.i( 8). 
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Under fJ = 80 , 

b'j = 21,1( 80 ) t- ('77( 80 )) - 1 

X {I2o1772o( Ho) + U2olo2) \ 7710( Ho)K12 + 77rn( Ho)K21) 

( 8.44) 

= 21/11( 00 ) + !f;2 ( 80 , 77) + op(l) 

( 8.45) 

Here lj;1( 00 ) is the limit of 1~ 1 in probability, and the limit is easy to write 
down using ZJi'n ~P K;J, 17iJ(O) ~P 77;}00 ), and so forth. The part depend
ing on 77 is !f;2 • 

To calculate the frequentist Bartlett correction b1( 00 ) from b, we proceed 
as follows. For the time being only, we regard 77 as an auxiliary prior 
satisfying the conditions of Bickel and Ghosh (1990) (or analogous to those of 
Chapter 5 at a = 80 -- 8, b = 80 + 8) and concentrate on a rectangle with 
vertices at 810 ± 8, where 8 > 0 will eventually tend to zero. (For example, 
the product of two marginal priors of 81 , 82 satisfying the conditions of 
Chapter 5 will do.) To make the dependence of 77 on 8 clear, let us denote 77 
by 778 and b1 by b18 at this point. Then, using a double integral over the 
rectangular support of n;~, 

( 8.46) 

The idea is to take the expectation of bj with respect to 778 ® P0 and then 
make 8 j, 0. The expectation is taken by first taking expectation given 0, 
getting b1 and then integrating out H. We indicate how one calculates the 
limit on the right-hand side of (8.46). Note lj;1 does not involve 778 and is a 
continuous function of 0. Hence, 

(8.47) 

For the terms lj;2 in b8 which involve 778, we have to take recourse to 
integration by parts before taking the limit. Thus, 

( 8.48) 

We get finally, after using the results (8.4la) and (8.41b), 

( 8.49) 



where 

(8.49a) 
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;; ;; 
!/13(8o) = -2l2o1 - --:-{(I2olo2) 1K12 + lzl/K:w} 

()(Jl (J(Jl 

d 
- -- {(I zo lo2 ) 1 K 2 d · 

(}{]2 

85 

It is a remarkable fact that i./!:3 is often zero, which corresponds to the fact 
that the uniform prior satisfies (8.50) below. 

We now determine 7r by matching b 1(00 ) and b1(80 ) for all 80 , that is, from 
the differential equation 

(8.50) 

which may be written in the following form, using the fact (;; / (}(J )[201 

l2(/(K10 .20 + K 30 ) [see (8.41b)]: 

;; { 7r 10 ( 0) K 10 .20 7r( e) K 12 7r( 0)} iJ { K 21 7r( fJ)} 
(8 .51) r7fJ 1 l2o( fJ) -- Iio-- + lzoloz + ()(J2 - l2olo2 - = O. 

The assumptions needed for deriving such equations as well as the inter
pretation to be attached are discussed in Section 9.4. In the present case, we 
need the conclusion of Theorem 8.2 to be true and (8.13) to be valid. For 
Theorem 8.2 to be true, we need conditions of Johnson (1970) for posterior 
expansion up to o(n 1 ). For (8.13), the Edgeworth assumptions in Section 2.6 
suffice; see Chandra and Ghosh (1979). 

EXAMPLE 8.2. Let x;'s be i.i.d. normal with mean 02 and variance 01, that 
is, 01 is the parameter of interest. Then the solution of (8.51) is 

1 - 'l ( 8.52) 7r( (J) = dl( (J2) (J]. + d2( 02) (Jl' ' 

where d 1 , d 2 are arbitrary functions. In particular, 7r = d( 02 )0 1 1 satisfies 
(8.52). The common prior for this, namely [the prior induced by the right 
Haar measure for (OtJ 2 , 82 ) under the affine group of transformation], 

7r(O) = 011, 

satisfies this but not the Jeffreys measure (see the next chapter for its 
definition) 

7r( o) = e~-:l;z 

[which is induced by the left Haar measure for ( etJ 2 , 02 )]. 
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