
Chapter 3 

Estimation in the LMCD 
Assuming Normally 
Distributed Errors with 
Unbalanced 
Designs/Missing Data 

In Chapter 2 we considered only designs with equal numbers of obser­
vations, n, on each subject. It often happens that ni # n and hence 
var (Yi) = I:i(nixni); this can arise in different settings. We can have 
studies with unequal ni by design: e.g., clustering, sampling households 
or litters, or family studies. In this case the Yi are complete responses 
on the sampling unit, and the LMCD assumes 

E (Yi) = xi f3 
niXl niXppxl 

(3.1) 

and 
var (Yi) = ~i , 

n~Xni 
(3.2) 

for appropriate choices of Xi, f3 and ~i· Here ~i depends on i through its 
dimension, and possibly also Xi, but we will assume a common parameter 
set for the ~i, so that we may write ~i(e), where e contains all of the 
variance covariance parameters. For example, if each observation has the 
same variance (J'2 and any two pairs of Yij, Yik have the same covariance, 
then each ~i has the compound symmetry form with different dimension 
ni. 

52 
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Alternately, it may happen that the design calls for n measures per 
subject, with 

E (Yi) = xi {3 
nxl nxp pxl 

and 
var (J:i) = ~i , 

nxn 

but some observations are missing, so that the vector on ni observations 
that are the observed data can be expressed as 

~OBS = Ii Yi. 
nixn niXn nxl 

where Ii is obtained from ann x n identity matrix by removing the rows 
corresponding to the missing observations. Here again the dimension of 
each ~i will depend upon i; as before we assume a common parameter 
vector e which consists of the unique elements of~. In general, 

(3.3) 

and 
(3.4) 

hold only if the MDM is MCAR. It is important to note that the {3 and e 
are the same for the unequal ni and equal n case. From a technical point 
of view, both of the cases (unbalanced by design or because of MCAR 
data) can be handled in the same way (although the structures for ~i 
will generally be different), but the validity of the estimators will depend 
upon the design or the MDM. Henceforth we drop the superscript OBS 
and all Yi are ni x 1 and Xi are ni x p, unless otherwise noted. 

3.1 ML and REML Estimation for the Unequal 
ni Case 

Here we will consider ML and REML estimation based on the multivari­
ate normal distribution for unbalanced data. As discussed above, this 
can be appropriate for the clustered data setting, or it can arise in the 
case of missing data. In this chapter we deal with likelihood inference for 
MAR and/or MCAR MDM's, hence we can assume that each observed 
J:i is N(Xi{3, ~i)· As in the complete data case, we will mainly focus 
on unstructured ~ in this chapter, i.e., the missing data case where the 
covariance matrix for each complete data vector is 2.:. Chapter 5 takes 
up a random effects structure which allows ~ to depend on Xi. 
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Letting () denote the parameters of ~i, we then have that the likeli­
hood based on the observed data is 

Again, it is easily seen that for any fixed() (and ~i), the ML estimate of 
(3 is given by 

(3.5) 

Thus, as in the complete data case, the ML estimate of (3 has a simple 
form as a function of (). 

Substituting jj(()) for (3 in the likelihood gives the profile likelihood 

Even when ~i = Ii ~ t{ for ~ unstructured, the derivation of 
nixn nxn nxni 

the score equation is complex and there are not simple closed form solu-
tions to the score equations for ~. A set of simple iterative computing 
equations can be derived using the EM algorithm and we can also use the 
"EM-method" to derive the score equations for~. This will be described 
in Section 3.3; for now, we give the following expression for i;ML in the 
case of missing data and ~i = Ii ~ I[: 

N 

i;ML = 'LJJi/N (3.6) 
i=1 

where 

N 

Qi =~-~IT ~i1 Ii ~ + 2: ~Ir ~i 1 (Yi- xi/3) (Yi- xif3f ~; 1 IT~, 
i=1 

(3 = (t xr ~i 1 xi) -
1 

~=1 

N 

2: xr~i1 Yi, 
i=1 

~i = Ii ~I[, 

and Qi is Qi with i;, i;i and ,8(i;i1) substituted for ~' ~i and (3. 
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The derivation of the REML estimator of e proceeds as in the com­
plete data case, by constructing t~ profile likelihood, with an additional 
term in the denominator for var(/3): 

N N -1/2 

Lk(e) = II l~i[- 112 L xT~i1Xi 
i=1 i=1 

1 ~ T 1 ~ 
[ N l x exp -2 tt (Xi - Xi/3) ~i (Xi - Xi/3) , 

As before, with unstructured ~ we can use the EM approach explained 
in (3.3) to derive a solution to the likelihood equations 

N 

f;REML = L(<:Ji + fi)/N (3.7) 
i=1 

where Qi is as before, 

and Qi and fi are Qi and Ti evaluated at f:REML· For both the ML and 
REML estimators, simple iterative computing algorithms will be derived 
in Section 3.6. 

Notice that setting Ii =I and ~i =~for all i (no missing data) gives 
the corresponding likelihood equations for the complete data case with 
unstructured ~. From (3.6)-(3.7) it is clear that f:ML and f:REML, will 
be consistent for ~ even if normality does not hold, provided the data 
are MCAR. 

Under an MAR assumption on MDM, equations (3.1)-(3.2) do not 
hold, i.e., 

E (Yi) # xi f3 
n,xl nixppxl 

and 
var (Xi) # ~i = Ii~I'[, 

where j3 and ~ determine the moments of the complete data vectors. 
However, with data MAR, we saw in Section 1.4 that the appropriate 
likelihood for (/3, e) is proportional to the likelihood based on the ordinary 
marginal of the observed data, i.e., the likelihood obtained by assuming 
Yi rv N(Xi/3, ~i). Thus the likelihood estimators for (/3, B) do not differ 
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for the MAR and MCAR case even though their properties differ under 
the different missingness assumptions. So, for iJML defined as 

where i:i is also based on {JML, we have that iJML is a consistent estimate 
of f3 and i:ML and i:REML are both consistent for .E in the case of missing 
data if (a), (b) and (c) or (d) hold: 

1. (a) E ( Yi ) = Xi f3 holds for the complete case. 
nxl nxppxl 

(b) .E = var ( Yi ) holds for the complete case. 
nxn nxl 

(c) Error terms are normal and the missingness is MAR. 
or 

(d) The missingness is MCAR. 

Note also that: 

2. Under (a)-(c), the observed Fisher Information Matrix, but not 
the expected information, gives a valid estimate of var (iJML)· So 
Avar ({jML) -=/= 0:=!1 X[i:i 1 Xi)- 1 except with MCAR. In prac­
tice, however, there is often little difference between the estimated 
observed and expected information. 

3. Under MCAR, iJML is unbiased for f3 (Karkar and Harville, 1988). 

3.2 A General Formulation for Incomplete Data 

As mentioned in Section 3.1, using straightforward matrix differeptiation 
techniques to obtain the derivatives of the profile likelihood for e is te­
dious, and does not lead to any particularly tractable set of equations. 
An alternative method for deriving likelihood equations is to rely on 
a general theory for maximum likelihood in the presence of incomplete 
data, which includes missingness as well as imbalance by design. The 
general theory is also the motivation for the EM algorithm. 

The EM algorithm is a very general algorithm for computing ML 
and REML estimates with incomplete data (Dempster, Laird and Ru­
bin, 1977). Indeed, by appropriately defining the complete data, the al­
gorithm can also be applied to solve the ML and REML score equations 
in a broad class of LMCD models with normal errors (like the random 
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effects model discussed in the Chapter 5), even in the absence of miss­
ing data. In this section, we introduce a general notation for describing 
incomplete data. 

Let Y be an observed data vector which can be represented as an 
incomplete version of some complete data vector Z with density fz (z; <I>): 
Y may be simply missing components of Z, or it may be a convolution 
of components of Z. By definition, the density of Y, fy (y; <I>), satisfies 

fy(y; <I>)= j fz(z; <I>) dzy, (3.8) 

where dzy denotes integration over the missing (or incomplete) data. 

We will illustrate the algorithm with four examples. All of the ex­
amples are special cases of the LMCD where <I> = ((3, ~). In all of these 
cases, ,BML based on the observed data is given by (3.6) for a given ~. 
The difficulty is in deriving score equations for ~ and computing f:ML· 
It helps to keep this in mind when reviewing the examples, since the in­
complete data problem is formulated to make ML estimation of~ easy. 
The goal is to compute the maximum likelihood estimator of some or all 
elements of <I>. The observed data Y may be a pre-specified subset of Z 
or it may be a random subset. 

Example 1. Suppose each Zi "" Nn(f.L, ~), i = 1, ... , N, and some 
subjects are missing some of the Zij's. Let Yi denote the (ni x 1) subset 
of the Zij 's which are observed. Then yr = (Yt, ... , YJ') is a n+ x 1 
vector, where n+ is the summation of the ni, and we will let the complete 
data z be the nN X 1 vector defined as zT = (Zf, ... 'Z'{;-). Note this 
is a special case of the LMCD when Xi= I and f.L = (3. 

Example 2. Let Zi "" Nn(Xi/3, ~) where (3 and ~ are unknown 
and ~ is an arbitrary symmetrc positive definite matrix. Take yT = 

( Zf, ... , Z'{;-) and ,yT = ( Z[, ef, ... , Z'{;-, e'J:t). Here the outcomes Zij are 
fully observed. However, we regard the unobserved residuals, ei = (Yi­
Xi/3), as additional, unobserved data. Example 2 seems a bit contrived, 
but provides us with a simple way of deriving the likelihood equations for 
((3, ~) as given in Chapter 3, which extends easily when some outcomes 
Zij are missing, as indicated in the next example. 

Example 3. As in Example 2, let Zi (nxl) "" Nn(Xi/3, ~) but now 
suppose that some Zij are missing, so only Yi (n,xl) is observed. Then 
take yr = (Y1, ... ,YN)T and zT = (Yt,ef, ... ,YJ',e'J:t) as in example 
2. The dimension of Z is (nN x 1) and of Y is n+ x 1. 

Example 4. Suppose Yij = X'{j (3 + bi + eij, j = 1, ... , ni, and 
i = 1, ... , N where bi and eij, j = 1, ... , ni, are all independent normally 
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distributed with with zero mean, var(bi) = d and var( eij) = a 2 • We 
take zT = (Yj_T, bl, ... 'YJ, bN) and yT = (Yt, ... 'YJ). As in Example 
2, there are no missing data, and the random effects are considered as 
missing for convenience. Random effects models will be taken up in detail 
in Chapter 5. 

The first thing to notice is that the definition of the complete data Z 
need not be unique. The choice of the observed data Y is unique because 
it is actually observed. In general, there may be many choices for Z. We 
should choose Z so that computing the MLE of <I> based on Z is easy. 
For instance, in example 1 with the complete data Z = (Z[, ... , ZJ;), 
the ML estimators of (p, I;) have closed form. But in Example 3, where 
the mean of each Zi is Xi{3, closed form estimates do not exist except 
in very special cases. By taking Z to include the error terms we can 
get closed form estimates of I; with complete data. As we will show in 
Chapter 5, with Example 4, adding only the random effects bi, means 
that we can get closed form estimates for ((3, d, a2 ) with the complete 
data. 

3.3 Derivatives of the Log-likelihood for the In­
complete Data Model and the EM Algo­
rithm 

Derivatives of incomplete data likelihoods can be derived using the follow­
ing fundamental identity. Suppose that regularity conditions are satisfied 
so that the order of differentiation and integration can be interchanged 
in the right hand side of (3.8). Then we have 

81 f ( . <I>)ja<I> = f 8fz(z; <I>)/8<I> dzy 
og Y y, fy(z; <I>) 

_ J a log fz(z; <I>)/8<I> fz(z; <I>)dzy 
fy(y;<I>) 

= j 8logfz(z;«P)/8«P fz1y(zjy;«P)dzy 

= EziY {a log fz(z; P)jaci>Jy; <I>} 

where the subscript ZJY refers to the conditional distribution of Z given 
Y. Thus, we see that the score for ci> based on the observed data Y =y 
is equal to the expectation of the complete data score for <I> based on 
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Z = z, conditional on the observed data. This identity provides us with 
an easy way of deriving the score equations in incomplete data settings. 

In the score equations for <I>, 

(3.9) 

the parameter <I> enters twice; once as an index of the complete data score 
8log f z ( z; <I>)/ 8<1> and then as an index of the conditional distribution of 
Z given Y. This suggests solving (3.9) by an iterative algorithm that 
updates the values of <I> separately in its two appearances. Specifically, 
given <I>k, stage k + 1 of the algorithm consists of two steps, namely: 

E-step Compute the conditional expectation of the complete data score 

and 

M-step Solve for <I> in the expected complete data score equations 

and call its solution <I>k+l· 

The E-step (E for expectation) essentially imputes the complete data 
score using its expectation given the observed data. The M-step (M for 
maximization) solves the complete data likelihood equations using the 
expected score. One instance in which the algorithm takes a particu­
larly simple form is when the distribution of the complete data has an 
exponential family distribution, namely 

et(z) T B( <I> )-b(z) 

fz(z;<I>) = a{e(<I>)} , 

where e is the vector of natural parameters and t(x) is the corresponding 
vector of sufficient statistics. Then the complete data score function for 
<I> is 

hence 

Thus, in this case given <I>k, the (k + l)th stage of the EM algorithm is: 
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E-step Compute tk+l (y) = EzlY {t (z) Jy; <l>k}, and 

M-step Solve 

{ 
f)() ( <1>) } 

{tk+I(y)- E [t (z); <1>]} ~ = 0, 

or when the transformation from () to <1> is invertible, 

t(k+l)(y) = E[t(z); <1>]. (3.10) 

Notice that solving for <l>k+l at theM-step is the same as solving the 
complete data likelihood equations with the sufficient statistics t (z) re­
placed by its imputation tk+l (y). Also notice that the algorithm assumes 
the existence of a "complete data vector" Z but it does not prescribe how 
to define Z. Ordinarily, one would want to define X in such a way that 
the steps of the algorithm can be easily computed. In particular, if Z 
has a distribution in an exponential family, one would want to choose Z 
so that E [t (z); <l>J is itself equal to <1> or an easily invertible function of 
<1>. 

We now return to our examples. 

Example 1. Deriving the EM equations for Example 1 is very 
straightforward, and left as an exercise. The M-step has a simple closed 
form solution for f-Lk+l, ~k+l and E(t(x)JY, <l>k) is easily obtained using 
standard multivariate theory. See, for example, Little and Rubin (1987), 
Section 8.2. 

Example 2. Now we have no missing data (each zi is n X 1) but 
since each subject has a possibly different mean, the ML and REML 
estimates of~ do not have closed form. In Section 2.3 we calculated the 
score equations for (3 and ~ directly by derivation of the log-likelihood 
function. Here we show how the "EM Method" can be used to obtain a 
solution to the score equations avoiding the need of matrix derivations. 
Our implementation of the EM for this example is unorthodox; because 
the complete data likelihood is singular (Yi is linear in ei), we always 
use the score equations for (3 obtained from the observed data and use 
the complete data to derive score equations for ~- With ( ef, ... , e'k) 
in the complete data where each ei is iid ei rv N(O, ~), we have that 

N 

S = Leie[ is the minimal sufficient statistic for ~' and the complete 
i=l 

data score equations for ~ are 

N~-8. (3.11) 
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Further, the score equations for (3, based on the observed data, are 

N 

Lx[L:-1(Zi- Xi/3). 
i=l 

Then we have the following: 

E-step Given L:k and f3k, set 

N N 

sk = LE ( eie[lxi, L:k, f3k) = L (Zi- Xif3k) (Zi- Xif3kf' 
i=l i=l 

because var (eiiZi, I:) = 0 and E(eiiZi, I:) = (Zi- Xi/3). Note that the 
score equation for (3 does not depend upon the ei 's. 

M-step Given Sk, compute L:k+l as 

and f3k+I as 
f3k+I = (L:X[L:J:~ 1 Xi)- 1 L:X[L:J:~ 1 Zi. 

This is simply iteratively reweighted generalized least squares (IRLS) 
for the case whe~ we have complete multivariate data. At convergence, 
L:k = L:k+l = I:ML and we obtain the likelihood equations given in 
Section 3. Because at each iteration, 7Jk+l maximizes the observed data 
likelihood and not the expected complete data likelihood, Liu and Rubin 
(1994) refer to this as a generalization of the EM. 

Example 3. Suppose that in Example 2, some of the Zij 's are 
missing. Since Z is the same, the M -step for I: remains the same, but 
now 

and 

so that 

As before, using the observed score equation for (3 yields 

N 

L X[L:i 1(Yi- Xi/3). (3.12) 
i=l 
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Again combining theE- and M-steps, for a given f3k and .Ek we have 

N 

.Ek+l = L Qik/ N (3.13) 
i=1 

where Qik is Qi with (/3, .E) evaluated at (f3k, .Ek)· Solving (3.12) for 
f3k+I, .Ek+1 gives 

(3.14) 

where .Eii/ is (Ji.EJ[)-1 evaluated at .Ek. Using (3.13)-(3.14) might be 
regarded as a variant of multivariate IRLS for missing data. Notice that if 
we have complete data on all subjects the algorithm reduces to the IRLS 
algorithm of Example 2. From the definition of Qi as E(eiefili, /3, .E) and 
S = L,!1 eief, it follows from (3.10) and (3.11) that the score equation 
for ~ML is given by (3.6). 

The EM approach can also be used to derive the REML likelihood 
equations and the corresponding iterative algorithms, using the Bayes 
formulation for EM. Recall that with REML, f3 and I: are given fiat 
priors, and the REML likelihood is proportional to the marginal posterior 
of .E. Thus using ( 4.5) where <P = (/3, .E) and Y is the observed data, the 
REML likelihood is 

£R(Y, .E) ex j fy(yj/3, .L:)d/3 ex j j fz(zj.E, fJ)dzyd/3. 

This implies we can regard f3 as an additional piece of "missing" data. 
Hence the sufficient statistic for I: remains S, but in computing the 
expectations given Y, we consider the f3 as missing data. Thus the REML 
score equations become 

N I: - E(E(SIY, /3, .E)) 

where inner expection is exactly the same as before, and where the outer 
expectation is with respect to f3 given Y = y and .E. 

To evaluate the REML score equations, we use the fact that with 
linear models, normal likelihoods, and fiat priors on /3, the posterior of fJ 
given I: and the data is normal, with mean equal to jj(.E) and variance 

~ N 
equal to the variance of /3: var(/3) = ('L,i=1X[.Ei1Xi)-1. Therefore, for 
Example 3, 

N 

E(SIY, /3, .E)= L E(Qilli, .E) 
i=1 
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and 
E(QiiYi, ~) = Qi('jj) + Ti, 

where Qi }nd Ti are defined in Section 4.2 and Qi('jj) is Qi with f3 eval­
uated at /3. Hence it follows that the REML score equations are 

N 

~REML =I: ( Qi($) + ri) / N. 
i=l 

Notice that if there is no missing data (Yi = Zi), Si = (Yi- Xi f3)(Yi­
Xi f3)T and 

where $ = $ (~R~ML). When some Zij are missing, Si is replaced by 
E ( ei efiYi, /3, ~) = Qi, and we simply add Ti = Xi(I:f:,l x[~REMLXi)- 1 xr 
onto Qi to obtain the corresponding REML estimating equations given 
above. 
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