
Chapter 3 

Gene Identity by Descent 

3.1 Kinship and inbreeding coefficients 

A gene, as opposed to an allele or a locus, is the DNA segment that is copied from 
parents to offspring. Underlying the patterns of phenotypes observed on related 
individuals are the genotypes, but underlying the genotypes are the patterns of gene 
identity by descent. Phenotypes of relatives are similar because they have similar 
genotypes and may share a common environment. Genotypes are similar because 
relatives share genes that are identical by descent ( ibd) - identical copies of a gene 
segregating from a common ancestor within the defined pedigree. Although for 
some microsatellite DNA markers mutation rates are non-negligible (section 1.1), 
for simplicity we disregard mutation throughout this book. In this case, genes 
that are ibd must be of the same allelic type, while genes that are not ibd are of 
independent allelic types. 

Gene identity by descent is defined only within the context of a given pedigree 
structure. A pedigree specifies the two parents of every non-founder individual. A 
founder has neither parent specified, and by definition the genes in founders are 
not ibd. It will often be convenient if a pedigree is ordered in such a way that every 
individual is preceded in the listing by his parents; clearly, this is always possible. 

Mendel's First Law (section 1.2) states that: 

a diploid individual receives at any given locus a copy of a randomly 
chosen one of the two genes in his father and (independently) a copy of 
a randomly chosen one of the two genes in his mother, and will pass on 
a copy of a randomly and independently chosen one of these two genes 
to each of his offspring. 

This simple law leads to complex patterns of gene identity on an extended pedigree, 
due to the huge number of alternative events; 2m for m meioses, at each locus. The 
segregating genes determine the patterns of gene identity by descent on the pedigree, 
and hence the patterns of similarity among relatives. 

We start with coefficients of inbreeding and kinship, since these provide an 
introduction to the ideas of gene identity by descent, to alternative computational 
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FIGURE 3.1. An example pedigree. The structure is the same as that of Figure 1.1 of section 1.3. 
The four individuals shaded grey are bilateral ancestors of the final individual 

approaches, and to Monte Carlo estimation of expectations. Kinship and 
inbreeding are best thought of as relationships between gametes rather than between 
individuals. The coefficient of kinship between two individuals B and C, 1/J(B, C), 
is the probability that homologous genes on gametes segregating from B and from 
C are ibd, while the inbreeding coefficient of an individual B, f B, is the probability 
that homologous genes on the two gametes uniting to form individual B are ibd. 
Hence 

where MB and Fs are the parents of B. An individual is inbred if his parents are 
related. He is autozygous at a given locus if, at that locus, his two genes are ibd. His 
inbreeding coefficient is the prior probability of this event: that is, the probability 
based only on the pedigree structure. 

3.2 Methods of computation 

There are several methods for computing kinship and inbreeding coefficients. 
The early approach of path-counting (Wright, 1922) simply enumerates all the 
possibilities in an efficient way. In order for the two genes within an individual 
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B to be ibd, they must descend from a common ancestor A of his parents. The 
probability that genes segregating from A in two distinct meioses are ibd is 1 if A has 
two ibd genes and 1/2 otherwise, or overall fA.1 + (1- fA).(1/2) = (1/2)(1 +fA)· 
If these two genes from A to two distinct offspring are ibd, then the probability 
the same genes descend to B gains a factor of 1/2 at each successive meiosis. A 
path, P A, is defined as a sequence of individuals from B ascending to a common 
ancestor A of his two parents, and descending to B again via a disjoint sequence 
of individuals. Each such path contributes a term 2-(mM+mF+1l(1 +fA) to the 
inbreeding coefficient fn, where mM and mF are the number of meioses in the 
path from A to B's mother M and father F respectively. (One may count the two 
meioses from M and F to B, or the two meioses from A to his two offspring, but 
not both.) Now, at a single locus, the genes of B can be ibd via at most one such 
path; the paths provide a set of mutually exclusive and exhaustive events leading 
to B having two ibd genes. Thus the inbreeding coefficient of B is 

(3.1) /H = L LT(mM('PA)+mF('PA)+l)(l +fA)· 
A 'PA 

For example, for the offspring of a first cousin marriage, there are 2 paths, one 
via each of the two grandparents shared by his parents, each having mM = mF = 2, 
providing an inbreeding coefficient of 2 x 2-5 = 1/16. As a more complex example, 
consider again the pedigree of Figure 1.1 in section 1.3. The pedigree is shown again 
in Figure 3.1, with the common ancestors of the parents of the final individual 
shaded grey. The final individual is the offspring of a first cousin marriage, but so 
also is each of his parents. Here there are two paths via his great-grandparents, 
each having mM = mp = 2 as for the simple cousin marriage, and 3 paths via each 
of his parents' two shared great-grandparents, each with mM = mF = 3, providing 
a total inbreeding coefficient of 2 x 2-5 + 2 x 3 x 2-7 = 7/64. 

Although the path-counting method is the simplest for small pedigrees, it 
becomes impractical on very large and complex pedigrees. For example, in a 
segment of a Hutterite pedigree considered by Thompson and Morgan (1989), there 
are over 1000 ancestral paths connecting the two parents of one individual. Other 
approaches to computation of inbreeding and kinship follow from equations based on 
the properties of Mendelian segregation. We use the meiosis indicators introduced 
in section 1.2 and consider the kinship coefficient 'lj;(B, C) between two individuals 
Band C. Provided B is not an ancestor of C, we may condition on the segregation 
S from B, where 

Pr(S = 0) Pr(S = 1) 
1 
2' 

If S = 0, the segregating gene is B's maternal gene; that is, a gene from the mother 
of B. If S = 1, the gene is B's paternal gene. Thus we obtain immediately 

1/J(B, C) = 1/J(Mn, C)P(S = 0) + 1/J(Fn, C)P(S = 1) 

(3.2) = (1/J(Mn, C) + 1/J(Fn, C))/2 

where Mn and F8 are the mother and the father of B. Also, from the definition, 
we have symmetry: 1/J(B, C) = 1/J(C, B). Thus the only additional equation needed 
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is for the case B = C. In this case, we must consider two independent segregations 
from B, S1 and S2: 

If S1 = S2 , the segregating genes are ibd. If S1 =j:. S2, the genes comprise both the 
maternal and paternal genes of B. Thus 

'1/J(B,B) P(S1 = Sz) + '1/J(MB, FB)P(Sl =j:. S2) 

(1 + '1/J(Mn, Fn))/2. 

Together with the boundary conditions 

'1/J(B,B) 
and 'lj;(B,C) 

1 
2 
0 

for any founder B, 

if B is a founder not an aneestor of C, 

these equations determine the function '1/J ( ·) on the pedigree. 
A recursive algorithm based on these equations is very easily implemented, and 

works well even on large and complex pedigrees. However, it is not necessarily 
computationally efficient; the same expansion may be repeated many times. In 
principle, this can be avoided, by saving '1/J(B, C), for key pairs of individuals (B, C) 
in the ancestry of the pedigree, but the simplicity of the method is then lost. An 
alternative way to implement these equations is via a top-down sequential method, 
computing kinship coefficients between all pairs of ancestors arriving finally at the 
descendant individuals of interest. This is computationally trivial, but expensive 
on store. All computation is a trade-off between time and store. 

3.3 Data on inbred individuals 

Kinship and inbreeding coefficients measure only ibd between two gametes, at a 
single locus. However, this suffices for a consideration of data on unrelated inbred 
individuals. At a single locus, with alleles A1 , •.. , Ak, having population frequencies 
q1, ... , qk, an individual having two ibd genes has genotype Ai Aj with probability 
qi, while an individual who is not autozygous at this locus has genotype probabilities 
of Hardy-Weinberg form (section 2.3). Thus an individual who has inbreeding 
coefficient f has genotype probabilities 

(3.3) 

Pr(AJAi) qif + qj(l- f) 

= qj ( qj + f ( 1 - qj)), j = 1, ... , k 

Pr(AJAt) = 2(1- f)qJqt, 1 :::; j < l:::; k. 

Sinee an individual who is autozygous at a particular locus must be homozygous 
at that locus, inbreeding is of particular interest in the study of rare recessive 
traits. If the recessive allele has frequency q, the probability that an individual 
with inbreeding coefficient f is affected is q( q + f ( 1 - q)). If the population consists 
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of a proportion o:; of individuals with inbreeding coefficient j;, then the overall 
proportion of affected individuals is 

I: o:;(q(q + J;(l - q))) = q(q + J(l- q)) 

where f = l:; o:if; is the mean inbreeding coefficient in the population, or 
the expected inbreeding coefficient of an individual randomly chosen from the 
population. The conditional probability that an affected individual derives from 
the group with inbreeding coefficient j; is 

o:;(q + j;(l- q)) 
q + f(l- q) 

The probability that an affected individual with inbreeding coefficient j; is 
autozygous at this locus is 

q + f;(l - q) 

while the overall probability an affected individual is autozygous at this locus is 

(3.4) f 
q + f(l- q)" 

Note that for a very rare recessive trait (q >::! 0), a high proportion of the 
affected individuals will have non-zero inbreeding coefficients. Indeed, the groups i 
then contribute to the affected individuals in the same proportions o:d;/ f as they 
contribute to the mean population inbreeding. Moreover, a high proportion of the 
affected individuals are not only inbred, but in fact autozygous at the locus in 
question. We return to these probabilities in section 4.6. 

In a population in which the mean inbreeding coefficient is j, the genotype 
frequencies are given by equation (3.3). There are two points to note about 
this homozygote excess and heterozygote deficiency, relative to Hardy-Weinberg 
proportions. The first is that these arc frequencies in an infinite population. 
In a finite population, individuals of necessity marry their relatives, and allele 
frequencies change over time. Whether or not there is a homozygote excess, relative 
to Hardy-Weinberg proportions with the current allele frequencies, depends on 
whether individuals are, on average, marrying an individual who is more or less 
closely related to them than is a randomly chosen member of the population. 
Second, the homozygote excess due to inbreeding is a particular special case of 
the homozygote excess due to subdivision of a population; inbreeding is a form 
of subdivision. However, under the inbreeding scenario, there is no differentiation 
among alleles. Under subdivision, different alleles may show differing patterns of 
variation in frequency among subdivisions. This leads to genotype frequencies in 
which each homozygote shows an excess frequency, but in an amount dependent on 
the variation of the frequency of that allele among subdivisions. Although in total 
there is a heterozygote deficiency, patterns of covariation of allele frequency may 
lead to increased frequencies of some heterozygote genotypes (Weir, 1996). 
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As an additional example of the use of the EM algorithm (section 2.4) to estimate 
parameters underlying genotype frequencies, we consider estimation of f under the 
model of equation (3.3). Suppose that a random sample of individuals is taken 
from the population, and that there are njt individuals of genotype AjAt for j :'S l. 
Then the likelihood for the parameters q = ( q1 , ... , Qk) and f is 

L(q,f) PqJ({njt}) 

OC II(qj(Qj + J(l- Qj)))njj II(2qjQt(l- f))nit, 
j j<l 

Clearly, this is not an easy expression to maximize. 
Let Xj be the number of homozygous AjAj individuals in the sample who have 

two identical-by-descent ( ibd) genes at this locus. With Xj as the latent variables, 
the complete-data likelihood is 

L*(q,f) = Pq,t({nJt},{Xj}) 

II qJniJ -X, II (2qjQt)nit JT (1 - f)n -T 

j j<l 

where T = Lj Xi. Let mj =" 2njj + Lt<i nlj + Lt>j nit be the number of Aj 
alleles observed in the sample. Then the complete-data log-likelihood reduces to 

£*(q, f) 

(3.5) 

JogPq,J({njt}, {Xj})) 

const + L(mj- Xj) logqj + Tlogj + (n- T) log(l- f). 
j 

The complete-data Jog-likelihood (3.5) is thus linear in the functions of the latent 
variables Xj and T. Computation of the expected complete-data log-likelihood 
requires only 

using equation (3.4). Moreover, if Xj were observed, the MLEs based on (3.5) 

would be 1 = Tfn and fjj = (mj- Xj)/'£1(mt- Xt)· An EM algorithm for this 
problem is thus to iterate: 

E-step: Xj = fnii/(f + Qj(l- f)), 

M- step: QJ (mj- XJ)f '£1(mt- Xt), 
t = '£j Xj 

f = tjn. 

As in the examples of section 2.5, the algorithm is easily implemented, and converges 
quickly. 

3.4 Multi-gamete kinship and gene ibd 

Kinship and inbreeding provide results only concerning a pair of genes, and thus a 
single genotype. Analysis even of data on a pair of related individuals, at a single 
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locus, requires consideration of four genes. An important extension to section 3.2 
was made by Karigl (1981), who considered the probability of simultaneous identity 
by descent, '¢(B1, ... , Bm), of m genes segregating from a set of (not necessarily 
distinct) individuals Bl,B2,···,Bm. As in equation (3.2), if B1 is not an ancestor 
of any of Bz, ... , Bm, conditioning on the segregation from B 1 gives 

where MB, and FB, are the parents of individual B1 • The symmetry of the 
definition provides that we may collect the arguments for some B 1 who is not 
an ancestor of any of the others to the first v arguments of'¢. Then, considering 
the v independent segregations from B 1 , either the segregating gene is the same in 
every case, being a random gene from B1, or both the maternal and the paternal 
genes of B 1 are among the v genes. Since 

we obtain 

(3.7) 

Tv+! ( '1/J(B!, Bz, ... , Bm) + 

(2v-l - 1) 'lj;(MB" FB" Bz, ... , Bm)) 

2-v ( '1/J(Mn,, B2, ... , Bm) + '1/J(FB,, B2, ... , Bm) 

+ (2v- 2) '1/J(MB" FB" B2, ... , Bm)) · 

Together with symmetry and boundary conditions, these equations determine the 
multiple kinship coefficients on any pedigree. Note that the number of arguments 
of '1/J is never increased by recursion, although the number of terms may be doubled 
at each step. Practical implementation can therefore be problematic on a•large 
multi-generation pedigree if the initial number m of genes or individuals considered 
is more than about 7. 

The m-gamete kinship coefficients can be used to determine probabilities of 
patterns of gene ibd among a set of m genes. First, however, a specification of such 
patterns (gene ibd states) is needed. Among a set of genes in given individuals, a 
gene ibd state is a partition of the genes into subsets that are ibd. We denote such 
a pattern by J, and refer to it as the pattern of gene identity by descent among 
the individuals. A partition of m ordered genes may be specified by a set of m 
integers as follows. Let k 1 = 1. Suppose genes 1, 2, ... , r have been assigned v 
distinct labels k1, ... , kr. If gene r + 1 is ibd to a previous gene l, kr+I = k1. 
Otherwise, kr+l = v + 1. (For the case m = 4, this labeling is shown in Table 3.1.) 
As m increases, the number of possible states of gene ibd increases rapidly. For 
the 12 genes of 6 individuals, there are more than 4 million gene identity states 
(partitions of 12 ordered objects). However, for the analysis of phenotypic data 
on individuals, one need not distinguish the paternal and maternal genes of an 
individual. The interchange of labels on the two genes within each member of any 
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subset of the individuals groups the ibd states into genotypically distinct classes of 
states. For the case of two individuals, this grouping is also shown in Table 3.1. 
This grouping substantially decreases the number of patterns of gene ibd that must 
be considered. For example, for six individuals there are only just over 198,000 
genotypically distinct classes of states (Thompson, 1974). Although this is not a 
small number, with modern computers and an efficient indexing of state classes it is 
not impossible to consider all the possible state classes given data on 6 individuals. 

Returning to the relationship between multi-gamete kinship and gene ibd state 
probabilities, consider any specified (detailed or grouped) ibd state among the 
genes of a set of individuals. For example, for five individuals (B1 , B2 , B3, B4 , Bs) 
the state (1,2,1,3,4,4,2,4,2,5). This state contributes 0.25 to 'lj;(B1,B2), 0.5 
to 'lj;(B3, B4 ) and 0.125 to 'lj;(B1, B4 , B5 ). Conversely, any multi-gamete kinship 
coefficient among individuals, say 'lj;(B1, ... , Bm) can be written as a weighted sum 
of ibd state probabilities: 

'l/;(B1, ... , Bm) = L Pr(segregating genes ibd I J)Pr(J). 
J 

If multi-gamete kinship coefficients are computed for all subsets of the individuals 
of interest, the linear equations may be inverted to give the ibd state probabilities, 
Pr(J) among the genes of the individuals. Karigl (1981) was interested primarily 
in the determination of the probabilities of patterns of ibd among the four genes of 
two individuals, at a single genetic locus. He gives details of the equations for this 
case. 

3.5 Patterns of gene ibd in pairs of individuals 

Among the four genes of two individuals at a single autosomal locus, there are 
15 states of gene identity (Cotterman, 1974). These are shown in Table 3.1, and 
correspond simply to the number of partitions of the four genes into classes of genes 
that are ibd. However, there are only 9 groups of genotypically distinct classes of 
states, since with regard to genotypes the maternal and paternal origins of genes 
are irrelevant, so the identities of the two genes within each individual can be 
interchanged. For the case of two individuals, the state classes can be characterized 
by specifying the autozygous individual(s), and the number of genes shared ibd 
between the two individuals (Table 3.1). 

For two non-inbred diploid individuals, there are only three possible 
genotypically distinct gene identity states at a single autosomal locus. That is, the 
individuals can share neither of their genes ibd, or one, or both. These events have 
probabilities ,.. = (K-o, K-1, K-2) say, (K-o + K-1 + K-2 = 1 ), determined by the pedigree. 
Individuals are related if K-o < 1. Each relationship may thus be represented 
by a point in an equilateral triangle of unit height, the vertices corresponding to 
unrelated pairs (K-o = 1), parent-offspring (K-1 = 1), and the identity (monozygous 
twin) relationship (K-2 = 1). (Care should be taken in applying the standard 
equations to monozygous twins, since they result from a single maternal and a 
single paternal meiosis.) The triangle representation is shown in Figure 3.2 and 
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ibd pattern ibd label ibd group state description 
B1 B2 individuals genes 

pm pm autozygous shared 

• • • • 1 1 1 1 1 1 1 1 B1,B2 4 genes ibd 
• • • 0 1 1 1 2 1 1 1 2 B1 3 genes ibd 

• • 0 • 1 1 2 1 
• 0 • • 1 2 1 1 1 2 1 1 B2 3 genes ibd 
• 0 0 0 1 2 2 2 

• • 0 0 1 1 2 2 1 1 2 2 B1,B2 none 

• • 0 t 1 1 2 3 1 1 2 3 B1 none 
• 0 t t 1 2 3 3 1 2 3 3 B2 none 
• 0 • 0 1 2 1 2 1 2 1 2 none 2 genes 
• 0 0 • 1 2 2 1 shared 
• 0 • t 1 2 1 3 1 2 1 3 none 1 gene 
• 0 t • 1 2 3 1 shared 
• 0 0 t 1 2 2 3 
• 0 t 0 1 2 3 2 
• 0 t * 1 2 3 4 1 2 3 4 none none 

TAll!,~; 3.1. States of gene ibd among the four genes of two individuals 

the values of "' for some standard relationships are give in Table 3.2. The kinship 
coefficient is the probability that homologous genes segregating from two individuals 
are identical by descent and thus 'lj; = (2 ,..,2 + ,..,1 ) /4. Lines of constant kinship are 
orthogonal to the line ,.., 1 = 0. Sibs, with"'= (1/4, 1/2, 1/4) have the same kinship 
coefficient as a parent-offspring relationship. Half-sibs, with "' = (1/2, 1/2, 0) have 
the same kinship coefficient as double-first-cousins("-= (9/16,3/8, 1/16)). 

Pairwise relationship "'o "'1 "'2 'lj; 
Unrelated 1.00 0 0 0 
Parent-offspring 0 1.00 0 0.25 
Monozygous twin 0 0 1.00 0.50 
Full Sib 0.25 0.50 0.25 0.25 
Half sib, grandparent, aunt 0.50 0.50 0.00 0.125 
First cousin 0.75 0.25 0 0.0625 
Double first cousin 0.5625 0.375 0.0625 0.125 
Quadruple half first cousin 0.5312 0.4375 0.0312 0.125 

TABLE 3.2. Values of K-, and kinship coefficient 1/J, for some standard relationships between two 
non-inbred individuals 

While each relationship determines a point "'' the converse is not true. Several 
relationships give the same probabilities "-i the simplest example is the three 
pairwise relationships grandparent-grandchild, half-sibs, and aunt-niece, all of 
which have"'= (1/2, 1/2, 0). Moreover, some points in the triangle are not (even in 
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M p 

FIGURE 3.2. The relationship tr·iangle for non-inbred relatives 

the limit) attq.inable by any relationship. In fact, it can be shown that KI 2: 4KoK2 
(Thompson, 1986). This result follows from the fact that, for non-inbred individuals 

(3.8) and K2 

where the subscripted kinship coefficients are those between a parent (mother (M) 
or father (F)) of one individual, and a parent of the other. Then the arithmetic­
geometric mean inequality gives 

4K2 < ('l/JMM+'l/JFF·) 2 +('l/JMP+'l/JPM)2 

< ('l/JMM + 'l/Jn + 'l/JMP + 'l/JFM )2 

(4'l/J) 2 = (Kl + 2K2) 2 

KI + 4K2(Kl + K2) or 

4K2(1- (Kl + K2)) :::; Ki. 

In order for equality to hold in this inequality, one pair of the crossparental kinship 
coefficients must be 0, and the other pair equal. Such relationships include full sibs 
('ljJMM = 'l/JFF = 1/4, 'lfJMF = 'l/JFM = 0) and double-cousins of any degree v, for which 
'l/JMM = 'l/Jn = (1/2)v+2, 'ljJMJo' = 'l/JFM = 0 Or 'l/JMJo' = 'l/JFM = (1/2)v+2, 1/JMM = '1/;FF = 
0. These relationships give values of,.;, falling on the boundary parabola. 

It is possible for the mother and father of each individual to be related to both 
the mother and the father of the other, without either individual being inbred. 
That is, all four of the cross-parental kinship coefficients in the above equation may 
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FJGUR!l 3.3. The relationship of quadruple-half-first-cousins 

be non-zero. The simplest example is that of quadruple-half-first-cousins, shown in 
Figure 3.3. For this relationship, the mother and the father of each individual is a 
half-sib of both the mother and the father of the other, so 'lj;MM = 'ljJFF = 'ljJMF = 
'ljJFM = (1/8). Hence, using equation (3.8), K.2 = 1/32, K. 1 = 7/16, K.o = 17/32 and 
'ljJ = 1/8. The point in the triangle lies midway between that for half-sibs and for 
double-first-cousins, which also each have 'ljJ = 1/8. 

More details of the material of this section, and references to earlier work, can 
be found in Chapter 2 of Thompson (1986). 

3.6 Observations on related individuals 

Phenotypic similarities among relatives result from the genes they share ibd. Among 
au ordered set of genes, a partition of the set may be used to specify which subsets 
of the genes are ibd (section 3.4). Again we denote such a pattern of gene ibd by J. 
In section 1.3, the meiosis indicators were defined (equations (1.2) and (1.3)), and 
it was seen how the meiosis indicators S.,j determine descent of founder genes, and 
patterns of gene identity by descent, at any given locus j. Thus, the passage of genes 
in pedigrees provides the connection between observable genetic characteristics and 
the pedigree structure, whether we are estimating relationships from genetic data, 
estimating the genetic basis of traits knowing the pedigree, or inferring the ancestry 
and descent of particular genes, knowing both the genetic model and the data 
(section 1.4). 

In particular, we consider a currently observed set of individuals, and the pattern, 
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FIGURE 3.4. Meiosis indicators S.,j determine descent of founder genes, and patterns of gene 
identity by descent, at any given locus j: see Figure 1.2 

J, of genes ibd among them, at a single locus. We therefore drop the locus index j, 
and writeS= {S;; i = 1, ... , rn} (equation (1.1)), for them meioses of the pedigree. 
The example of Figure 1.2 is shown again in Figure 3.4. The meiosis indicators 
shown under each individual are for the paternal and for the maternal meiosis to 
that individual, respectively. Then S determines the pattern, J, of genes ibd in this 
currently observed set of individuals; J = J(S). The probability of any phenotypic 
data Y (i.e. observed characteristics of the individuals) depends on S only through 
J(S), and so 

(3.9) Pr(Y) L Pr(Y I S) Pr(S) 
s 
L Pr(Y I J(S)) Pr(S) 
s 

L Pr(Y I J) Pr(J). 
J 

Equation (3.9) may be compared with equation (1.5) of Chapter 1. In equation 
(1.5) the latent variables were the genotypes G; of individuals, whereas here they 
are the meiosis indicators. In both cases, the form of the likelihood is that of a 
latent variable problem (section 2.4), and either may be the more convenient for 
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likelihood computation and inference (Chapter 6). 
In partitioning the likelihood as in equation (3.9), the "genetic model" is 

separated from the effects of genealogical and genetic structure. The probability 
of a set of meiosis indicators S at a single locus is trivial; the components are 
independent, each 0 or 1 with probability 1/2. The probability of a given pattern 
J(S) depends on the genealogical relationship among the observed individuals: in 
principle it may be computed by the methods of sections 3.4 or 3.8. Given the 
gene identity pattern, J (S), the probability of data depends on the different types 
of genes, their frequencies, and how they affect observable phenotypes. 

Now consider the probability Pr(Y I J(S)), for a specified pattern of gene 
ibd among the observed individuals. The probability any distinct gene, k, is of 
allelic type a(k) is the population frequency, Qa(k)• of the allele. Distinct genes k 
have independent allelic types. Thus, Pr(Y I J(S)) is the sum over all possible 
assignments A of allelic types to genes of the product of allele frequencies Qa(k) of 
assigned alleles a( k): 

(3.10) Pr(Y I J(S)) L: II Qa(k)· 
A k 

This equation was given by Thompson (1974) who gave an example of ABO blood 
types on three individuals. The special case of two individuals (9 states J) is 
discussed in Chapter 2 of Thompson (1986). 

In general, efficient determination of all allocations A(j) at locus j compatible 
with data Y.j is straightforward for genotypic data (for example, DNA marker 
phenotypes). An algorithm for this determination of is given by Kruglyak 
et al. (1996). The implementation we use is due to Simon Heath (personal 
communication) and is described in more detail by Thompson and Heath (1999). 
We use the same example pedigree, with the values of S.,j given in Figure 1.2, 
and assume five individuals observed with the genotypes shown in Figure 3.5(a). 
The method rests first on the fact that only founder genes having copies in 
observed individuals are constrained in allelie type: in our example, the genes 
labeled {1, 2, 4, 5, 8, 10}. Further two genes constrain each other's allelic type only 
when both are present in an observed individual. The gene graph (Figure 3.5(b)) 
connects all such pairs of genes. Allocation of allelic types may be considered 
separately for each component subgraph of connected genes. In our example, the 
genes {1,5} may be considered independently of {2,4,8,10}. This assignment is 
readily accomplished, even on a much larger example. For given S.,j there are 
in general only 2, 1 or 0 possible assignments of allelic types to the genes of a 
component subgraph. For our example, there are two possible assignments for 
the first component and one for the second: (a(1), a(5)) (A, C) or (C, A) 
and (a(2),a(4),a(8),a(10)) = (C,D,C,B). The algorithm can in principle be 
generalized to more complex phenotypes, using the conditional independence 
structure of the gene graph (Figure 3.5(b)), but the procedure becomes far more 
computationally intensive. 

For completeness, and as an example of the above general formula, consider again 
the case of a non-inbred pair of relatives. There are then three ibd states Jo, J1 and 
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(b) 

FIGURE 3.5. Determination of probabilities Pr(Y.,j I s.,j ). The gene descent pattern is assumed 
to be that of Figure 1.2, and the pairs of genes are shown, rather than the individuals. Five 
individuals, shown as dashed circles, are assumed to be observed, with marker genotypes as 
indicated: see text for details. (a) Only genes present in observed individuals are constrained 
in type. {b) Two genes in a single observed individual are jointly constrained 

J2, with probabilities "'o, "'1, and "'2' these being determined by the relationship R 
between the individuals (section 3.5). The state Jk denotes that k genes are shared 
ibd between the two individuals. Suppose at a given locus the ordered genotypes of 
the pair are (G1, G2). Then the analogue of equation (3.9) is 

"'o(R)Pr(G1,G2; Jo) + "'t (R)Pr(G1, G2; J1) 

+ "'2(R)Pr(Gr, G2; h). 

Now, Pr(G1 ,G2;.h) Pr(G1), the population frequency of the genotype, if 
G1 = G2, and 0 otherwise. This is the probability for a pair of monozygous twins. 
Also, Pr(G1, G2; Jo) = Pr(G1 )Pr(G2), the probability for an unrelated pair of 
relatives. Finally, Pr( G 1, G2; J 1) is the probability for a parent-offspring pair; these 
probabilities were given in Table 2.1 (section 2.3). For a pair of relatives, in most 
cases equation (3.10) take form too trivial to be illuminating. The one non-trivial 
case is Pr( G1 = A 1 A2, G2 = A1 A2 ; J 1 ). Here the ibd gene may be either the A1 or 
the A2 allele; there are two feasible allocations A of allelic types to the three distinct 
genes in the two individuals (A1,A2 ,A1 ) or (A1,A2 ,A2 ) giving a total probability 
P1P2P1 + P1P2P2 = PlP2(Pl + P2) as given in the Table 2.1. 

Thus, to obtain the probability of genotypes (and hence of phenotypes) for any 
pair of non-inbred relatives, it is enough to know the probabilities for monozygous­
twin, parent-offspring, and unrelated pairs. For a general pair of relatives, however, 
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Gene ibd state Prior (pedigree) probability 
for two sibs with (a) an aunt (b) a niece or half-sib 
Sibs sharing 2 ibd 
121213 1/8 1/8 
1 2 1 2 3 4 1/8 1/8 
Sibs sharing 1 ibd 
121314 1/8 1/8 
1 2 1 3 23 1/16 0 
1 2 1 3 24 1/16 1/8 
1 2 1 3 34 1/16 1/8 
1 2 1 3 4 5 3/16 1/8 
Sibs sharing 0 ibd 
1 2 3 4 1 3 1/16 0 
1 2 3 4 1 5 1/16 1/8 
1 2 34 3 5 1/16 1/8 
1 2 3 4 56 1/16 0 

TABLE 3 .3. Gene ibd state probabilities at a single locus for a pair of sisters with an aunt, niece, 
or half-sib. The states are given in the reduced genotypic state-class form, in which the paternal 
and maternal genes of the three individuals are not distinguished 

the nine genotypically distinct ibd patterns of Table 3.1 are required. The 
probabilities of the states must be computed (see, for example, Karigl (1981)), 
and also the probabilities of genotypes under each ibd state. Again, the latter are 
special cases of equation (3.10), and are given by Thompson (1986). 

Finally, in this section, note that joint analysis of data on a set of relatives is 
always more powerful than pairwise analysis. A simple example which derives 
from an actual study is that of a pair of full sibs and their aunt or niece 
(Browning and Thompson, 1999). Due to the symmetry of the pairwise aunt­
niece relationship, pairwise analysis cannot distinguish these relationships; nor 
distinguish the possibility that the third individual is a half-sister to the pair of 
sibs. However, two sibs and a aunt can carry six distinct genes at a locus, but sibs 
with a niece or half-sib cannot. The probabilities of the ibd states among the three 
individuals at a single locus are shown in Table 3.3. Loci at which the two sibs share 
both their genes ibd give the same probabilities of sharing with the third individual 
under the three possibilities of aunt, niece or half-sib. However, the other state 
probabilities differ, with the greatest power to distinguish an aunt from a niece or 
half-sib coming from those loci at which the full sibs do not share any genes ibd. 
Note that data at unlinked loci remains insufficient to distinguish the possibilities 
that the third individual is a niece or half-sister. As will be seen in section 4.5, 
data at linked loci results in identifiability of these two alternatives. 
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3. 7 Monte Carlo estimation of expectations 

Although the methods of section 3.4 are easily implemented, where large numbers 
of individuals are considered jointly computation may become impractical or even 
infeasible. Where exact probabilities cannot be computed, Monte Carlo estimation 
is an alternative. We use this section to introduce some important ideas in the 
Monte Carlo estimation of sums, integrals, or expectations. We shall use these 
methods to estimate probabilities of gene ibd patterns in section 3.8. These methods 
will be important for Chapters 7 and 8. Since, in this section, the latent variables 
are general, we use the notation X instead of S. 

To estimate Ex g(x) the sum may be written as an expectation 

X 

""" g(x) ( g(X) ) = ~ Pr(X = x) Pr(X = x) = Ep P(X) 
X 

Lg(x) 

where P(·) is some distribution over X, the space of values of X. The distribution 
P(·) must assign positive probability to every value x of X for which g(x) > 0. If 
X(l}, .... , X(N} are simulated from the distribution P( ·), 

(3.11) 

is an unbiased estimator of the sum Ex g(x). Of course, it may not be a very good 
estimator; in fact, it may be a very bad estimator. The art of Monte Carlo is finding 
good distributions to simulate from, and good ways of simulating from them, in 
order to get good estimators. A "good" estimator is one with small variance. Note 
this is not the standard statistical paradigm where parameters are estimated from 
data. In that case, variances are over (hypothetical) repetitions of the experiment 
or random process giving rise to the data. In Monte Carlo, the relevant variances 
are Monte Carlo variances. 

The simplest form of Monte Carlo is where we simulate independent, identically 
distributed realizations from some distribution P(·). Note that any sum of terms 
g(x) is an expectation of g* (X) = g(X) / P(X) with respect to the probability 
distribution P(·). The estimator (3.11) is then an average of terms g*(X), and, for 
independent realizations, the Monte Carlo variance of this estimator is 

N-1 (Ep((g*(X)) 2 ) 

or ( ~ (g* (x)2 P(x)) 

which, substutituting g*(x) = g(x)/P(x), is 

N-1 (L (g(x)2) 
P(x) 

X 

(Ep(g*(X))) 2 ) 

( ~ g' (x)P(x) )') 
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This may be estimated by the sample variance from the Monte Carlo: 

On pedigrees, the simplest distribution to simulate from is the prior distribution on 
genotypes, which is done by "gene dropping". Genes are assigned to the founders of 
the pedigree, segregation of genes down the pedigree is simulated, and the required 
statistics relating to the resultant current genes are computed. Such Monte Carlo 
estimates have been used by Edwards (1967) to estimate inbreeding coefficients, by 
MacCluer eta!. (1986) to study the loss of genes in pedigrees of endangered species, 
and by Thompson et a!. (1978) to study the potential power of a pedigree study. 

Using equation (3.11) is often ineffective. Methods of more effective simulation 
normally involve some form of importance sampling. Note that 

Ep(g*(X)) Lg*(x) P(x) 
X 

= ""' *( ) P(x) *( ) L.-9 x P*(x) P x 
X 

(3.12) ( • P(X) ) 
Ep· g (X) p• (X) 

provided 

(3.13) P*(X) > 0 if g*(X)P(X) > 0. 

Thus realizations from P* ( ·) can be reweigh ted in order to estimate expectations 
under P. Where this is done in such a way that terms making larger contributions 
to the sum are realized with larger probabilities, this is importance sampling. Such 
sampling decreases the Monte Carlo variance of the estimator of the sum. The 
effectiveness of this approach depends on the choice of P*(·). It works best when 
the summand g*(X) P(X) is the "same shape" as P*(X), since then the variance 
of g*(X) P(X)/ P*(X) is small. Ideally, if P*(X) <X g*(X)P(X), the variance of 
g*(X) P(X)/ P*(X) is zero. However, this would mean 

P*(X) 
g*(X)P(X) 

l:x g* (x) P(x) = 
g(X) 

Lx g(x)' 

and if the denominator were known the Monte Carlo would be pointless! 
(Hammersley and Handscomb, 1964). The "same shape" criterion is most 
important in the tails of the distribution P* ( ·); it is a problem if P* (X) is very 
small when g* (X)P(X) is not, since then with low probability there will be very 
large terms in the estimator, and the Monte Carlo variance will be high. In order to 
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be able to use a given P*(·) we need first to be able to simulate from it, and second 
to compute g* (x)P(x)j P* (x) at the realized values x of X. This is sometimes far 
from straightforward, but we defer further discussion to Chapter 7. 

Note the difference between a "simulation study" and a "Monte Carlo analysis". 
Simulation studies are typically undertaken to discover empirically the distribution 
of a test statistic, or to assess the potential power of a study design. It involves 
the simulation of data random variables under a model of interest. In a Monte 
Carlo analysis, integrals, sums, or expectations are estimated by simulating random 
variables from some distribution, but the random variables are not normally the 
data random variables (often, the data are fixed) and the distribution is simply 
a tool to provide good estimates of the required expectations. In practice, the 
difference may be slight. The probability distribution we simulate from in a 
Monte Carlo estimation problem may often be closely related to the probability 
model underlying the data in a statistical problem. Conversely, the probability 
distribution we use in a simulation study could equally be a convenient tool, 
with reweighting used to adjust the realizations to the distribution of interest 
(equation (3.12)). In a Monte Carlo analysis we shall normally simulate conditional 
on fixed data, but in a simulation study it may sometimes also be desirable to 
simulate potential data conditional on partial data already obtained. 

3.8 Reduction of Monte Carlo variance 

The earliest use of Monte Carlo estimation on pedigrees was to estimate inbreeding 
coefficients. Before digital computers were available, Wright and McPhee (1925) 
traced random paths up pedigrees. By random choice of a male or female parent, 
one is realizing the ancestry of a particular allele, and hence realizations of the 
ibd status of, for example, the two genes within a current individual. Much 
more recently, using a computer, Edwards (1967) realized the descent of genes 
down pedigrees to estimate inbreeding coefficients. In effect, both Wright and 
McPhee (1925) and Edwards (1967) are realizing latent variables S. To estimate 
the probability of a specified ibd pattern, J*, define 

(3.14) g*(S) 1 if J(S) = J* 

0 otherwise. 

Then the probability of the pattern J* is the expectation of g*(S) under the 
distribution of the random descent of genes in pedigrees. 

Any probability can be estimated as the expectation of an indicator variable in 
this way, but the method is often not very efficient, if only the probability of a 
particular J* is needed. On the other hand, if the probabilities of all ibd patterns 
among a given set of current genes are desired, this may be an effective approach; 
each realization of S contributes to some ibd pattern J(S). Different realizations 
S arc, of course, independent, but the probabilities of different ibd patterns J 
estimated from the same set of realizations are dependent. It is important to 
recognize this dependence, but it is seldom a practical problem; multinomial 
covariances are small for large Monte Carlo samples. 
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Another key idea in effective Monte Carlo is "Rao-Blackwellization" of 
estimators. This procedure is named for the classic Rao-Blackwell Theorem in 
Statistics, whereby the statistical variance of an estimator g(X) is reduced by 
replacing it by its conditional expectation given some statistic T: if h(T) = 
E(g(X)IT), 

E(h(T)) E(g(X)) and var(h(T)) :S var(g(X)). 

Here we replace a part of the Monte Carlo by exact computation of a (conditional) 
probability or expectation. Formally, suppose the latent variables X are divided into 
two sets of components X= (X1, X 2 ). As before, we wish to estimate Ep(g*(X)) = 
Ep(g*(Xl, X2)), where each of X 1 and X2 is a (possibily vector) variable. If 
pairs (Xirl, X~rl), i = 1, ... , N are independently realized from the probability 
distribution P(·), one estimator is (see equation (3.11)) 

N 

T* _.!_"' *(X(_rl x< 7·l) 
N N ~g 1 ' 2 . 

i=l 

Suppose it. is possible to compute h(XJ) = Ep(g*(X1,X2) I X 1). Another Monte 
Carlo estimator is then 

Then the Monte Carlo variance of TN is easily shown to be no larger than that of T!v, 
and usually strictly smaller. Whether such Rao-Blackwellization is computationally 
effective depends on whether the increased cost of computing h(X1) rather than 
g* (X1 , X 2 ) is outweighed by the reduction in the number of the Monte Carlo 
realizations required to achieve a given precision. There is no general rule; see 
also section 9.4. 

Returning to realizations of gene descent in pedigrees, suppose we wished to 
estimate by Monte Carlo the inbreeding coefficient of the offspring of double first 
c:ousins: in fact, the answer is 0.125 (Table 3.2). If we use the estimator of 
equation (3.14), scoring 1 for each realization of S in which the final offspring 
individual is autozygous (has two ibd genes), the Monte Carlo variance is that of a 
binomial proportion for probability 1/8: (1/8)(7 /8)(1/N) = 0.1094/N. If instead, 
we score ibd patterns in the double-first cousins, we have a trinomial realization 
of "" = ("'o, "'1 , "'o) = (9/16, 6/16, 1/16). Then the inbreeding coefficient of the 
offspring is estimated by ·$ = (2~ + K!) /4, which has Monte Carlo variance 

(1/4)var(i1:2-) + (1/4)cov(~, K!) + (1/16)var(K!) 

N--l (0.01465- 0.00586 + 0.01465) = 0.02344/ N 

which is almost 5 times smaller. In this case, S 1 corresponds to the meioses down to 
the double first cousins, and s2 to the meioses from the double-first-cousins to their 
offspring. The original estimator scores 1 or 0 depending on whether or not (S1, S2) 
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implies autozygosity of the offspring individual. The conditional expectation h(Sl) 
is simply the probability of autozygosity in the final individual, given the particular 
S1 realized. 

As another example, consider estimation of the inbreeding coefficient of the 
final individual of the pedigree of Figure 3.1. The actual value is 7/64 = 
0.1094 (section 3.2), so using direct gene-drop, the Monte-Carlo standard error 
is J(7/64)(57/64)/N = 0.3121/VN. Alternatively, we may use Monte Carlo only 
to the parents of the individual. In this case, there are nine possible states of gene 
ibd among four genes of these two parent individuals (Table 3.1). For each ibd 
pattern in the parents, the conditional expectation of the indicator of autozygosity 
of the offspring is simply the conditional probability given the parental ibd state. 
These probabilities that the final individual, B, receives two ibd genes, range from 
1.0, for the parental pattern 1111, down to 0.0 for the pattern 1234: 

Pr(1111) + 0.5(Pr(lll2) + Pr(1121) + Pr(1211) 

+Pr(1222) + Pr(1212) + Pr(1221)) + 

0.25(Pr(1213) + Pr(1231) + Pr(1223) + Pr(1232)). 

Here Pr(k1 k2 k3k4 ) is the probability of that pattern among the four parental genes, 
the first two being the genes of one parent and the last two of the other. The 
Monte Carlo standard error of this estimate is approximately 0.17 j JN, in this 
case estimated empirically. There are two sources in the gain in efficiency, one 
replacing a part of the Monte-Carlo by an exact computation of an expectation 
(Rao-Blackwellization), and second the negative covariances of the Monte-Carlo 
multinomial proportions providing the estimated ibd pattern probabilities in the 
parents. Since '1/J(M, F) is a positive linear combination of these ibd pattern 
probabilities, the negative covariance reduces the Monte Carlo standard error of 
the estimate of '1/J(M, F). This idea is a little different from the use of antithetic 
variates (Hammersley and Handscomb, 1964), but of similar effect. Antithetic 
variates are negatively correlated realizations used to reduce the variance of a sum 
or average. Here the realizations of S are independent, but the component events 
are negatively correlated. 
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