
LECTURE 7 

Spectral Densities 
and Cumulants 

We have already remarked on the theorem of Herglotz and what it implies 
for the representation of the covariance function of a stationary process X" 
with finite second moments. Assume, for convenience, that EXk = 0. There is 
a result due to Cramer which gives a parallel representation of the process Xh 
itself as a Fourier-Stieltjes stochastic integral of a random process with 
orthogonal increments z( A), 

( 7.1) Ez(A) = 0, Edz(A)dz(i;.) = b(A - f.L) dG(A) 

with 8 the Kronecker delta 

b(A)={~ if A = 0, 
otherwise. 

If the process is real-valued, 

The representation of X;, is 

dz ( A) = dz ( -A), 

dG(A) =dG(-A). 

xk = rr eikA dz(A). 
-7T 

Knowledge of the spectral distribution function or its derivative g(A) (assum­
ing G absolutely continuous) is clearly of interest in a host of linear problems 
or Gaussian problems. However, in case of nonlinearity or of non-Gaussian 
character, higher order moments (assuming they exist) can convey additional 
information. Let 

.(t,, ... , t.J ~ E exp( ;.It t.IXJ) ~ •( t) 
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The mixed moments 

with the vi nonnegative integers 
h 

lui= L v.i, 
.i 1 

h 

v!= nv.i!, 
j=l 

if they exist up to an order n (I vi :;;; n ), can be identified as coefficients in the 
Taylor expansion of r.p about zero, 

r.p(t) = L (it) 11 mvju!-t- o(ltl"). 
lvl~;n 

Joint cumulants 

are the corresponding coefficients in the expansion of log r.p about 0 

logr.p(t) = L (it) 11 c,jv!-t-o(ltlk). 
lvl:o::n 

Existence of all moments up to order n is equivalent to existence of all 
moments up to order n. Cumulants up to order n can be expressed in terms of 
moments up to order n and the converse is also true. It is often much more 
convenient to deal with cumulants rather than moments. Notice that for 
jointly Gaussian variables all cumulants of order higher than the second are 
zero. One can show that if (v 1, ..• , vP) is a partition of the set of integers 
{1, 2, ... ' k} 

E( X · · · X ) = " C · · · C 1 k. '--' l'l l'p' 

v 

where Cu is the joint cumulant of the X's with subscripts in v. If J.Lv is the 
mean of the product of the X's with subscripts in v, the inverse relation is 
given by 

cum(X1 , ... ,Xk) = E (-l)p-\p -l)!J.L,,, ... J.L,,p. 

Assume that moments of order k > 2 exist. Then 

mk(j1, ... , jk) = E[ )(_h · · · Xh] 
in the case of the strictly stationary sequence X" will only depend on the time 
differences ) 2 - ) 1, ... , jk - ) 1, 

mk(jl, · · ·, Jk) = rk(jz- J1, · · ·, Jk- J1) · 

A representation for rk analogous to the result of Herglotz would be 
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with Hk of bounded variation. However, this will generally not hold without 
strong enough assumptions such as, for example, cumulant mixing conditions 
of the type mentioned earlier. Even in such a case, the mass of Hk will be in 
part located in a singular manner on certain submanifolds if k > 3. We say 
(.A 1, ... , .Ak) lies on a proper submanifold if not only is 

k 

L .A J "" 0 mod 27T, 
j~l 

but also for a proper subset J of the set of integers 1, 2, ... , k, 

L .AJ = 0 mod 27T. 
jEJ 

This will not be the case in such circumstances for the corresponding Fourier 
representation of the cumulants 

ck(T 1, ... ,Tk-l) =cum(X0 ,X71 , ••• ,X7 , J 

with Gk of bounded variation. Actually with a cumulant mixing condition as 
strong as (5.2), Gk will be absolutely continuous with a density gk. Let us 
illustrate these ideas in terms of a simple but interesting collection of linear 
models. Let f,1, k = ... , - 1, 0, 1, ... , be independent identically distributed 
random variables with Egk = 0 and ElgkiP < oo, p > 2 (p an integer). Let the 
corresponding cumulants of gk be J.J.s, s = 0, 1, ... , p. It is clear that p., 0 = 
p., 1 = 0, p., 2 = cr 2(f,). Let aJ be real weights with L: aJ < oo. Then 

xk = '\' a.t, . L.... J"'" ••j 

j 

is well defined. The spectral density of the process X 11 is 

cr 2 . . 2 1 . 
(7.2) g(.A) =--II: a-e'JAI = -- L rke'hA, 

27T J 27T 

with 

Let 

One can then rewrite (7.2) as 

( 7 .3) 
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A relation analogous to (7.3) for cumulant spectra is 

( 7.4) 

where 

cum( dz( A1), •.. , dz( Ak)) 

77( A) = { ~ if A= 0 mod2rr, 
otherwise. 

The sth order cumulant 

cum( xi' xt+j1, ... , xt+j,_J = L: akak+j, · · · ak+j,_ 1 ~-t, 
k 

and because of this, one can see that the cumulant spectral density of order 
S IS 

gs(A 1 , ... , A,_ 1 ) 

= (2rr) -s+l j1,. ~.is 1 cum( Xt, xt+}1' ... ' xt+j, Jexpc~: UkAh) 

= p,,(2rr) -s+la(e-i"1 ) • • • a(e-iA,_ 1)a(exp(i(A 1 + · · · +A,_ d)). 

It is clear from (7.3) that knowledge of the spectral density will only allow one 
to resolve la(e-i")l but not the phase of a(e-i"). In the case of a Gaussian 
process, because all higher (than second) order cumulants are zero, this means 
that a( e i A) is not identifiable. The way of resolving the question in the 
Gaussian case has been to make what is called a minimum phase assumption. 
For this to be meaningful, we have to assume that 

log g( A) E L. 

Formally, let us just make a Fourier expansion of log g, 

log g(A) ~ 

1 !Tr bj = ·-- log g(A)eiJA dA. 
2rr -7r 

Then if we set 

and 

it is clear that 
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The minimum phase assumption is the assumption that 

1 . . 
-=cm(e lA) = a(e·IA) 
/21T 
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and one just tries to estimate a(e -iA) (or its coefficients). Of course, in the 
Gaussian case one cannot distinguish between a(e··iA) and any other square 
root of g(,\) so its just as well to estimate a(e-iA). In non-Gaussian cases, as 
we shall see, one can in principle resolve most of the phase information of 
a( e-; A) under appropriate conditions. The minimum phase square root is tied 
up with the linear prediction problem for xk and so has a natural aspect from 
that perspective. 

It is worthwhile looking at the question just discussed in the simpler 
context of what is called an autoregressive moving average or ARMA scheme. 
Consider a linear system of equations 

p C/ 

( 7.5) L [3jXt-j = L Yk~t k 
j~l k~O 

with [3 0 , a 0 =f. 0. An initial question is that of necessary and sufficient condi­
tions for the existence of a stationary solution X1 • One can show that such a 
condition amounts to the polynomial 

p 

f3(z) = L f3 zi 
J 

j-0 

having no zeros of absolute value one. If there is such a solution it is unique 
and given by 

(7.6) 
( ·iA) ! .,. . Y e xt = e'tA ____ ~ dzl(,\), 

-rr f3(e lA) . 

where 
C/ 

y(z) = L YkZk 
k~O 

and zJ,\) is the random spectral function of the sequence {g1}. In the discus­
sion above it is assumed that J;(z), y(z) have no roots in common. In the 
context of ARMA processes, one can show that the minimum phase condition 
amounts to the assumption that f3(z), y(z) have all their zeros outside the unit 
disc in the complex plane. For convenience, assume that the zeros of f3(z) and 
y(z) are simple. The representation we obtain is still valid even if there are 
multiple zeros but the notation in the derivation would be somewhat more 
elaborate. Notice that if lz) > 1, 

(e-iA- zjr 1 = ( -zj)-1(1- zj-le·-iArl 

( 7 .7) 
( ) -I " -k -ikA = -z. L.... z. e 

J J 
k~O 
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while if lz) < 1, 

(7.8) 
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00 

= L zjei<k+llA. 
k=O 

If there is a stationary solution X 1 of (7.5), it can be written 

Xt= L bkgt-k' 
k ~ -00 

where the coefficients bk decrease in modulus exponentially fast as lkl ---? oo. 

This can be seen by making use of (7.6), (7. 7) and (7.8). If all the roots of {3(z) 
have modulus greater than one, the representation of xt in terms of the g/s 
becomes one-sided, 

00 

xt = I: bkgt-k. 
k=O 

Moreover if y(z) also has all its roots with modulus greater than one, since 

"t = Jrr e itAf3(e-'A) dz (,\) 
~ 7T y(e-'A) X ' 

we have 

gt = L hkXt k' 
k-0 

with the weights h k decreasing in absolute value exponentially fast. Thus, if 
{3(z), y(z) both have roots of absolute value greater than one, whether the g's 
are Gaussian or not, L 2(g0 t .:o;; m) and L 2(X0 t ~ m) (the spaces of random 
variables with finite second moment measurable with respect to the 0'-fields 
generated by g1, t ~ m, and X 0 t ~ m, respectively) are the same. This means 
that under these circumstances (the minimum phase condition) 

X/= f3o 1 ( t 'Ykgt-k- E f3JXt-J) 
k-1 j~l 

is the best linear predictor of xt in terms of the past XT, T < t, since the error 

xt- X/= f3o 1'Yogt 

is orthogonal to Xr, r < t. However, it is not simply the best linear predictor 
of xt in terms of the past. It is the best predictor of xt in terms of the past in 
the sense of minimizing mean square error of prediction since X1 -- X/ is 
independent of L 2(Xr, r ~ t - 1). If the minimum phase condition is not 
satisfied, the best predictor may no longer be linear. A simple example illus­
trating this is given by the autoreb>Tessive system 

xt - 2x1-1 = --17~ 
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with the TJ/S independent and 

Then 

1Jt = ( ~ with probability ~, 

with probability ~. 

~ 1 
XI = I: 2'' 1Jt+h. 

"c-. 1 

The best predictor of X 1 in terms of the past is 

X/ = 2 X 1 _ 1 mod 1 

and the prediction error is zero. 
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LEMMA. Let {X1} be a non-Gaussian linear process. Assume that the 
generating independent random variables /;1 have finite moments up to order 
k( > 2) with the kth cumulant 1-L" * 0. Further let 

I: Iiiia) < 00 

with a( e ; A) of· 0 for all A. The function a( e -;A) can then be identified in 
terms of observations on ( X1 ) alone up to the undetermined integer a in a 
factor exp(ia A) and sign of a( 1) = I: a.i. 

The cumulant spectral density of order k of the process X 1 1s 
g,,<A 1, ••• , A11 _ 1) [see (7.4)]. Now 

Set 

{ 
. a( 1) } 

h (A) = arg a ( e 'A) I a ( 1) I . 

Then 

since 

h( -A)= -h(A). 

Also 

h ' ( 0) - h '(A) = lim { h (A) + ( k - 2) h ( il) - h (A + ( k - 2) il) }{ ( k - 2) il }- 1 . 
:'.--->0 
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Notice that 

h(A) = {'{h'(u)- h'(O)} du + cA = h 1(A) + cA, 
0 

where c = h'(O). Knowledge of the kth order cumulant spectral density gk 
implies knowledge of h 1(A). The a:/s are real and so h(rr) = arr with a an 
integer. If h 1(rr)/rr = o, then c =a- o. a cannot be determined without 
additional assumptions. A change in a corresponds to reindexing the ~/s. The 
sign of a:(1) cannot be resolved since multiplying the a_/s and ~/s by -1 does 
not change the process X 1• 

Of course, under an assumption like that of an ARMA process, a is 
specified. Notice that the result above suggests the relevance of the estimation 
of both the spectral density g and the k th order cumulant spectral density gk 
in the estimation of the function a:(e-iA). The estimation of g is useful in 
resolving the modulus of a:(e--iA) and that of gk in determining the phase of 
a:(e iA) up to the undetermined integer a and sign spoken of above. 

There is a clear motivation for a result describing the asymptotic distribu­
tion of a class of spectral density estimates and we shall give one making use of 
the central limit theorem for strongly mixing triangular sequences described 
earlier. Assume that the process Xk has an absolutely summable covariance 
sequence 

Covariance estimates 

I: hi < 00 • 

k 

1 n-k 
(nl--" X X 

rk - n L., J J +"' 
j ~ 1 

k ~ 0, 

with r{_!_'1 = rk"l. The spectral density 

and we shall consider estimates of the form 

1 n -1 

f (A) = ------ " r("lw<nl cos kA 
n 2 L., h k 

1Tk---n+l 

with weights 

w~"l=a(kbn), a(O)=l. 

The function a(x) 1s assumed to be continuous at zero, bounded and 
symmetric, 

a(x) =a( -x). 

Under these circumstances if b, --> 0, one can show that the estimates are 
asymptotically unbiased. 
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LEMMA. Suppose 

1 
h( ) " h iku u = 2 7T '-' "e 

Also let a(x) be piecewise continuous, continuous at 0 with a(O) = 1, symmet­
ric as well as a(x) = O(lxl (l/'2)-c) for some F > 0 as lxl ~ oo. Given 

1 w ( u) = -" w(n)e-ihu 
n 27T 4.... II • 

with w~' l = a(kb, ), we have 

b,{'" W"2 (u + A)g(u) du ~ g(A) jW 2(u) du 
-·TT 

as b, ~ 0, where 

Also 

J" W,,( u + A) W,,( u + J.L) g( u) du = o( bn 1) 
-·TT 

as b, -~ 0, if,.\ -=!=- J.L, lA - J.LI < 27T. 

The technical lemma above is useful in determining asymptotic behavior of 
the covariance properties of spectral estimates at different frequencies. The 
argument for the lemma can be carried through first for step functions a(·) 
with finite support and then using an approximation argument. 

We wish to obtain the following result. 

THEOREM. Let X= {X,} be a strictly stationary strongly mrxmg process 
with EX1 = 0. Let the cumulant functions o{ X up to order 8 be absolutely 
summable. Let the weights w);' l be given by a function a(·) that is piecewise 
continuous, continuous at 0 with a(O) = 1, a(u) =a( -u) and such that xa(x) 
is bounded. Then [{,(A) - Ef,(A)](nb") 112 is asymptotically normally dis­
tributed with mean zero and variance 

where 

7J(A)={~ if A = k 7T, k integer, 
otherwise. 

If we consider jointly spectral estimates at distinct frequencies in [0, 7T ], the 
centered and normalized estimates are asymptotically independent and normal 
with mean zero and variances given above with {(A) computed at the appropri­
ate frequencies ;\. 
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First consider a(·) with finite support. The support is taken to be [ -1, 1] for 
convenience but the argument is the same for any interval. We wish to first 
show one can replace fn(A) by 

1 c(n) 1 n 

f (A) = --- L - L x,xj+kw),n) cos kA 
n 27T n . 

k- -c(n) J-1 

with c(n) = b(n)- 1• Now 

with 

But 

n 

27Tnfn(A) = L YJ"l 
u .c 1 

c(n) 

YJn)= L xuxu+kw~'lcovkA. 
k--dn) 

with the right side of the previous inequality less than 

1 c(n) n n 

~ I: I: 1: {lrj-j'rj-j'+k-"'1 
7T n k,k'~lj-n-kj'~n-k' 

1 c(n) 

(7.9) :s; ~ L L min( k', k ){lr .. llrs+k'-/,1 
7T n k,k'~l s 

where r<4l denotes the fourth order cumulant function. Conditions assumed 
relative to the weight w~nl and the function a(·) imply bounded weights and 

for all k and some constant L. Absolute summability of cumulants of second 
and fourth order together with (7.9) implies that 

(7.10) 
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This is of smaller order of magnitude than cr 2( {(A)). Now 

m c(n) 

I: I: {r~~. u'ru +k --u· .. ),' + ru . . , +h'r,._u -h 
u, u' ~ 1 k, II'-- - c( n) 

+r (4) } k' ,111 (n)(n) 
k,u'-··u,u'-u+h' COS A COS R AWk Wk' 

= (1) + (2) + (3), 
where m = m(n) ~ n with b,~ 1 = o(m(n)) as n ~ oo. First 

Also 

rr W,,(u)W,(u + u) du -r. . - 1 ~ 0 

Jr. W,2 (u) du 
-rr 

as m = m(n) ~ oo for each A> 0 because c(n) = b, 1 = o(m(n)). One can 
show that 

(1) = 2rrm(l + o(1)) J" rc,s)I~W,,(,B- A)+ tW,,(,B + A)l 2 d,B. 
-7T 

The lemma implies 

( 7.11) (1) = rrm(1 + 77(A) + o(1)) f 2 (A) Jrr W,2 (u) du. 
-·· rr 

One can show that term (2) asymptotically has the same behavior. Since 

l(3)l~m L h\~~'·"·1, 
h, s, k' 

it is of smaller order than (7.11). It is clear that 

rT W,2 (u) du = (1 + o(1))b,~ 1 jW 2(u) du. 
-rr 

Notice that cr 2( /~,(/..)) and cr 2( {,,(A)) have the same asymptotic behavior as 
n ~ oo by (7.10). Because of the summability of second and fourth order 
cumulants, if m(n) = o(n) and k(n)m(n) = n, then 

k(n)h,(m(n)) ~ h,(n). 
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In order to apply the central limit theorem we have to show that 

(J"-4C~l Y,2"))E/u~l (YJ"l- EY,)(n))/4 = 0(1). 

But 

El E (YJnl- EYJ"l)/
4 

= u 4( E YJ"l) + c~m([ ¥;;">). 
u=l u~l 

We use the multilinear character of the cumulant function and observe that 

cum 4 (Y(nl y(n) y(nl y(nl) 
u 1 ' u 2 ' u;~ ' u 4 

(7.12) 
= ( n w~l) cos k;A) L cum( X,, s E Vr) ... (cum X s E v ) 

i'----1 I V ' S' p ' 

where the sum is over all indecomposable partitions of the table 

We just analyze one of the many indecomposable partitions consisting entirely 
of pairs. It leads to the sum 

Let a= u 1 - u 2 , b = u 3 - u 4 , a= k 3 - k 1, {3 = k 4 - k 2 . The expression 1s 
bounded by 

L Ira I hllru:1-u 1 +) lru:1-u 1 +h+a+!lllw);:lllw),~~) lw);~>llw~:~l 
a, b, U 1 , U:i• k 1 , h2 , Cl', {3 

Sum over k 1, h2 first to get the bound 

b,;2 u 1 +O'IIru:~-u. 1 ---b+cr+f31. 

Now sum over a, {3 to get 

b 2 " 
11 '--

a, b, u 1 , u:i 

The sum over a, b and then u 1, u 3 yields the bound 

&;;2m2. 
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This is of the order of magnitude of 

I.T-4( f Y,,(n)). 
u 1 

The sums over all other terms stemming from (7.12) gives us something of this 
order of magnitude or less. 

There is a large literature concerned with parameter estimation for 
Gaussian sequences [see Brockwell and Davis (1987)]. For convenience we 
consider the case of a stationary Gaussian autoregressive scheme ( EX1 = 
E~1 = 0) 

(7.1:3) 
p 

Xt = L a;X,_; + ~~ 
i -l 

with independent identically distributed residuals ~1 • Typically remarks can be 
made for moving averages or ARMA schemes that are similar to those that 
follow. To avoid nonidentifiability m estimating the coefficients a;, one as­
sumes that the polynomial 

p 

a(z) = 1- La z.i 
.I 

.i - 1 

has all its zeros with modulus greater than one (the minimum phase condition). 
This assumption need not be made if the process X 1 is non-Gaussian since the 
nonidentifiability does not arise then. If one minimizes 

71 

t 0 p + 1 

estimates of a 1, ... , aP, cr 2 (a 1, ... , aP, s 2 ) are obtained which satisfy 
71 p n 

E a i E xt i x, _ j = o, j = 1, ... ,p, 

(7.14) 
t-p+1 i~1 t~p+-1 

1 n 2 

s2 =- L (Xt- aiXt-1- ... - apXt P) 
n t p+ 1 

and are n -t;2 consistent. Let (T 2 be the variance of the ~/s. The random 
variables n 112(a 1 -a), i = 1, ... , p, are asymptotically normal with mean 
zero and covariance 

(T 2R- 1 . 

The p X p matrix R is the covariance matrix of X 1, ... , XP. Also n 112(s 2 - u 2 ) 

is asymptotically uncorrelated with the a;'s and is asymptotically normal with 
mean zero and variance J.L 4 = E~14 • 

If the process X 1 of(7.1:3) is non-Gaussian with the~~ process orthonormal, 
strongly mixing in an appropriate sense and satisfying suitable moment condi­
tions, one could still consider the same estimates of the coefficients a 1 in the 
minimum phase context. The same asymptotic results would hold for the 
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estimates a; of a; [see Rosenblatt (1985)]. However, if one had more informa­
tion about the distribution, for example, of the g/s, one would expect to be able 
to get even better estimates. 

Some interesting results of Kreiss (1987) that indicate how one can obtain 
asymptotically optimal estimates of the a;'s via an adaptive procedure making 
use of probability density estimates will be mentioned. Assume that the 
autoregressive scheme is still minimum phase and that the g/s are indepen­
dent with a density f > 0 that is absolutely continuous and with finite Fisher 
information 

I( f) = J ( f/{) 2 fdx < oo. 

First a procedure is considered assuming that the density f is known. Let 

1 n 

A,= In j'f:l rj;(gJxu- 1), 

where 

'P = -f"/f, g = X - a Tx (j - 1) 
.I .I 

and 

a= (a 1, ... ,aP), X(s) = (X8 , ... ,Xs-p+l). 

The basic idea is to get an initial estimate of the a ;'s that is n 112 consistent 
(and discrete). The estimate is then adjusted so as to get one that is asymptoti­
cally optimal. If such an estimate a of a is used to compute estimates of gi 
and A,, we shall refer to them as {;(a) and A,(a). Such an initial estimate is 
provided by the solution a of the system (7.14). Kreiss then shows that the 
estimate 

R-1 
~ _ + -1/2 A ( ) a- a n I( f) 1.1, a 

is asymptotically optimal as n -~ oo. n 112(a --a) is asymptotically normal as 
n ~ oo with mean zero and covariance matrix R -l 1 I( f). To get an adaptive 
procedure, it is clear that one needs an estimate of the unknown density f(x ). 
Kreiss makes use of the initial In consistent estimate of the a;' s to estimate 
the residuals f,1 and in terms of these gets an appropriate estimate of the 
unknown f that is adequate for his purposes. The upgrading of a In 
consistent estimate to one that is asymptotically optimal is a bit reminiscent 
qualitatively of the discussion in Lehmann [(1983), page 422] in another 
context. 

The beginning of an analysis of a nonminimum phase non-Gaussian optimal 
estimate of coefficients for finite parameters schemes can be seen in Breidt, 
Davis, Lii and Rosenblatt (1990). 

From the earlier discussion of the transfer function a(e -iA) when observing 
a non-Gaussian linear process, it is clear that if the cumulant p, s for some 
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s > 2 is nonzero, one would be able to e::;timate a(e- iA) up to an indeterminate 
sign ± 1 and a phase factor exp(iaA) (with a integral) by the lemma. This 
would require estimating the spectral density g(A) and the sth order cumu­
lant spectral density g_JA. 1 , ••• , As_). Notice that if one only observes the 
linear process X1 and estimates a(e- iA) (assumed nonzero), it is then possible 
to estimate the ~k process and so deconvolve the X1 process. Deconvolution 
problems like this arise in a geophysical context. The constants a 1 are consid­
ered descriptive of a disturbance passing through a layered medium in a model 
for types of seismic exploration. The random values ~J are thought of as the 
reflectivity of slabs in the layered medium. At times observed data is definitely 
non-Gaussian and one wishes to deconvolve the data X 1 , estimating the a/s 
and {/s. A discussion of some of these questions can be found in Donoho 
(1981) and Wiggins (1978). A detailed analysis of the deconvolution and 
estimation of the transfer function is given in Lii and Rosenblatt (1982). This 
analysis requires estimation of a third or fourth order cumulant spectral 
density for the sequence X 1• Estimates of such cumulant spectral densities 
using the fast Fourier transform are considered in Brillinger and Rosenblatt 
(1967). The results on asymptotic normality as remarked in Lecture 5 require 
existence of all moments and an infinite number of cumulant summability 
conditions. They also make use of values of smoothed versions of 
periodogram-like functions (computed from the finite Fourier transform) at 
values of the arguments of the form 2rrsjN with s integral and N the sample 
size. The discussion of spectral estimates (second order) given earlier required 
existence of moments up to order 8 only with a finite number of corresponding 
cumulant summability conditions. Corresponding results for higher order 
cumulant spectral estimates can be found in Lii and Rosenblatt (1990). 

We also note that higher order cumulant spectra have been used in the 
analysis of a number of nonlinear problems. Third order spectra have been 
used in the model of homogeneous turbulence [see Batchelor (1953) and Lii, 
Rosenblatt and VanAtta (1976)] as a gauge to measure the nonlinear transfer 
of energy between wave number vectors in a harmonic analysis of a turbulent 
velocity field. 
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