
CHAPTER 4 

Testing for Latent Structure 

We consider two closely related hypothesis testing problems. In the test < 
homogeneity (against heterogeneity), we test 

H: one component versus A1: any mixture. 

In testing for the number of components, the usual test compares 

H: one component versus A2: two components. 

These two problems are clearly closely related, and it can be anticipated tha 
tests valid for one might also be applied to the other. As such, we consider th 
two problems together. 

In a survey of the tests ofhomogeneity, DerSimonian (1989) found that mos 
of the available procedures were one of two types. The first, the C (a) test fo 
homogeneity, is simple and tractable, with a known limiting distribution an 
a local optimality property. Strictly speaking, it is designed for the alterm 
tive At. 

The second, the likelihood ratio test for H versus A2, has long been a: 
enigma. In addition to the aforementioned problems with multiple likelihoo 
roots when the number of components is fixed, we have the problem that th 
standard likelihood ratio statistic has an unknown limiting distribution. Ir 
terest has persisted in this method, no doubt partially due to the mystery, bu 
also related to the phenomenal record of reliability for this testing procedur 
when used in other standard problems. 

The goals of this chapter are to provide essential background on these pre 
cedures, plus provide some fundamentally new insights to both. We will star 
this chapter with the C(a) testing procedure. It is a simple and highly eJ 
fective method of testing for overdispersion, and is the method the autho 
would recommend for most practical situations. A new result is given for it 
optimality, which had been clouded by work of Moran (1973). 

The second part of this chapter is devoted to an extensive treatment of th 
asymptotic distribution of the likelihood ratio test for one versus two com 
ponents. A complete description is given for a class of multinomial mixtur 
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models, together with a simple approximation formula. As by-products of this 
analysis, we derive the appropriate score test for the two-component problem 
and give a new result for the one component versus nonparametric mixture 
model as well. These results require a careful, and somewhat difficult, geo­
metric analysis related to the geometry given in Chapter 2. 

4.1. Dispersion score tests. The most popular method for testing for 
overdispersion is Neyman's C(a) test for homogeneity, although it is notal­
ways identified by this name because the same test can be derived in a number 
of different ways. We will start by motivating the test statistic from the point 
of view of the gradient function used in nonparametric maximum likelihood. 

4.1.1. The dispersion score. Recall from the mixture NPMLE theorem of 
Chapter 1 that the degenerate distribution tl¢ is the NPMLE for Q if and only 
if 

(4.1.) D1 ( c/J) .:S 0 for all c/J. 

Here D 1 ( c/J) is unicomponent gradient function D A;p ( c/J ). We note also that we 
have 

D1(¢) = 0, 

DJ.(¢) = 0. 

'l'he first equation is by direct calculation and the second, where the prime is 
the derivative with respect to c/J, holds because of its equivalence to the likeli­
hood equation which defines ¢. [Exercise.] Thus by Taylor expansion about¢ 
we have, locally, 

(4.2) 

It follows that the unicomponent gradient inequality (4.1) is violated in a 
neighborhood of ¢ if D'{ ( ¢) > 0, but if < 0, it must hold locally. That is, 

(4.3) D'{(¢) > 0 =-~=} b.¢ is not NPMLE. 

Thus D'{ ( ¢) seems to be an important summary statistic for checking a uni­
component hypothesis against local violations of that hypothesis. We therefore 
investigate its form. We define the (Neyman) dispersion score function to be 

V2(c/J, xi) :o,=: r;t;~/~~ === v(cp; xd + v'(cp; Xi). 

By direct calculation, 

D~(¢) "' L v2(¢; xi). 
i 

If we further examine the form of v2 in the exponential family, using the 
natural parameterization, we find that 

v2 (cp,x) :=-c (x ·- p.,) 2 - u 2 , 
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where J.L and u 2 are the mean and variance of the statistic X. Since under the 
null hypothesis, fJ-mie = x, we can conclude that there are no local gradient 
violations of the unicomponent model if and only if the sample variance is 
smaller than the variance predicted under the one-component model: 

D~(¢) = ~)x;- x)2 -- ncr2 (¢). 
i 

Moreover, D~(¢)1n can be seen to be a consistent estimator of the variance of 
the mean value parameter J..t under the latent distribution Q. [Exercise.] 

However, the relationship of this statistic to the gradient function also in­
dicates it may have low power to detect the need for a second component c/> 
that is not near to the unicomponent estimate ¢, because the gradient at a 
distant c/> is likely to be less well predicted by the second order Taylor series 
approximation ( 4.2). Indeed, as we will see, the likelihood ratio test does use 
the gradient information for c/> away from¢. 

4.1.2. Neyman and Scott's C(a) test. For a second development of this 
statistic, we turn to Neyman and Scott's original derivation (1966). Let G 
be a distribution for 0 that has mean 0 and variance 1 (we assume the pa­
rameterization has been chosen so as to make this possible). We construct a 
location-scale family of distributions for <P, with parameters (a, b) by setting 

<P =dist a+ b®, 

where® has distribution G. [The parameters (a, b) may need to be restricted 
to ensure that the distribution has all its mass in the parameter space for cp.] 
We note that as the parameter b goes to zero, the distribution converges to a 
degenerate distribution at parameter a. Thus testing 

H: b = 0 versus A: b > 0 

is a test of overdispersion. 
We consider the construction of the locally most powerful score test for this 

problem, so as to obtain maximum local power. We treat a as fixed for the 
moment. We calculate the first derivative of the log likelihood with respect to 
b: 

!_Injf(x·a b) dG() ·= S ( b)= fsf'(x;a+bs) dG~s) 
ab ' + s s · 1 a, J f(x; a+ bs) dG(s) · 

Since G has mean zero, as b ~ 0 this score converges to 

[/ J f'(x;a) 
s dG(s) · -·----- = 0 

f(x;a) 

under appropriate regularity conditions. 
Since the first derivative of the log likelihood becomes degenerate as we 

approach the null, the approximate form of the Neyman-Pearson tests in a 
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neighborhood of b = 0 must be determined by the second derivative of the log 
likelihood. Differentiating once more, we obtain 

~ 1 J f( . b ) dG( ) = f s2f"(x;a + bs) dG(s) _ 82( b) 
ab2 n x,a + s s f f(x;a + bs) dG(s) 1 a, · 

Since f s2dG(s) = 1 by assumption, as b -+ 0 this score converges to the 
dispersion score 

f"(x;a) 
u2(a;x) = f(x;a). 

For a fixed value of a, the locally most powerful test of our hypotheses is 
therefore to reject for large positive values of I:: v2(a; xi). 

[Note: Earlier workers parameterized the family of latent distributions by 
(a, a-2 ), with a-2 = b2 • If one does this, one finds that the limit of the first 
derivative with respect to a-2 is equal to (through the use of l'Hopital's rule) 
the above limiting second derivative with respect to b. We have taken the scale 
parameter approach here because of an important point to be touched upon 
later.] 

To complete construction of the C(a) procedure, as described by Neyman 
(1959), we must compute a ,Jii consistent estimator of a under the null hy­
pothesis. Since the null hypothesis is the unicomponent model, we may use 
the one-component MLE ¢. In this case, the C(a) test statistic will be the 
statistic we earlier derived from the gradient, 

normalized so as to have asymptotic variance 1. Note that except for the esti­
mated parameter, V 2 is an i.i.d. sum. The asymptotic variance of V 2 is n · T( 4>), 
where 

( ,~·) = E[ (X)]2 __ E 2[v2(X)ut(X)] 
T '+' v2 E[ut(X)]2 · 

Note that the second term in this variance formula is necessary to allow for 

the estimation of 4> in V2 . Thus V2f/nT(¢) is an asymptotically standard 
normal test statistic and has certain local optimality properties described by 
Neyman. 

We note that the C(a) test can be constructed using a different point es­
timator than the MLE ¢, but we must replace u2 with a corrected dispersion 
score iJ2 := v2 - pv1, where 

Er u2(X)vt(X)] 
P = ---E[vt(X)]2 

The adjustment is necessary to correct for the estimation of the nuisance pa­
rameter under the null hypothesis, but if one uses the MLE of the nuisance 
parameter, the correction term is zero. 'l'he variance term T( ¢) is in fact equal 
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to Var( v2 (X)). These corrections of scores for the effects of nuisance parame­
ters will show up again in the derivation of properties of the likelihood ratio 
test. 

For its practical value, we indicate how the variance of the test statistic 
can be calculated when there are other auxiliary parameters in the problem, 
say 01. ... , Om. If we let u1. ... , Um be the score functions for the auxiliary 
parameters, then one constructs the m+2 by m+2 covariance matrix i* ofthe 
extended set of scores u1. ... , Um, VI. v2. Other than the last row and column, 
this is the Fisher information matrix i for the unicomponent problem. We 
write it in the partitioned form 

.* [ i a] 
~ = a' b · 

The formula for the asymptotic variance of v2(01. ... , Om, 4>; x) is then b -
a'i-1a. 

4.1.3. Dispersion test optimality. A remarkable and important feature of 
the C(a) test for heterogeneity is that the test statistic does not depend on the 
alternative distribution G that was used and so it suggests that the statistic 
has power over a wide range of nearby alternatives. (If we think about the 
statistic in terms of the gradient, this becomes quite plausible.) Indeed, the 
statistic is often derived through other means than presented here, such as 
constructing the locally most powerful test for degeneracy in a conjugate fam­
ily of latent densities. 

However, a curiosity exists in the literature. Moran (1973) found that he 
could prove that this test, in the case of the test for Poisson overdispersion, 
was asymptotically best in the sense of best power under local alternatives, 
only if he assumed in addition that 

m3(G) := J s3 dG(s) =: 0. 

It appears that this condition is not strictly necessary, as we argue now briefly. 
If we carry out a Taylor series expansion of the sample log likelihood about 

b = 0, we obtain the formula 

[ f ( x · · a b) J b2 b3 

:Lin f(x:;a~O) =b·O+ 21 :Lv2(a;xd+afm3(G):Lv3(a;xi) 

+ ~: [ m4(G) I'.>4(a; xd- 3 I:V2(a; xd2] 
(4.4) 

+remainder. 

Here we have used the higher order versions of the dispersion score: 

t<k)(x;a) 
vk(a;x) := f(x;·a,r·· 

Noting that the functions vk(a; X) all have mean zero under the null hy­
pothesis, we find that the log likelihood ratios converge to normality if we set 
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b = bn = cn-114. With such a scaling the quadratic term is asymptotically 
normal, the cubic term converges to zero, for any finite m3(G), and for finite 
m4 (G) the quartic term converges to the constant, 

3c4 E[v2(a; X)2 ] 

4! 

From this point it appears that by taking local alternatives that approach 
the null at the unusual rate of n-1/ 4 in the parameter b, one can derive the 
necessary asymptotic optimality, as well as local power. 

The key here seems to be that instead of following the above approach, 
Moran considered the n-112 convergence of the parameter b2 . We note that 
if we use the scale parameter b, then the parametric family of likelihoods 
generated by <I> = a+b® is in fact well defined forb both positive and negative, 
and generates a smooth two-sided alternative to the null hypothesis. If ® has 
a symmetric distribution G, then -b generates the same distribution as b, but 
otherwise not. If not, however, this means that the family of likelihoods is not 
symmetric as a function of b, and so is not a function of b2 and so cannot have 
a Taylor expansion in the variable b2. 

Thus, although the ,Jn convergence of b2 might make it seem to be the 
appropriate parameterization, switching to the more slowly converging scale 
parameter b makes the expansions work properly, because then they are valid 
for b both positive and negative. 

'l'he fact that one has asymptotic power, in the b scale, only at distances of 
order n·-114 , has importance in the general nonparametric theory as well. Chen 
(1993) used a derivation like that above, with G being a two point distribution, 
to show that the optimal rate of convergence of a consistent G estimator to an 
unknown discrete latent distribution is n·-1/4 if the number of components is 
not known or has been overspecified. 

4.1..4. Auxiliary parameters. As a final note, we make the observation that 
further problems may arise in certain mixture models with auxiliary param­
eters. To give a simple example, if we consider the normal mixture model 
N(G, a 2 ), it is easily seen that the dispersion score v2 is equivalent to the 
nuisance parameter score for a 2 . Since the nuisance parameter scores must 
be regressed out of the locally most powerful test statistic, it follows that the 
locally most powerful tests for heterogeneity from (4.4) are no longer indepen­
dent of the form of G. If ms (G) is not zero, then the locally most powerful test 
is based on the corrected version of the "skewness" score us. If mg(G) is zero, 
then the best test depends on the "kurtosis" score v4 • In either case, the rate 
of convergence of detectable alternatives to the null must be slower yet than 
n·-1/1. 

Intuitively, this arises because of an identifiability issue. If the latent dis­
tribution G is N( v, r 2 ), then X has a distribution that can be represented as 
either a mixture N(G, a 2 ) or a different normal N(v, u 2 + r 2 ). Thus any hope 
of detecting a mixture alternative will depend on the degree to which the G 
differs from the normal, as evidenced through its cumulants. 
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4.2. LRT for number of components. In this section we will give some 
background on the likelihood ratio test (LR'l') for the number of components 
in a mixture model. The last section of this chapter will give some new results 
regarding the limiting distributions involved, both for the test of one versus 
two components, and the test of one component versus the nonparametric 
model. However, it is important to point out that from a practical point of view, 
the C(a) test is much simpler to calculate and has a much nicer distribution 
theory. 

4.2.1. The testing problem. The nature of the limiting distribution for this 
likelihood ratio test is a long-standing mystery. If we consider just the sim­
ple model with no auxiliary parameters and where <P is unidimensional, then 
the usual distribution theory suggests that the likelihood ratio test has a chi­
squared distribution with 2 degrees of freedom, corresponding to one free pa­
rameter under the null hypothesis H of one component, with density f(x; <P ), 
and three parameters under the alternative A2, with density 

1r{(x; </11) + (1- 1r){(x; </12). 

However, it is known that the usual regularity conditions are not satisfied. 
To consider the difficulties, we consider the parameter space for the two­

component model, where we can restrict attention to 

'1T E [0, 1] and c/>1 s </12· 

In this .setting we can describe a single element of the null hypothesis, say 
unicomponent with parameter <Po, with many elements of the alternative pa­
rameter space. We find three lines on the boundary of the parameter space all 
give the same null distribution: 

• The line for </11 = cfJ2 = <Po, 7T =anything. 
• The line where 7T = 0, </12 =<Po and </11 :=anything. 
• The line where 7T = 1, </11 = <Po and c/>2 :-= anything. 

In Figure 4.1 we plot the alternative parameter values that correspond to 
a single null distribution, unicomponent with parameter cp0 . 

The union of all such lines, over all values of <Po, makes up the null hypoth­
esis and so it corresponds to three entire boundary surfaces of the alternative 
parameter space. It is clear from this description that there are many points 
in the alternative that seem to be close to any one distribution in the null 
hypothesis. 

The first fundamental difficulty in establishing the asymptotic structure of 
the likelihood ratio test lies in determining what happens to the score func­
tions in the alternative hypothesis as we approach the null. Because one can 
approach the null from so many directions, we will find that the set of limit 
functions at the null hypothesis is an infinite-dimensional score space, even 
though there are only three scores in the alternative hypothesis, corresponding 
to three parameters. In turn, this structure implies that the problem gener­
ates what we will call a type III likelihood ratio test, a rather awkward beast 
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1t==0 & <1>,= <1>, 

<I> 0 -------

0 

-------

--<I> 

FIG. 4.1. The parameter space for the two-component mixture. 
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at best. (Type I is the standard testing problem with limiting chi-squared 
distributions; type II generates the chi-bar-squared distributions.) 

4.2.2. Historical perspective. For background on the problem of likelihood 
ratio testing in mixture models, the books by Titterington, Smith and Makov 
(1985) and McLachlan and Basford (1988) provide extensive discussion. Over 
the years considerable simulation work has been done; see Bohning, Dietz, 
Schaub, Schlattman and Lindsay (1994) for a variety of exponential family 
simulations. In all, the limiting distributions are not completely apparent 
from such studies, but the normal theory distribution, in the unknown vari­
ance case, has appeared tantalizingly like the chi-squared with 2 degrees of 
freedom, and the Bohning study shows that one parameter exponential fami­
lies appear to have tails very much like mixtures of chi-squares with differing 
degrees of freedom; these results are in accordance with the distributions to 
be derived in the next section. 

Exact theoretical results have been obtained in a number of special cases. 
For example, if we have two known components, with unknown 7T only, and 
the null hypothesis is 'rr = 0, then it will be shown in the next section that the 
limiting distribution is 

o.5x~ -t 0.5xi-
Here the symbol x~, the "chi-squared with 0 degrees of freedom," is a de­
generate distribution with all its mass at 0. Such a mixture of chi-squared 
distributions of different degrees of freedom is called a chi-bar-squared dis­
tribution. Another interesting set or special cases was considered by Goffinet, 



76 MIX'l'URE MODELS: THEORY, GEOME'rRY AND APPLICATIONS 

Loisel and Laurent (1992), who were interested in normal model hypotheses 
when the weight 7T was known a priori. The limiting distributions were again 
of the chi-bar-squared type. 

The difficulties with the irregular parameter space in the general problem 
led Aitkin and Rubin (1985) to attempt to make the problem regular by using a 
prior distribution on 7T. However, Quinn, McLachlan and Hjort (1987) showed 
that even with this approach the usual regularity conditions were violated. 

Ghosh and Sen (1985) developed a theory for models that satisfy a rather 
severe identifiability constraint. The most relevant and important insight into 
the general problem can be found in Hartigan (1985), who established that 
in the normal model, if one of the cf>'s is known and if u 2 is known, then 
the likelihood ratio test statistic has no interesting limiting distribution, but 
rather goes to infinity with probability 1.. 

4.2.3. Initial observations. For the moment we assume the model has no 
auxiliary parameters. We first make some observations about the probability 
that the likelihood ratio statistic equals zero, corresponding to having a x5 
component in the limiting distribution. We let ¢ be the maximum likelihood 
estimator under the null hypothesis and make the following claim: 

(4.5) Vcp. 

Check this, using the fact that the gradient function D1 satisfies the right­
hand inequality if and only if ll;p is the non parametric maximum likelihood es­
timator of Q. Further, it follows from the asymptotic normality of the Neyman­
Scott dispersion test statistic and relationship of the dispersion test to the 
gradient inequality as in (4.3) that the gradient inequality is violated in a 
neighborhood of¢ with an asymptotic null probability of at least 0.5. It follows 
that there is asymptotically at least probability 0.5 that the LRT is greater 
than zero. 

The gradient equation (4.5) makes it straightforward to do simulations of 
the probability that the likelihood ratio statistic takes on the value 0. However, 
if the gradient inequality fails and we are testing one component versus two, 
then there are some fundamental difficulties with simulation studies due to 
the nonuniqueness of the solutions to the likelihood equations. Two simulation 
studies that use different algorithms, different starting values or different 
convergence criteria are studying different statistics. Unfortunately, we know 
very little about how much difference it might make. 

From a practical point of view, one would like the simulation study to exactly 
mimic the procedure one uses on a data set, so that the results are appropriate 
to the estimator actually used. An approach used by Furman and Lindsay 
(1994b) was to use the unique and easy-to-calculate moment estimators as 
initial values, then iterate 100 times with the EM algorithm. Since this process 
is easy to replicate, it gives a fast and useful way to construct critical values 
by simulation. 
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In the face of this, it seems even more important to understand the asymp­
totic structure of the mixture problem better, especially the nature of the 
multimodality problem. 

4.3. Asymptotic multinomial geometry. We now offer a side trip into 
a particular geometric formulation of asymptotics in the multinomial model, 
designed to be background for the analysis of likelihood ratio testing in the 
mixture model. The reader may find that his needs are suited by skimming 
this section and considering just the implications presented in the next section 
of this chapter. The results found in this section are not new, but the geometric 
formulation of the asymptotics is presented with more completeness than is 
to be found elsewhere, as far as I know. 

We return to a general discrete density f(t; TJ) fortE {0, 1, ... , T}, written 
in vector form as f"l. We suppose that we have an i.i.d. sample of size n and 
that d is the vector of sample proportions. We suppose for the probability 
calculations that 'TJ = 'T/O is the true parameter value, with corresponding 
vector fo := f"lo· The asymptotic result used to drive the analysis is the fact 
that as n -"' oo, we have 

Here the matrix V = diag(fo)- fof~. The covariance matrix is rank deficient 
since the probability vectors are constrained to lie in the T -dimensional prob­
ability simplex, now denoted P. 

4.3.1. The dagger simplex. 'ro set up the geometry, it is useful to perform 
a transformation of the vectors in the simplex that will give our calculations 
a natural probabilistic interpretation. The transformed space arises from con­
structing ratios of densities with respect to the true density f 0 • For any func­
tion g(t) on the sample space, we define the dagger operation to be 

'~'( . '· g(t) 
g t) .-=- fo(t)- 1. 

Note that the inverse of the dagger operation is g(t) = fo(t)[gt(t) + 1] and 
that we are necessarily assuming that the true density f o is strictly positive 
on the sample space. 

If we apply the dagger operation to all elements of the simplex, p-"' pt, we 
obtain a transformed simplex P --+ pt. The dagger simplex is the convex hull 
of the extreme points el. Most importantly for our calculations, the dagger 
simplex lies in the hyperplane of vectors orthogonal to fo : 

pt c .!U0 == {v: v ·fo = 0}. 

Note also that the stochastic interpretation of the equation v · fo = 0 is that 
v(X), if X,..__ fo, is a mean zero variable: v · fo = L v(t)fo(t). Thus .!Uo is the 
linear space of mean zero variables under the null model. We note moreover 
that the dagger transformation took the true density and placed it at the 
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origin: tJ = 0. It is important to remember that the origin plays the role of a 
selected element of the null hypothesis. 

On this space we will use the Eo inner product defined by expectations 
under Eo: 

In this space, the distance between two vectors is then 

a form of chi-squared distance on the undaggered functions. 
If we let F be the surface of model densities in the simplex, 

F = { f'IJ: YJ E parameter space}, 

then there is a corresponding model surface F·1· in the dagger simplex, and 
it contains the origin (the selected null model). If YJ is p-dimensional, we let 
s1, s2, ... , sp be the score function vectors at YJ = YJo; that is, the vectors with 
tth component defined by 

SJ(t, YJ) =~In .£S!; YJ). 
aYJJ 

The score functions give us a way to approximate the space of models F"~" 
with a linear manifold on which it is easier to do asymptotics. If we pick any 
direction h in the parameter space, then a first order Taylor expansion gives 

(4.6) 

That is, in this space, elements of the model surface Ft can be approximated in 
a neighborhood of the null model by linear combinations of the score vectors, 
the score tangent space 

(4.7) 

This approximation is pictured in Figure 4.2. Note also that the Eo squared 
length of a score vector is just the corresponding Fisher information 
Eo[sj(X)]2 . Thus the lengths in this space have a natural statistical in­
terpretation. 

Further, and this is quite important for our investigation, if there are model 
constraints on YJ that limit the directions h one can move in the parameter 
space away from YJo, the approximating tangent surface S will have corre­
sponding constraints on the coefficients hi. For example, if YJo = (0, ... , 0)' and 
if within the model F some of the YJi are restricted to be nonnegative, then, 
from ( 4.6), the approximating surface ( 4. 7) should have the same restriction 
on the hi. 
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4.3.2. Maximum likelihood and projections. The next goal is to reexpress 
the asymptotics of maximum likelihood estimation in the language of this ge­
ometry via studying the properties of the projections of the sample proportions 
onto the tangent score space, which might be called data-to-model projections, 
or more simply, data projections. 

To do so, we consider the geometric relationship between the daggered 
data vector dt and maximum likelihood estimation. First we note that the 
Eo squared distance between dt and true density tJ = 0 is 

L [d(t)- fo(t)]Z 
fo(t) ' 

which is n -l times the Pearson chi-squared statistic for testing 

H: f(t) = fo(t) 

against a general multinomial alternative. It therefore has a limiting chi­
squared distribution with T degrees of freedom. 

Let 9sv, for v E pt, be the Eo projection of v onto the linear space S of the 
scores. That is, 

.9>sv = L bisi, 

where the coefficients bi are chosen to minimize the Eo distance 

Let r, be the maximum likelihood estimator of the parameter 'Y"f, with f := f-r, 
thereby being the maximum likelihood estimator of the density vector. Our 
claim is that the data projection gilsd·1· is asymptotically equivalent to the 

At 
MLE f in the sense that 

nllft -- .9'sd·1·11 2 ~ 0 in probability. 

This is pictured in Figure 4.2. 

s ·-

FIG. 4.2. 1'he score tangent space approximates the daggered model. 
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For simplicity's sake, we consider the proof of the claim in the (p = 1)­

dimensional case. First, a Taylor expansion oft'' in TJ about TJo gives us 

f-r = 0 +(f)- TJo)s + Op(n '1 ). 

[We note, as an important aside for novices in asymptotics, that this im­
plies that "all the action" is taking place near the origin because (f) - TJo) = 
Op(n-112 ). As n -r oo, provided the null model is true, we can count on the 
statistical objects of interest becoming closer and closer to the origin, which 
is where the tangent score approximation works best.] 

Second, we can explicitly calculate the projection of d'l' on the score space 
to be 

(4.8) 
di' 

,1, A A (s, ) "\"" • .1 .9J>sd = bs where b = --·--- :::::: L..- d(t)s(t; TJo)~ , 
llsll2 

where i is the Fisher information about 'TJ at 'TJO· [Exercise.] However, exami .. 
nation of b in the last equation shows it is equal to the first order influence 
function expansion of the maximum likelihood functional f) about TJo, so that 
f)- TJo = b + Op(n-1 ). Hence 

~ A 

nllf -.9lsdtll 2 =nll(f7--TJo-b)s-\ Op(n··1 )11 2 =0p(n-1 ). 

This establishes our claim. 
Thus finding the maximum likelihood estimator of the density is, to the 

appropriate statistical order, equivalent to finding a projection of the daggered 
data onto the tangent score space. 

Finally, we establish a simple asymptotic distribution theory for data pro­
jections. Note that taking inner products with the daggered data vector gives 
us sample averages: 

(v,dt) = ~ fo(t)v(t)(:a~t;) --1) = n-- 1 ~ v(Xi), 

provided v(t) E .ltto. Thus for elements v E .ltto there exists a very simple rule 
for calculation oflimiting distributions for pairs (and vectors) ofinnerproducts 
with the daggered data vector. It is a multivariate normal distribution, with 
Eo inner products determining the covariance matrix: 

(4.9) nl/2 [ (~,~~-)) J -r N [ (~), ( (~~~) (I~~J) J. 
This is a simple exercise for the reader. 

This leads to an elegant expression for the limiting distribution for a data 
projection. Suppose we have a linear space T with an orthonormal basis (Eo 
inner product) t1, ... , tk, so that lltJII = 1 and (ti, tJ) = 0. The use of such a 
basis is desirable, because then the projection of d-r onto T can be represented 
very simply as the vector · 
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This leads to a fundamental result that will simplify many of the calcu­
lations that we will undertake in the following. From (4.9), the asymptotic 
distribution of the data projection is therefore 

(4.10) 

where (Z1, ... Zk) are i.i.d. standard normal variates. 

4.3.3. Type I likelihood ratio testing. We now turn to the geometric inter­
pretation of the likelihood ratio tests. Our claim is that the likelihood ratio 
tests for model hypotheses are asymptotically equivalent to the lengths of 
certain Eo projections in the tangent score space. 

First, we consider the simple versus composite hypotheses Ti = T/o versus 
f. Here we assume knowledge from standard asymptotic results available 
elsewhere that the quadratic form of the score test statistic is asymptotically 
equivalent to the likelihood ratio test statistic. It is easily checked that the 
normalized quadratic form score test statistic 

n[L: d(t)s( T/o, t) }·--l [ L d(t)s( T/o, t) J 
for these hypotheses is nll.9'ls(d·i·) 11 2 . fExercise: See (4.8).] Moreover, we note 
that, in general, n times the squared length of the projection of dt onto a 
linear space such as S will result in a variate that has a limiting chi-squared 
distribution, with degrees of freedom equal to the dimension of S, which is 
the same as the number of parameters in the model. [Exercise: Work this out 
using (4.10).] 

The next level of difficulty is to incorporate nuisance parameters into the 
testing problem. We partition Ti = (0, y) and consider the hypotheses () = Oo 
versus f. We now have two sets of score functions corresponding to the two 
sets of parameters. We will denote the () scores by u's and the 'Y scores by v's. 
We then decompose the score tangent space S into two parts: the nuisance 
score space V, generated by linear combinations of the Vj, and the corrected 
score space U, which will be the orthogonal complement of V within S. Note 
that if we construct corrected scores via 

ih :c-::~ Uk ·-- .<?Jlv(Uk), 

then U is generated by linear combinations of the iik. (These are also known 
as the efficient scores.) 

In this case, the likelihood ratio statistic for the composite hypotheses 
(} o-= (}0 versus f corresponds asymptotically to the difference in two score 
test statistics. That is, we can write 

2[ln f(x; 0, .Y) · ln f(x; Oo, Yo0 )] 

, .. :: 2lln f(x; 0, y) · -ln f(x; Oo, 'Yo)] 

-- 2["In f(x; Oo, 'YoJ -ln f(x; Oo, 'Yo)], 



82 MIXTURE MODELS: THEORY, GEOMETRY AND APPLICATIONS 

which is the difference between the test statistics for two simple versus com· 
posite hypotheses and so is asymptotically equivalent to 

nll.9ls(dt)/1 2 - nll.9lv(d'1')11 2 ·= nll.9lu(d·1·)/1 2 • 

The last equality above derives from orthogonality of V and U and the fact 
that they span S. The test statistic has, therefore, from the above remarks, 
an asymptotic chi-squared distribution with degrees of freedom equal to the 
dimension of 0. A testing situation in which the above standard likelihood 
ratio asymptotic theory applies will be called a type I problem. 

4.4. The type II likelihood ratio problem. The next step in our analy·· 
sis is to take account of restrictions on the parameter space that will alter the 
preceding distribution theory. This section increases the level of difficulty to 
the next degree. Although it is not sufficient to carry us all the way through to 
the solution of the mixture likelihood ratio solution, it is essential background. 

4.4.1. Parameter constraints. Inasmuch as this section is designed to lead 
to the next, we will simplify the general context somewhat. In the general con­
text, there are focal parameters 0, parameters of interest that are restricted 
by the null hypothesis and nuisance parameters y that are not specified by 
the hypotheses. In general, both the focal and nuisance parameters will be 
divisible into two types: those constrained by the model and those not. (This 
description is a bit vague, but we hope that further considerations will clarify 
it.) In order to be true to our objective-the mixture model LRT-and keep 
things as simple as possible, we will reduce to the case where the focal pa­
rameters all have constraints put upon them in the neighborhood of the null 
hypothesis, but that none of the nuisance parameters do. To further simplify, 
we will assume that the null hypothesis is 6 = 0 and that the alternative is 
6 2:0. 

As they will be useful to us the next section, we also will follow throughout 
this section the following two examples. 

EXAMPLE 11. We have a single focal parameter 0, with the restriction that 
0 2: 0. The null hypothesis is () = 0 and the alternative is () 2: 0. All nuisance 
parameters are unconstrained in the neighborhood of the true model (00 , y 0 ). 

EXAMPLE 12. In addition to an arbitrary set of nuisance parameters, we 
have two focal parameters (01, 02), with the constraint under the alternative: 

4.4.2. Convex cones. As we noticed earlier, under a set of restrictions the 
model surface Ft is no longer approximated by S, the entire linear space 
generated by the scores si, but rather by a restricted set, in our case the 
score tangent cone: 

S* = {.LaiUi + LbJV/ ai 2:0, bJ E .9t}. 
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It is useful to note that we can also write S* in terms of the corrected focal 
scores: 

S* = {1-=:a(Ui + LbJVj: ai:::: 0, bj Em}. 
At this point we need some further terminology to describe the kind of set 

we are dealing with. First, a set of vectors W is a cone if it contains all rays 
through points in W: that is, if w E W, then cw E W for all c > 0. The set W 
is a convex cone if it is a cone that is also convex. Check that the restricted 
tangent space S* is a convex cone. 

We will call W the positive cone generated by the vectors {w1, ... , wk} if 

w = {:L:aiwi: ai:::: o}. 
A positive cone is clearly a convex cone. 

Although convex cones do not have all the desirable features of a linear 
space, if they are closed, they do share with a linear space the uniqueness of 
projections. That is, given any vector v and a closed convex cone W, there is 
a unique vector wE W, the projection of v onto W, that minimizes 1/v- wll. 
We will study some further properties of these projections later. 

Chernoff (1954) proved that the limiting distribution theory of the like­
lihood ratio test can be generated by doing data projections onto the score 
tangent cones, provided that these cones approximate the model surface. In 
our example, this means that the likelihood ratio statistic is asymptotically 
equivalent to 

nl/,<?i"s.(d·J·)/1 2 -- n//Y'v(di")/12 , 

where V is the tangent space of the nuisance parameters. Check that this is 
also the squared length of the data projection .9'-o·(dt), where 

is the positive cone generated by the corrected score functions. (See Figure 4.3.) 
That is, we may without loss of generality restrict our attention to the linear 
space u that contains u* and ignore the orthogonal directions corresponding 
to the space V. 

4.4.3. The z-coordinate system. It is useful to define a new coordinate sys­
tem for the linear space U. If we do so appropriately, then we can reduce the 
general problem to a standardized form involving projections of i.i.d. standard 
normal random variables, so that we can directly deduce the limiting distri­
butions of the projections. Returning to the original coordinate system then 
will give us the implications for a general model. 

We taken any Eo orthonormal basis for U, say b 1, ... , bd, and represent 
points win this space by their orthonormal coordinates z = z(w) defined by 

Zt :-::.o (b1, W), ... , Zd = (bd, W). 
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... ·· 
.. ·· ,•' 

0 

Uz ·· .... 

FIG. 4.3. The positive cone generated by two corrected score functions. 

[Of course, there exists an appropriated x ( T -J ·1) matrix B such that Bw = z.l 
We will let the z-coordinate representation of the normalized data projection 

be denoted by Z. Recall from our original considerations (4.10) that Z is asymp­
totically standard normal. 

We have thus replaced our original data with a set of standard normal 
variables. We next need to understand how the restrictions in the original 
score space show up in this transformed version and how the original Eo 
geometry is transformed. 

The first simplification comes because when working with the z-coordinates 
we replace the Eo geometry with the ordinary Euclidean inner product and 
distance. This arises because the Eo inner product between any two points in 
U equals the ordinary Euclidean inner product for their z-coordinate repre­
sentations: 

In this new coordinate system, we have a transformed version z(U*) of the 
original cone u*, corresponding to the set of coordinates z of all the points _,. 
in U . As an exercise, show that it is generated as the positive cone of the 
normalized extremal vectors 

Pi:= z(iid/llz(li;)tl. 
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0 ConeP 

···. 

FIG. 4.4. The projection of z onto the cone P. 

We will call this cone in z .. space 

the primal cone. 
Suppose we wish to find the z coordinates of the Eo projection of dt onto 

u* so that we can determine the limiting distribution of our data projection. 
'l'he projection can be carried out in two steps, by first projecting onto U, then 
onto u*. Because of the equivalence above for inner products, and therefore 
distances, we can instead work in the z-coordinate space and use Euclidean 
distances. That is, we take the z-coordinates of ,9ludt and do an ordinary 
Euclidean projection of them onto P. 

'l'hus we have transformed our asymptotic problem into the problem of 
determining the distribution of the squared length of the projection of a vector 
of standard normal variables Z onto a convex cone P. The situation is pictured 
in Figure 4.4, where the projection is denoted Z. 

4.4.4. Projections onto convex cones. We now study the properties of pro­
jections onto convex cones because then we can determine the limiting dis­
tributions of the data projections. A useful concept, akin to the notion of the 
orthogonal subspace, is the idea of the dual convex cone. 

The dual (or polar) cone po to a convex cone P is defined to be the set of 
all vectors that are negatively correlated with all the vectors in P, namely, 

po '"''' {y: y. m .:S 0 for all mE P}. 
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If the cone Pis closed and convex, then po is closed and convex and (P0 ) 0 == P. 
To simplify the notation, let 

z := [J}Jpz and e := [JJ>poZ 

be the primal and dual projections of z. The terminology fitted value vector and 
residual vector would also be appropriate, as a reminder of the similarity of 
this problem to the regression problem, in which the vector of observations y 
is decomposed into y + e, where y is the vector of fitted values, determined by 
linear projection ofy onto the model space, and e are the residuals, determined 
by the projection onto the subspace orthogonal to the model. The second part of 
the following proposition indicates that the parallel to the regression problem 
extends to the orthogonality of the primal and dual projections. 

PROPOSITION 13. Let P be a closed convex cone and let D be its dual cone. 
The projection z is the unique element of P that satisfies the gradient inequality 

(z- z) . m ~ 0 for all m E P. 

Further, there exists an orthogonal decomposition of z into its primal projection 
and dual projection. That is, 

z = z + e with z · e = 0. 

PROOF. [Exercise.] First show that (z- z) · z = 0 using the fact that cones 
contain all rays and that therefore /lz -- az/1 is minimized at a = 1. For the 
gradient inequality, use convexity of the cone and the fact that liz- ( 1-- s )z­
emil is therefore minimized at s = 0. To show that (z-z) is the dual projection 
e, show that it satisfies the gradient inequality on the dual cone. o 

To derive the limiting distribution theory, we will use the elegant geomet­
ric description of the conal projection problem given by Fraser and Massam 
(1989), who apply it to construct an algorithm for the projection. The dis­
cussion is therefore limited to convex cones with a certain simple structure. 
However, the loss in generality is balanced by a set of important insights. 

4.4.5. The dual basis. Suppose that our convex cone P is generated 
as the positive cone induced by a linearly independent set of unit vectors 
PI. P2, ... , Pd in d-dimensional space, the primal basis. We can construct a 
dual basis for the dual cone by sequentially finding unit vectors d 1, ... , dd 
such that 

di · p J = 0 for j 1- i. 

This orthogonality determines di up to its sign, which we determine by making 
it negatively correlated with its primal partner: 

di ·Pi ::: 0. 
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d, 

FIG. 4.5. The dual and primal cones for Example 11. 

It is easy to check that every di is an element of the dual cone and that every 
positively weighted linear combination of the di is an element of the dual cone. 
In fact, the dual cone is just the positive cone generated by the dual basis. 

Moreover, we can partition the space into 2d positive cones by using as a 
basis for each cone b1, ... , bd, where each bi equals either Pi or di. Check that 
the set of vectors b 1, ... , bd is also linearly independent. We will call each such 
a cone a sector. We can index the sectors by 8 = (81, ... , 8d), where 8i is 1 if 
bi = Pi and is 0 if bi = di. 'l'he basis vectors used in the sector will be called 
the active basis for that sector. We will denote such a sector by 

In each such sector, the active primal vectors p are orthogonal to the active 
dual basis vectors d, a fact that is important in the projection and, later, the 
distribution theory. 

We illustrate these notions with our two simple examples. In Example 11, 
the cone 1}* is simply a Single vector, SO We have only a single coordinate Zl in 
z space. See Figure 4.5. The induced primal cone is then simply {z1 ::::: 0}. The 
projection of v onto this cone is therefore either v itself, if v is nonnegative, 
or 0, if v is negative. The dual cone is {z1 :-s 0}. The reader should check the 
validity of the theorem in this simple case. 

Example 12 has more geometric content. There are now two primal vectors 
P1 and pz. In Figure 4.6, we show the location of the dual basis vectors d1 
and dz, which are orthogonal to pz and PI, respectively, with direction chosen 
so as to preserve the negative correlation with the other p vector. These two 
bases generate a division of the plane into four canal sectors, corresponding 
to the primal and dual cones, P = P(1, 1) and po = P(O, 0), and two regions 
P(O, 1) and P(1, 0), where we use 0 and 1 to indicate whether the cone was 
generated with dual or primal basis element in that position. 

4.4.6. Sector decomposition and projection. The beauty of the sector de­
composition is that in each sector there is a simple expression for the projec­
tion of z onto P. Check that in the preceding example, 

z EP c)- z = f?JJpz = z, 

Z E po ·=> z =0, 

z E P(1, 0) . => z = (PI · z)pl> 

z E P(O, 1) ·=> z = (pz · z)p2 • 
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P(l,O) 

Cone P=:P( I , I ) 

d 1 P(O,I) 

FIG. 4.6. The cones and sectors for Example 12. 

That is, in this case, and more generally, when z is in a conal sector, the 
projection z is formed by projecting onto the linear space of the active primal 
vectors. It is also clear that e is found in each case by projecting onto the active 
dual basis for the sector. 

It will be useful to characterize the relationships between these projections. 
Define the linear space 2\(8) to be the linear space spanned by the active 
primal vectors and let 

~1(8) = { L ai8;p;: a; 2: 0} 
be the corresponding positive cone. Let 2'2 (8) and %(8) be the corresponding 
linear and convex cones for the active dual vectors. Let z1 and z2 be the linear 
projections ofz onto 2'1(8) and 2'z(8), respectively. We then have the following 
relationships: 

PROPOSITION 14. The following statements are equivalent: z E !/( 8) if and 
only ifz1 E ~1(8) and zz E %(8) if and only ifz = z1 and e = zz. 

PROOF. [Exercise.] It will be useful to note that 2'1 and 2'2 are orthogonal 
spaces and that z has a unique representation in terms of the sector's basis 
vectors b. o 

4.4. 7. The type II LRT. To do a limiting distribution calculation for the 
asymptotic version of the likelihood ratio test statistic, namely, d 2 = jj.'?i'pZjj 2 , 

we can calculate probabilities via the law of total probability, 

(4.11) Pr(d2 > t) = _L Pr(d2 > tjZ E sector) Pr(Z E sector). 
sectors 

We tackle this calculation in two steps. Part of the calculation of the limiting 
distribution turns out to be quite straightforward. 
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PROPOSITION 15. Pr(d2 > t I ZEsector) = Pr(x~ > t), where k is the num­
ber of active primal constraints in the sector. 

PROOF. From the preceding proposition, we need to calculate 

PriJZII2 > t I zl E ~1(8) and Zz E ~z(o)], 

which in turn equals 

Pr[IIZI!I 2 > t I zl E ~1(8) and Zz E %(8)]. 

However, by the independence of Z1 and Z2, since they arise from orthog­
onal projections, the condition on Zz is irrelevant in this calculation. Fur­
ther, the conal structure implies that we can replace the condition Z1 E % 
with its equivalent condition Zt/1/Zlll E %. However, this unit vector has a 
distribution independent of its length /IZ11/ (e.g., by Basu's theorem). Hence 
our calculation boils down to Pr(/IZ1 11 2 > t), which has the given chi-squared 
property. o 

The second part of the calculation, Pr(Z E sector), is more difficult, and 
the answer will vary from problem to problem. The problem can be turned 
into the problem of calculating the surface area of a region on the unit sphere 

as follows. Let R = jzr ~.·+-z~. Because of normality, the conditional 
distribution of the vector Z given R is uniform on the sphere of radius R = r. 
It follows that U := Z/ R is uniformly distributed on the unit sphere. Now 
Z is in a positive cone, say P, if and only if U is in the intersection I of the 
sphere with P. The probability of Z being in the cone is therefore equal to the 
spherical surface area of I divided by the total surface area of the sphere. (I 
will herein refer to "area" rather than "volume," even though the sphere is of 
arbitrary dimension.) We will illustrate such a calculation shortly. 

It follows from (4.11) that the distribution of d2 has the form of a mixture 
of chi-squared distributions, 

with the weights wi determined by the probabilities of the vector z following 
into various sectors. Such a mixture of chi-squared distributions is called a 
chi-bar-squared distribution and is written x2• 

The chi-bar-squared distributional result holds more generally than for the 
cones considered here. It can be extended to the positive cones generated by 
vector sets having an arbitrary number of elements by extending the above 
ideas. Shapiro (1985) used this fact to show that the chi-bar-squared distribu­
tion holds for projections onto an arbitrary convex cone. (Essentially, we can 
approximate arbitrary convex cones with the positive cones associated with 
a set of primal vectors and then take limits on the number of primal vectors 
used.) 
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When a likelihood ratio test has the structure of a convex cone, with the 
resulting distribution being chi-bar-squared, we will refer to it as a type II 
problem. 

4.4.8. Applications. Example 11 illustrates the simplest such conal prO·· 
jection result. We have but a single parameter of interest, with inequality 
constraint on it. The theory above leads us to conclude that the likelihood 
ratio statistic has the limiting distribution 0.5x5 + 0.5x~, where 0.5 is the 
probability of z 1 being positive, the projection therefore equaling z1, and the 
resulting sector distribution being X~· The second component 0.5x5 arises from 
z1 being negative and the projection therefore being z1 = 0. 

An example of this type from the mixture problem is the following. Suppose 
wish to test H: '1T = 0 versus A: '1T > 0 in the mixture model ( 1 - '1T) f + '1T g, 
where f and g are both known. 'l'hat is, we ask if the distribution f has been 
contaminated by observations from the second distribution g. 

In Example 12, it is clear now that the distribution of d2 is a mixture of 
x%, fork= 0, 1, 2. To determine the weights, note first that the weight for the 
x~ component is 1/2, because P(O, 1) and P(O, 1) each contribute probability 
1/4. (This is the probability of falling in an arc of 90° on the unit circle under 
the uniform measure on the circle.) 

The probability of falling in the other two sectors is proportional to the 
angles they subtend. It suffices to determine the sector probability for P(l, 1). 
We need the angle a between the primal basis vectors p 1 and p2, but we need 
to express it in terms of the original variables that were projected into the z 
coordinate system. It can be argued that 

(4.12) cos(a) = E[ilt(X)u2(X)] ' 
/E[ilt (X)2 ]E[u_2(X)2] 

in which case the sector probability is aj2'1T. (This is the angle between the 
generating vectors, as expressed using the Eo inner product. As we have al­
ready seen, this agrees with the angle in the z-coordinate system of the trans­
formed vectors.) All the terms on the right hand side of(4.12) can be calculated 
from the elements of the Fisher information matrix for the parameters at the 
null hypothesis. 

However, there is an important issue here if there are nuisance parameters 
in the model. In the type I likelihood ratio test theory, there is no possible 
dependence of the limiting distribution on the nuisance parameters in the 
null hypothesis. Here, however, there is nothing to prevent the angle a from 
depending on the value of the nuisance parameter 'Y under the null hypothesis, 
in which case the limiting distribution varies over the elements of the null 
hypothesis. 

When this problem arises, we will say that we have a parameter dependent 
limiting null distribution. An example will be given in the mixture problem 
in the next section. 

If parameter dependence occurs, then one must develop a secondary strat­
egy for conducting the test. If one desires the test to have the desired proba-
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bility of type I error, a conservative strategy would be to use the critical value, 
say c( 'Y) from the least favorable null distribution, with parameter 'Y. With a 
little further care as to the asymptotics, one can estimate the nuisance pa­
rameter under the null hypothesis, and use the critical value c( .Y) from the 
estimated distribution. In the latter case, one might for the sake of conserva­
tiveness employ the least favorable critical value within a confidence interval 
for the nuisance parameter. 

4.5. Asymptotic mixture geometry. Our first problem is to come to 
an understanding of how we can put the mixture model into the geometric 
framework of the preceding section. The problem will be that of testing the 
one-component model against two components. Thus the null hypothesis is 
described by one-component density f(t; 4>0 ). The nuisance parameter in the 
null hypothesis is the parameter cf>, which gives us a single nuisance score 
function v(cf>, t), and this gives us the nuisance score space V. 

4.5.1. Directional score functions. A fundamental difficulty arises in as­
certaining the nature of the tangent space S of score functions at the null 
hypothesis. In the previous discussion, it was assumed that the score func­
tions under the alternative were also well defined under the null hypothesis. 
However, this is not true for the usual mixture parameterization. We have 
three score functions at each alternative parameter value, corresponding to 
one weight and two component parameters. Their limits as the null hypothesis 
is approached are problematical, however, because there are problems relating 
the parameters in the alternative hypothesis to those in the null model. 

To illustrate, if we treat the null hypothesis as specifying the equality of 
the two component parameters, c/>1 = c/>2, then the score functions for the 
parameters c/>1 and c/>2 are both equal to the nuisance score function when 
evaluated at the null hypothesis. Moreover, the score function for the weights 
is identically zero there. Thus the score space appears to degenerate to just 
the score space for the nuisance parameter cf>. 

This analysis is misleading; the easiest way to deal with the problem of 
determining the score space S* is to return to the geometric considerations of 
Chapter 2. Recall our plots of the structure of the binomial mixture model. 
The two-component mixture model generates a smooth family of models F 
in the probability simplex, a three-dimensional manifold corresponding to the 
three free parameters. The one-component models are a one-dimensional curve 
along the edge of this smooth manifold. Recall that our objective is to con­
struct a score manifold that approximates the daggered model surface Ft in 
the neighborhood of the null model. We can do this directly as follows. The 
directional scores at a particular null hypothesis point are geometrically con­
structed by taking limits of the form 

l:'-Lft -~ S 
' 2E> 

as 8 --+ 0, where f 2_, is a family in 8 > 0 of elements of the alternative hy­
pothesis manifold of two-component mixtures that is approaching the null 
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hypothesis point f0, a one-component density, with sufficient smoothness that 
the limit exists. We will let the set of all scores created thusly be the directional 
score cone S*. If indeed we have the simple model structure of the preceding 
section, where the focal parameter scores are meaningfully defined in the null 
hypothesis, then this gives the score cone S* of that section, which was there 
defined in terms of the focal and nuisance parameter score functions. 

We note first that S* is a cone, because one can simply change the definition 
of the smooth family to alter the speed of the approach to the null hypoth­
esis to get cs. Note, however, that it is not generally true that such a local 
alternative family can be extended smoothly from positive e through 0 into 
negative e, so that -sis not necessarily in the directional score cone. This is 
very important in the mixture model, due to the way that the null lies at the 
boundary of the alternative. It follows that we must pay attention to the sign 
of the score function if we wish the score surface to approximate the model 
surface. 

4.5.2. The gradient scores. This can be further illustrated by considering 
the scores generated by the weight parameter. Let us consider the bound­
aries of the parameter space in Figure 4.1 corresponding to 1T = 0 or 1. If for 
each fixed c/J we construct the score function for the parameter 1T in the one 
parameter density 

(l-1r){(t; c/Jo) + 7r((t; ¢), 

then taking its limit as 1T ---+ 0, we obtain a score function of the form 

This leads to a number of important observations: 

1. This generates an infinite family of directional score functions C ==-~ { cs</>} 
corresponding to the infinitely many possible values of ¢. By considering 
this family, and certain limits, we will be able to determine all the local 
corrected score functions. However, the dimension of the score space is no 
longer equal to the number of parameters in the alternative, and this will 
prevent us from using the simple geometry of the preceding section to derive 
the limiting distributions. 

2. The sample version of the above score is 

(4.13) 

That is to say, the unicomponent gradient function represents the collective 
sample values of these scores. For this reason, we will call s a gradient score. 

3. These scores are one directional in that the one parameter family used 
to generate them does not extend beyond 1T = 0, so the score is not two­
sided. That is, the model surface in the simplex has an edge at the null 
hypothesis. 
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4. The gradient scores are related very simply to the dagger operation. That 
is, we have 

-r Sq, = fcf>. 

Thus if we wish to picture the cone generated by these scores, we plot the 
one-component model in the dagger space and the cone Cis all rays from 
the origin through other points in the model surface. 

Before considering further issues, we ask the reader to solidify his or her 
understanding by considering how these facts relate to the pictures of the bi­
nomial mixture models found in Chapter 2. The pictures are roughly the same, 
with the coordinates undergoing some stretching by the daggering operation. 
Thus, using the Bin(2, p) as an example, Figure 4.7, we see that the gradient 
score vectors scf> correspond to all the vectors from the origin (the null model) 
to points on the curve {fi"} generated by the one-component model. 

From the figure we also obtain an important insight. We see that there 
are sequences of two-component models that approach the null model in such 
a way that the directional score is not in C = { csq,}. Thus we must create 
other score functions if we are to generate the entire directional score tangent 
cone s•. 

4.5.3. Other directional scores. We return to our derivation ofthe C(a) test 
in order to generate some further score functions. We follow the Neyman-Scott 
derivation, letting the distribution G be a two point distribution, in which case 
the location-scale family ci> =a+ b® is also entirely two point distributions. If 
we let b '\.( 0, we should expect to find that the directional score for any such 
two-component alternative results in the dispersion score v2 (¢o, t). However, 
we note that because the first derivative in b is zero, we must let b = Fe to 
get this score. Moreover, we get exactly the same score (no change in sign) 

FIG. 4.7. The directional scores for the Bin(2, p) model. 
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if b = .-.JB. That is, v2 generates a ray in only one direction in the tangent 
cone. In the plot for the model Bin(2, cf> ), it corresponds to a ray down into the 
two-component models. 

A further set of scores can be generated if we consider all approaches to 
the null model in which a -+ cf>o at the same time as b -+ 0, with appropriate 
rates, in which case we get scores of the form c2v2 + c1v1, where c2 ::: 0. 

At this point, a rather delicate analysis is needed to verify that we have 
found all possible directional score functions. We offer some heuristics for this: 
If the local family of alternatives is such that '1T' does not go to 0 or 1, we must 
have cf>t and c/>2 converging to cf>0• In this case, we will get a limit involving 
the dispersion score and the nuisance score. If '1T' does converge to 0, then c/>1 

must converge to cf>o and the resulting score will be a gradient score provided 
c/>2 converges to something other than cf>0• 

As in the preceding section, the relevant portion ofthe directional score cone 
for determining the asymptotic distributions is orthogonal to the nuisance pa­
rameter score space. This leads to a further simplification in the analysis, 
because, fortunately, the dispersion score does not need to be handled sepa­
rately from the gradient scores Scf> in the geometric analysis. That is, we claim 
that 

This is because the relevant scores for asymptotic analysis are the corrected 
scores obtained by the Eo regression residuals S¢ = S¢ - pv1. Noting that 
s,p/(cf>- cf>o) -+ Vt as cf> -+ cf>o, the interested reader should check that the 
normalized dispersion score v2/llv2ll is the limiting vector of the normalized 
corrected gradient scores Scf> I II s,p II as cf> -+ cf>o. 

Thus· we only need consider the corrected score cone C generated by the 
closure of the cone of the corrected gradient scores, because the other scores 
are limit points thereof. 

4.5.4. Simple binomial examples. In the Bin(2, p) plot, there are only two 
dimensions, and the nuisance parameter score is tangent to the unicomponent 
model, so the corrected gradient score space C must lie in the one-dimensional 
subspace orthogonal to it. It is a directional cone, pointing down into the model. 
This direction corresponds to the corrected dispersion score v2 = v2 - pv1. 

Thus, after this reduction of dimensionality, we are in the setting of Exam­
ple 11 of the previous section and have the corresponding chi-bar-squared 
distribution. 

In the Bin(3, p) model, Figure 4.8 will enable us to visualize the relevant 
geometric constructs. The cross section we are viewing corresponds to the 
plane orthogonal to the nuisance score and so will contain the corrected gra­
dient scores. The corrected gradient scores all lie between the two extremal 
scores corresponding to the mixtures with latent support at()= 0 and () = l, 
respectively. Thus in this case the corrected tangent cone C for the model is 
generated as the positive cone of these two extremal scores. 'rhus, because 
of the limited number of dimensions in the simplex, the corrected tangent 
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FIG. 4.8. The corrected gradient score cone of the Bin(3, p) model. 
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score space is just two dimensional, despite the fact that it was generated by 
infinitely many gradient score functions. The corresponding picture from our 
conal analysis is Figure 4.6. 

Thus in both these binomial models, the geometry coincides exactly with 
the type II LRT theory of the previous section. We can conclude that in 
a Bin(2, p) model, the test of one versus two components has the chi-bar­
squared distribution 0.5x6 + 0.5xi· In the Bin(3, p) distribution, we have a 
mixture of chi-squared (0.5-a)x6+0.5xi+ax~, where the component weights 
must be determined by calculation of a in ( 4.12). This calculation can read­
ily be carried out and we find that the angle is not constant. For example, 
a= 0.167, 0.193 and 0.226 when the log odds parameter equals 0, 2 and 4, 
respectively. 

This proves that in this binomial case the LRT distribution is parameter 
dependent in the null hypothesis, and suggests that it is unlikely to be distri­
bution constant in many other examples. 

4.5.5. The nonparametric LRT. Before proceeding to the next level of diffi­
culty, where the chi-bar-squared distributions fail, we can use what we already 
know to make an observation about the nonparametric likelihood ratio test, 
because the necessary geometric background has been laid. The result is that 
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the nonparametric likelihood ratio test has a chi-bar-squared distribution as 
well. 

PROPOSITION 16. In the multinomial model with T + 1. cells, under regu­
larity the nonparametric mixture likelihood ratio test statistic has a limiting 
distribution of the form 

2 2 . "\--, 
woxo+···+wrxr wah L_,w1 :::::1.. 

PROOF. The key here is that the tangent cone generated by the mixture 
models, viewed as the limiting directions in the direction of the mixture models 
from the null model, is clearly a convex cone and so we can apply the result 
of Shapiro (1985). o 

Although this result is a start on the nonparametric distribution theory, it 
is useless without the ability to calculate the weights, and we anticipate that 
is a difficult issue. Additionally, it seems likely that there will be parameter 
dependence in the weights w, which leads to further difficulties in constructing 
critical values. 

We note that the geometric analysis shows the relationship between the 
C(a) test for homogeneity and the nonparametric LRT. The Neyman disper­
sion score measures the tendency of the data to lie in the central direction 
v2 of the cone, but ignores the more subtle features of the conal structure. 
However, it has the clear advantage of an easy distribution theory and simple 
calculation. It seems likely that one can develop extensions of this test that 
measure some additional departure in the direction of heterogeneity, such as 
skewness features, yet still retain manageable limiting distributions. 

4.5.6. A nonconvex score cone. Once we leave the three-dimensional sim­
plex, where the corrected score space is forced to live in two dimensions, the 
distribution ofthe likelihood ratio test for one versus two components becomes 
significantly more challenging. 

Suppose the one-component model is Bin(4, p). From our earlier geomet­
ric analysis we know that the set of mixture probability vectors is a four­
dimensional set and that if we constrain ourselves to the plane in the sim­
plex orthogonal to the nuisance score function, then the two-component mod­
els generate a two-dimensional surface in the three-dimensional space: see 
Figure 4.9. In fact, there are two boundary surfaces to the mixture set con­
sisting of the two types of mixtures with index 2: those that mix two values 
of 0 that are in (0, 1) and those that mix e = 0, e = 1 and one e E (0, 1). 
Between these two surfaces are two seams, one on each side, consisting of the 
mixtures of index 1..5. Only the first surface of index 2 concerns us, because the 
other would be considered, in a statistical sense, to consist of three-component 
models. 

We can imagine the plot of the surface as being like the Bin(3, p) plot, 
only with an extension into the third dimension; something like an American 
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FIG. 4.9. 1'he corrected gradient score cone of the Bin( 4, p) model. 

football, but with only two seams. The null model sits at the top of the football, 
so we can picture those tangent vectors to the surface at the null model that 
correspond to the directions toward two-component models as creating a cone 
that has the general shape of a half tepee, sliced in two from its apex down. 

That is, this is a situation where the tangent cone S is not convex, and so 
we cannot use the theory of the type II likelihood ratio test. In essence, the 
two-dimensional score manifold does not lie in a two-dimensional plane. 

Of importance in our further discussion will be the two extremal vectors, 
corresponding to the two edges of the tepee surface. These correspond, in the 
Bin( 4, p) case, to the two seams with index equal to 1.5, and so arise from a 
mixture with p = 0 on one edge and p ::=:: 1 on the other. 

4.6. The LRT on nonconvex cones. As part of our analysis, we must 
therefore gain some further understanding of projections onto curved surfaces. 
In addition, the limiting distribution theory will be closely related to results 
for normal theory nonlinear regression, where exact results are unusual. 

4.6.1. Projections onto nonconvex cones. We first consider the issue of the 
nonuniqueness of projections. If we are in R2-the Euclidean plane-and we 
wish to find the projection of a point z onto a curve !f6, such as a parabola or 
hyperbola or circle, then there may be multiple points of minimum distance 
from z on the given curve. To take an extreme, but instructive, case, if the curve 
!f6 is the unit circle and z is the center of the circle, then it is equidistant from 
all the points of the circle. However, in every other case in this same example, 
there is a unique projection of z. F'or any point z that is outside !f6, this is clear. 
On the other hand, if z is inside the circle, the set of points that have a fixed 
distance c from z lie on a circle .7c of radius c. See Figure 4.10. As c grows, we 
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0 

---
FIG. 4.10. Projections onto a circle. 

can visualize that the minimum distance point on t:e corresponds to the first 
intersection point of ce and .9"c, where c is the minimum possible distance. 
This intersection point is unique due to the greater curvature of .9"c than <'(!. 

Thus the curvature of the surfaces involved play a critical role in uniqueness 
considerations, as well as the multimodality of the distance function. 

Although the projections z on t:e, may not be unique, there are still some 
useful facts available if t:e is a closed cone. 

1. The distance function is continuous, so for closed surfaces (containing their 
limit points), there does exist a well defined minimum distance to the cone 
JJz- zJJ that is attained for some point z. 

2. Since we are projecting onto a cone, whatever solution we find, say z, is 
orthogonal to z- z := e, so we still have the basic orthogonal decomposition 
into fitted values and residuals, 

z ~-= z -+ e, 

with the accompanying sums of squares decomposition, even if we no longer 
have uniqueness for the vectors in this decomposition or a dual projection 
interpretation of the residual e. 

To visualize the concepts in the second point, imagine that the cone consists 
of two rays from the origin in R 2 • Then when z is between the two rays, it 
can be projected onto either ray to find a point of local minimum distance, 
and when z is exactly midway between, the two local minimum distances are 
equal. See Figure 4.11. However, in both cases z is orthogonal to e. Because 
of this, we may continue to use the relationship 

(4.14) 
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FIG. 4.11. Nonunique projections onto two rays, with unique lengths. 
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Another useful fact is that we can write an explicit formula for 11z11 2 based 
on the elements of cg. We claim that 

(4.15) 

The argument goes as follows: View each ray {em: c:::: 0} as a cone on which 
we do a projection, arriving at z and e that depend on m. If we do so, we find 
that the length of"z" is (z · m)·i /llmll. Now, for each ray m the decomposition 
(4.14) holds, and our goal in projection is to minimize the residual term 11e11 2 • 

However, because llzll 2 is fixed, we can equivalently maximize 11z11 2 . The result 
(4.15) now follows. 

4.6.2. Measuring distances. Another important issue arises when the 
model's corrected directional score cone is not convex. We will need to deter­
mine statistically appropriate ways to measure distances along the cone. An 
important parameter in our statistical analysis will be an arc length distance 
along the unit sphere in the appropriate metric. We will derive it here, in 
advance of the main result. 

We set up the appropriate geometry. In the preceding section, we trans­
formed from the Eo geometry appropriate to the scores into a z-coordinate 
system, because in this space everything could be recognized as the projection 
of standard normal variables onto convex cones. The arguments could have 
been worked out directly in the dagger space, but the sense of simplification 
would have been lost. We presume we are working in such a transformed 
space, and if we refer to a particular score functions, we are referring to their 
coordinate representation. 

If we imagine our (transf(>rmed) corrected score cone, with the half-tepee 
shape, with apex at the origin, then it intersects the unit sphere in a one­
dimensional curve l' on the surf~1ce of the sphere. (The unit sphere in the Eo 
geometry consists of mean zero variables of variance 1.) 
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If the cone is actually flat, so that it is the positive cone of its two extremal 
vectors, then r is a great circle' the shortest path on the sphere between its 
two endpoints. Moreover, in this case the length of this path between the two 
endpoints equals the angle a between the two extremal rays at the origin, 
because we are merely walking along the rim of a circle that connects these 
rays. 

However, if the tangent cone is actually the positive cone generated by the 
two extremal scores, then we are in the setting of the type II likelihood ratio 
test and the results of the preceding section. Our problem arises due to the 
fact that r is not a great circle, reflecting the curvature of the tangent surface 
generated by the gradient scores. The points of l' are the coordinates of the 
normalized (to variance 1) corrected scores 

As c/J varies, g<P traces out the curve ron the unit sphere. See Figure 4.12. 
We will need the length of this curve in the z-coordinate sense. To solve 

this, we transform back into the original coordinates and find the Eo length 
around the sphere. To do this, one can break the parameter space into a grid 
of intervals, say cPi < <Pi+l, and sum the secant distances 

~-- - ...... --- ____ ,. ________ .. 

di = v D[g¢>i+l (X)·- gcf>, (X)]2 

between neighbors g¢>,+1 and g¢>, to arrive at the appropriate approximating 
sum 

arc length~ L j"Er;,~iH(X-) --- gq,, (X)-j2·. 
i 

0 

... l' 

··-- ~¢11__11 ____ _ 

FIG. 4.12. The trace of the curue 1' on the unit sphere. 
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If we let the partition of the parameter space grow finer, we see that this 
approximation converges to 

(4.16) Arc(I') =arc length= I fo[a~gq,(X)r dcjJ. 

I If we calculate the arc length using a partition approximation, somewhat 
greater accuracy can be obtained by summing the arc lengths ai on the sphere 
rather than secant distances di, using the relationship d~ = 2-2 cos( ad.] 

We have carried out these calculations, using the grid approximation, for 
several binomial models. In Table 4.1, we show these calculations. The param­
eter cjJ is the natural parameter; that is, the log odds. For comparison, we have 
shown the great circle distance between the two extremal rays of the cone so 
as to show that the statistical curvature in the problem can significantly in­
crease the surface of the tangent score cone. In the binomial model, the arc 
length goes to infinity as N -> oo. In the next section we will find how the arc 
length shows up in the limiting distribution. 

4.6.3. Tubes and distributions. Now we tackle the rather severe dis­
tributional problem. Our :first reduction is to turn this into a problem 
involving the calculation of surface areas on the unit sphere. The random 
variable U = lleii/R = llell/llzll is scale invariant and so is statistically 
independent of R by Basu's theorem. Thus we can find its distribution by 
calculation of its conditional distribution given any fixed value of R, which 
we will take to be R = 1. However, the statistic whose distribution we desire 
is llzll 2 = (1- U2 )R2, so if we calculate the distribution of U, then we can use 
independence and the known chi-squared distribution of R 2 to find the desired 
distribution. 

Now we use the fact that Z is, conditionally on R = 1, uniformly distributed 
on the unit sphere to note that the probability Pr[U :::: u] is the volume of 
a tube about the curve 1'. In Figure 4.13 we have attempted to recreate the 
geometry of the situation. If we let (} be in [0, 1T /2] and consider all points 
that arc within arc length(} of a point gq, on r, then we have a spherical cap 
at that point. Points z that are in that cap have a projection distance llell to 
the cone no larger than sin 0. 

'l'!IBLE 4.1 
... ----~·,-~,_·-· ·-- ~ .. .-...-~----
N <!> Arc/27r a/2'IT 
,, .............. ¥ ....... ~_ ..... ,, ... '""""""'""""''"'~-

3 0 0.167 0.167 
3 ?. 0.193 0.193 
3 1 0.226 0.226 
4 0 0.240 0.206 
6 0 0.363 0.236 

20 0 0.88'/ 0.250 
,.._ .................................... ~,.,,.___., ....... _....., ___ 
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·--- ------....... 

FIG. 4.13. A cross section of the spherical cap with angular radius 0. 

Thus if we find the spherical volume of the set of all points within 0 in arc 
length from f, and divide it by the total surface "volume" of the sphere, we 
will have the probability that U ~ sin(O). 

The set fYe := {z: U ~sin 0, R 2 = 1} is the tube of radius 0 about the curve 
f. It is sketched in Figure 4.14, showing in particular that the two endpoints 
of r generate two semispherical caps. 

We first carry out the calculation under the simplifying assumption that 
the curve f lies on a great circle (geodesic). We assume that the angle a it 
subtends is less than 7T, so that curve wraps no more than. half way about 
the sphere. We let V 1, ... , V d be the uniformly distributed coordinates of the 
sphere and we suppose that we have rotated the sphere about so that the 
great circle is 

{(v1, v2, 0, ... , 0): v~ + v~ = 1}. 

FIG. 4.14. A tube of radius 0 about the curve I'. 
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In this situation, we have already calculated the probability distribution for 
the likelihood ratio statistic, because we are in the setting of the type II like­
lihood ratio test, with the geometric structure of Example 12. The corrected 
score tangent cone is generated as the positive cone of the two extremal rays 
of the curve r, so it lies in the space { (zt, z2, 0, ... , 0): z1 E R, z2 E R} and so 
we can ignore the orthogonal variables Zg, ... , Zd, here corresponding to the 
spherical variables V 3, ... , V d. 

We rederive the distribution for Example 12 by starting with the probability 
that the uniform sphere variable V falls in the tube. Provided that the angle 0 
is in the range [ 0, 'lT /2), so that the tube does not overlap itself, an elementary 
geometric argument shows that 

(4.17) Pr[U <sinO]= Pr[V1 >cosO]+ 2: Pr[ Jvi + V~ >coso]. 

The first term in this expression is the probability of falling in the two end­
caps, which together make one complete semispherical cap. [Note that here V 1 
refers not to the first coordinate, but the distribution of th~ first coordinate]. 
The second term comes from the body of the tube, excluding the endcaps. By 
substituting w = 1 - sin2 0 = cos2 0, this last formula becomes 

1· a 
(4.18) Pr[1- U 2 > w]= 2' Pr[Vi > w] + 2 'lf Pr[Vi + V~ > w], 

where the factor 1/2 arises from the symmetry of V 1's distribution about zero. 
From here, we may finish the calculation of the distribution by noting that 
R2 ·(Vi+ V~) has ax~ distribution and R2 · Vi has a xi distribution, so an 
easy exercise shows 

(4.19) ~2 1 2 · a 2 
Pr[IIZII > t] = 2' Pr[x1 >: t] + 2'lf Pr[x2 > t], 

exactly in accordance with our earlier derivation of the type II likelihood ratio 
test in Example 12. 

4.6.4. Approximations for tubes. Hotelling (1939) showed that the tube 
formula in ( 4.17) is still an equality if the curve is not a great circle, provided 
that the curve is regular, and the chosen angle 0 is sufficiently small and one 
replaces a with the arc length A(f) of the curve. However, equality does fail 
for large values of 0 when the tube displays curvature, that is, when r is not 
a great circle curve, and this failure occurs when 0 exceeds the smallest value 
of the spherical radius of curvature of r. 

However, Naiman (1986) has shown that even when equality fails to hold, 
the two sides of ( 4.17) are always related by an inequality of the form ::; . 
Heuristically, the inequality arises because when 0 grows sufficiently large, 
the curvature of r causes a kink in the tube, in which case it has less volume 
than predicted by the formula on the right-hand side. 

This said, we will say that we have a type III likelihood ratio problem if the 
tangent cone of the corrected scores is two dimensional and the corresponding 
curve r is smooth, with no points of self-intersection. 
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PROPOSITION 17. In any type III likelihood ratio problem with finite arc 
length A = A( f), the limiting distribution of IIZII 2 satisfies 

Pr[IIZII 2 > t]::::: 0.5Pr[x~ > t] + 2~ Pr[x~ > t]. 

Moreover, the ratio of the two sides goes to 1 as t --+ oo, provided that the curve 
r has spherical curvature that is bounded above. 

PROOF. To prove the inequality, we apply Naiman's result to (4.17) and 
follow its consequences through (4.18) and (4.19). For the second part, we note 
that as long as () is sufficiently small that the tube inequality is an equality, 
the first bound is an equality; hence, so is the second upper bound for w 
sufficiently close to 1. This implies that the upper tail of IIZII2 = R 2(1- U 2 ), 

which is determined by large values of R and W := ( 1 - U2 ), is asymptotic 
to the bound, by the following line of argument. Let G be the distribution 
function for W ~md let a be such that the bound is exact for W ::: a. We can 
show that the tail. bound is exact if the following ratio converges to zero as 
t--+ oo: 

jgPr{R2 > t/w}dG(w) fr.~Pr{R2 > tjw}dG(w) 
.:...::,.--------- < -·---··-:-::-,----=-=:::----.,-
f;Pr{R2 > tjw}dG(w) ··· [1- G(a)]Pr{R2 > tja}' 

Thus it suffices to show that 

Pr{R2 >t!wl __ > 0 
Pr{R2 > tja} ' 

for w < a, since the ratio being less than 1 implies dominated convergence. 
However, this last statement is true by an application of l'Hopital's rule and 
the use of the appropriate x2 density. o 

Although it is perhaps possible to get more accurate descriptions of the 
limiting distribution theory, it is unlikely that it can be done without consid­
erably more effort. However, such a geometric study will no doubt have further 
payoffs in understanding the nature of the problem of multimodallikelihoods. 
Note also that we can accommodate multinomial models with auxiliary param­
eters in this analysis; they will show up as nuisance scores in the calculation 
of the corrected mixture scores. Finally, we note that the limiting distribution 
may not be operative if the sample size is small relative to the parameter 
space, as we discuss in the next section. 

4.6.5. The arc length problem. Despite the fact that there is much work 
to be done to turn the preceding theory into a viable strategy in the wide 
range of st,rictly multinomial problems that it could be applied to, it is hard 
to avoid the temptation to turn it to use in understanding the much studied 
mixture problem of testing two normal components. We will consider here just 
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the case of two normal components with common known variance, because the 
unknown variance case considerably changes the geometry. 

To enhance our understanding, we imagine that the problem has been dis­
cretized, so that we are in a situation similar to a Bin(N, p) with N large. 
There are several important features of this problem that we can now see 
more clearly. 

First, as the binomial parameter N increases, the arc length parameter 
grows without bound, increasing the weight applied to the x~ component in 
the approximation. Thus the inequality says that the likelihood ratio test is 
gaining heavier and heavier tails. If one carries out the formal calc;ulation 
of the arc length using (4.16) in the normal model, one finds in fact that it 
becomes infinite when integrated over the parameter space. 

This calculation confirms Hartigan's conclusion that the likelihood ratio 
test statistic diverges to infinity. However, in addition to not being useful, 
this result appears in contradiction to the great stability that has been found 
in many simulation studies. Indeed, the simulation study of Bohning, Dietz, 
Schaub, Schlattman and Lindsay (1994) shown in Figure 4.15 shows that 
for a sample of size 10,000, the distribution appears very much. like the chi­
bar-squared approximation, with some small finite arc length. (Note: The 
plot is of the conditional CDF of the nonzero statistic values only, because 
our right tail approximation gives no information about the probability of a 
zero.) 

--~-----:--.. -.. 
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FIG. 4.15. A simulation study of the likelihood ratio test distribution. 
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To explain this phenomenon, suppose we were to restrict the search for a 
two-component alternative to a finite interval of parameter values, say 4> E 

[L, R]. Then the theory of the preceding section would lead us to identical 
conclusions, but the arc length would be calculated over the restricted interval; 
call this length Arc[L, R]. 

The importance of this is that in practice, for any finite sample size, we 
do not need to search for the two-component solution over an infinite range. 
For example, in a two-component normal mixture problem, there can be no 
likelihood solutions for which the support points are not between the smallest 
and largest order statistic of the data, Yl:n and Yn:n· Thus a more relevant 
calculation would seem to be the arc length An= A[Ln, U n] corresponding to 
Ln = E[Yl:n] and U n = E[Yn:n]. In the normal model, this effective arc length 
grows very slowly inn. Some values are given in Table 4.2. 

Although this gives us some further guidelines as to what to expect in a 
distributional theory, there are also some technical problems with the asymp·· 
toties that one should consider. The distributional theory relies on the cor­
rected scores being asymptotically normally distributed. However, in the 
mixture case, the gradient scores S¢ can be a long way from achieving their 
limiting distribution for any finite sample size. Consider the normal case, 
where the selected null model is N(O, 1): 

exp(-0.5(t-¢)2 ) . 2 
S¢(t) = exp( -0.5t2 f·--· -·-· 1 = exp(cf>t -- 0.5¢ ) - 1. 

If 4> is very large, say 100,000, then we can expect S¢(X;) to be nearly -1 
across all observations in any reasonable sample size from a standard normal, 
even though the statistic is nominally mean zero. (The explanation arises from 
the enormous variance.) Thus the sum really behaves more like a Poisson 
variate than a normal because the finite sample behavior is determined by 
rare events, namely, very large observations from the normal distribution. 

4.6.6. Final comments. As we indicated earlier, a pragmatic strategy for 
many problems is simply to use the Neyman dispersion score approach and 
use the resulting asymptotic normality to generate a simple procedure. If one 
desires more power against a wider class of alternatives, one must consider 
the likelihood ratio test as the method of choice. However, we do note that in 
the process of our analysis, we also derived the appropriate score function test 
for testing one versus two components, as we now argue. 

TABLE 4.2 

44 0.14 
740 0.75 

31,000 l.07 
3,500,000 L.40 
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Recall from (4.13) that inner product of the directional scores sq, from null 
value 4>o with the data vector resulted in the normalized gradient n-1 Dq,0 (</J). 
If we transform the projection statistic Jlzll2 from (4.15) back into the orig­
inal model geometry, we see that the projection statistic, and therefore the 
likelihood ratio statistic, is asymptotically equivalent to the generalized score 
statistic: 

[]2(</Jo) := n -1/2sup{D~~(</J)}2 
q, 1/Sq,ll 

'I'his statistic may be estimated under the null hypothesis by U2(¢). This 
statistic will have the same asymptotic distribution as the likelihood ratio 
test and is considerably easier to compute provided that the corrected score 
variances can be calculated explicitly. We note that the argument of the 
supremum 

D~o(</J) 
··---

llsq,ll 
approaches the positive part of the Neyman dispersion test statistic as <P--? <Po, 
so the generalized score test clearly uses wider properties of the gradient than 
the Neyman test. 

There is also a score test corresponding to the likelihood ratio test for one 
component against an arbitrary number of components, but it is considerably 
more complicated to compute. 

F'inally, we note that for both the likelihood ratio test and the generalized 
score test, the arc length problem goes away provided that one is willing to 
group data in the tails of the distribution. In a standard contingency table 
analysis one can group cells together so as to improve asymptotic approxi­
mations, and one can do so here. One can either group the data throughout 
its range, making sure the bins in the tails have sufficient observations, or 
one can construct a likelihood from the densities in the middle, but use the 
appropriate distribution functions in the tails. In either case, the arc length 
calculations will no longer be infinite, at any finite sample size, and the tail 
scores functions will be more nearly normal, justifying the normal approxima­
tions used in constructing the approximate distribution. 
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