
Chapter 4 

Generalized linear mixed 
models ( G LMMs) 

4.1 Introduction 

I again begin with an example. Korff et al. (1994) studied the effects of physicians' 
practice style in treating back pain and its influence on functional measures ( disabil­
ity score, activity limitation days, etc.), patient satisfaction (e.g., "After your visit 
with the doctor, you fully understood how to take care of your back problem") and 
cost. Forty-four primary care physicians in a large HMO were classified according 
to their practice style in treating back pain management (low, moderate or high 
frequency of prescription of pain medication and bed rest). An average of 24 pa­
tients per physician was followed for 2 years (1 month, 1 year and 2 year followups) 
after the indexed visit. I'll focus on two types of questions: (1) Does practice style 
influence function, satisfaction or cost? and (2) How much variability is there in 
physician outcomes within a practice style? 

There are a number of outcomes in this study, with a variety of different distri­
butions. Outcomes like the disability score (which was calculated as the average of 
3 scales, each on a range from 0-10) are almost certainly approximately normal and 
statistically well behaved (though averaging the 3 scales might create interpreta­
tional difficulties). An outcome like number of days on which activity was limited 
by the back pain might more properly be treated as Poisson distributed and an 
outcome like whether or not the patient understood the intended care is binary. 
Each of these would require a different distributional assumption and (probably) a 
different form of regression, indicating the use of generalized linear models. 

There is an additional statistical complication with this study: there are multiple 
patients per physician and multiple measures (for some of the outcomes) per patient. 
This data is thus clustered or hierarchical in nature with predictors specific to each 
level of the data structure. As examples: at the physician level we have practice 
style, at the patient level we have age and gender, and at the visit level we have time 
since the indexed visit. The clustered nature of the data set significantly impacts the 
statistical analysis since the data must be regarded as correlated. Further, to answer 
a question about variability in outcomes attributable to physician differences, we 
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will need to be able to describe the degree to which outcomes are the same within 
physician and different between physicians. 

4.2 Basic idea 

The idea behind generalized linear mixed models (GLMMs) is conceptually straight­
forward: incorporate random effects into the linear predictor portion of a generalized 
linear model. This simple change allows us to accommodate correlation in the con­
text of a broad class of models for non-normally distributed data. Viewed another 
way, it is a convenient way to build multivariate distributions for non-normal data 
that can accommodate some flexibility in the structure of the association as well as 
a rich set of predictor variables. Next I consider a stylized example in a bit more 
detail 

4.3 Example: Skin cancer 

This example is patterned after Abu-Libdeh et al. (1990) in which a model is devel­
oped for studying subjects who were given selenium in an attempt to reduce skin 
cancer risk. Let lit represent the number of newly discovered basal cell carcinoma 
sites on person i at time t, where we envision subjects being checked yearly over a 
five year study. Suppose we consider three predictors: SEX (the sex of the subject), 
SEL (whether or not the subject was in the selenium treatment group), and SUN 
(a measure of sun exposure over the past year). We might hypothesize that lit 
follows a Poisson distribution, but we would expect that some subjects are much 
more susceptible to skin cancer than others. So a reasonable model might be 

(4.1) 
lit lA"' Poisson(>.it), 

log(>-it) = /3oi + /31SEXi + /32SELi + /33SUNit, 

to which we add a final specification, namely that the subject-specific intercepts, 
/3oi, follow a distribution across subjects, centered at the value /3o: 

(4.2) 
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a. Covariances 

This assumption of random intercepts induces a correlation between measurements 
Yit and Yit'· More precisely, and using (2.3) we have 

(4.3) 

Cov(Yit, Yit') 

= E[Cov(Yit, Yit'IAi)] + Cov(.A.it, >..it') 

= 0 + Cov(>..it, >..it') 

= Cov( exp[,8oi + ,81SEXi + ,82SELi + ,83SUNit], 

x exp[,8oi + ,81SEXi + ,82SELi + ,83SUNit']) 

= exp(2,81SEXi + 2,82SELi + ,83SUNit + ,83SUNit') 

X [ Cov ( ei3o, , e!3ai) J 

= exp(2,81SEXi + 2,82SELi + ,83SUNit + ,83SUNit') 

X (E[e2i3oi] - E[ei3o, f) 
= exp(2,81SEXi + 2,82SELi + ,83SUNit + ,83SUNit') 

x (exp(o-;,0 ){exp(o-;,0 ) -1}), 

with the last equality following from the moment generating function of a normal 
distribution. We can see that the covariance is positive as long as o-;,o is greater 
than zero. 

b. Random slopes 

Other parameters in the model can be assigned a distribution. Consider assigning 
a distribution to the ,83 parameter as follows: 

YitiA"' Poisson(>..it), 

(4.4) 
log(>..it) = ,8oi + ,81SEXi + ,82SELi + ,83iSUNit, 

,8oi "' N (,8o, o-;,o), 

,83i "'N(,83, o-;,3), 

and the ,8oi and ,83i may be correlated. 
What changes has this induced? In (4.1), ,83 is the same for all subjects and 

has the interpretation as the sun exposure effect, which is assumed common for 
all subjects. In (4.4), ,83i is the sun exposure effect for the ith subject, so we are 
allowing some individuals to be more sensitive to the sun than others. This can be 
more formally investigated by testing the hypothesis H0 : o-; 3 = 0. That is, if there 
is no variance in the subject specific slopes, then model (4.1),holds. This may make 
a useful precursor to an attempt to find subgroups of sensitive individuals. 

c. Prediction 

Another inferential goal might be prediction. That is, we might be interested in 
predicting which individuals are more sensitive to the sun (especially if we had 
already established that o-;,3 > 0). To do so, we would want to identify those 
individuals with extreme values of ,83i. Since ,83i is a random variable, we would 
want to derive predictions of the realized values. 
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d. Unequal variances 

Suppose we assume a distribution on the /32 term in model (4.1) instead: f32i "' 

N(/32, u;,2). If SEL is coded as 1 for the selenium treatment group and 0 for the 
control, then the f32i term appears in the model equation for the treatment group 
but not for the control group. If the /32i are assumed independent of the other 
random effects then the variance in the treatment group is being modeled as larger 
than in the control group. Note that this would not necessarily be true if the f32i and 
/3oi were allowed to be correlated. This emphasizes the point that, in general, these 
models allow for (or insist on, depending on your point of view) unequal variances. 
This can occasionally be of benefit, for example, if the focus is on whether the 
treatment group caused an increase in variability. 

4.4 Specifying GLMMs 

Specifying generalized linear mixed models involves making decisions about four 
aspects of the problem: 

1. What is the distribution of the data for fixed values of the predictors? 

2. What aspect of the problem will be modeled? 

3. What are the predictors to be included in the model? 

4. Which categorical predictors will be assumed to have a distribution? 

Except for the addition of the final question this is the same list as for generalized 
linear models. So the extension is a straightforward but consequential one. 

4.5 A more general model 

As illustrated by the examples in this chapter, generalized linear mixed models are 
typically constructed by incorporating random effects into the linear predictor of a 
conditionally independent exponential family model. I now formalize that notion 
with the following definition of a generalized linear mixed model: 

(4.5) 

Yilu"' indep. !Y;ju(YiJu), 

!Y;ju(YiJu) = exp{[Yi'Yi- b("fi)l/r2 - c(yi, r)}, 
E[YiJu] = f.ti, 

g(t-ti) = x~f3 + z~u, 
u"' fu(u). 

In this definition we see the usual ingredients of a generalized linear model. First, 
the distribution of Yi from an exponential family (in this case the distribution is 
assumed to hold conditional on the random effects u). Second, a link function, g(·) 
is applied to the conditional mean of Yi given u to obtain the conditional linear 
predictor. Finally, the linear predictor is assumed to consist of two components, 
the fixed effects portion, described by x~/3 and the random effects portion, zi u, for 
which a distribution is assigned to u. 
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4.6 Inference in GLMMs 

How might we go about fitting a model like ( 4.5)? Maximum likelihood or variants 
(like REML) based on normality assumptions are relatively standard for linear 
mixed models. For example, SAS PROC MIXED fits by using ML or REML. For 
many GLMs, maximum likelihood is also standard, for example, logistic regression 
or Poisson regression. What about GLMMs? 

In general, evaluation of the likelihood can be quite difficult. Consider a mixed 
logistic regression model for binary data. The likelihood would take the form 

(4.6) 
J ... J exp { ~ Yi(x~(3 + z~u)} If {1 + exp(x~(3 + z~u)} -l 

x dF(u), 

where the integration is of a dimension equal to the dimension of u. For some cases, 
for example random intercepts, (4.6) reduces to a product of one-dimensional inte­
grals and hence can be evaluated numerically. In general, however, this is not true 
and for more complicated examples, for example, crossed random effects, the di­
mensionality of the integration quickly becomes unmanageable by standard numeric 
means. 

In simple cases that are amenable to numerical integration, inference using ML 
would proceed using the usual asymptotic approximations: 

• ML estimates are asymptotically normal, with standard errors coming from 
second derivatives of the log likelihood. 

• Tests would be based on the likelihood ratio test, comparing twice the negative 
of the loglikelihood for nested models. Alternatively, Wald tests could be 
formed. 

• Best predicted values would be estimated by calculating the expected value 
of the random effect conditional on the data and plugging in ML or REML 
estimates for unknown parameters. In general, the conditional expected values 
cannot be evaluated in closed form either. 

• Tests of whether variances ofrandom effects are zero can be based on the like­
lihood ratio statistic. However, as with linear mixed models, the asymptotic 
distribution is not a simple chi-square distribution. 

To elaborate on this last point, the situation is the same as linear mixed mod­
els: when testing if a single variance component is equal to zero, the large-sample 
distribution under Ho is a 50:50 mixture of a xi and 0. 

The difficulty of likelihood inference opens the door for alternatives. Two popular 
alternatives are Generalized Estimating Equations (GEEs), which are mainly for 
longitudinal data, and penalized quasi-likelihood. These will be covered in more 
detail in Chapter 8. 



LINEAR MIXED MODELS (LMMs) 33 

4. 7 Further notes 

The model as specified by ( 4.5) assumes that all the correlation can be described 
by the random effects. In some cases it is likely that other sources of correlation 
may be present, for example, time-series correlation. See Chan and Ledolter (1995), 
Jorgensen et al. (1999) and Davis et al. (2000) for examples of this type of modeL 
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