
Chapter 5

Dependent Dirichlet Processes and Other

Extensions

5.1. Dependent Extensions of the DP

Many applications involve families of probability models G = {Gx : x ∈ X}. For
example, Gx could be the distribution of the time to progression for a patient
with baseline covariates x. In that case, a prior p(Gx : x ∈ X) would provide
a nonparametric alternative to the popular but restrictive proportional hazards
model. More generally, a nonparametric prior p(G) can be used to define a fully
non-parametric regression p(y | x) = Gx(y). Another typical applications of prior
models p(G) is in the construction of mixed effects models, where p(G) is used to
define a random effects distribution Gx(·) for patients with covariates x.

Most popular prior models for G in the recent literature are based on extensions
of the Dirichlet process (DP) model discussed in Chapter 3, which are collectively
known as dependent Dirichlet process (DDP) models. We first consider the simplest
case, with finitely many dependent RPMs G = {Gj , j = 1, . . . , J} that are judged
to be exchangeable, i.e., the prior model p(G) should be invariant with respect to
any permutation of the indices. This case could arise, for example, as a prior model
for unknown random effects distributions Gj in related studies, j = 1, . . . , J . To
keep the upcoming discussion specific we will continue to refer to this motivating
example. In words, we wish to define a prior probability model p(G) that allows
us to borrow strength across the J studies. Patients under study j1 should inform
inference about patients enrolled in another related study j2 �= j1. Two extreme
modeling choices would be (i) to pool all patients and assume one common random
effects distribution, or (ii) to assume J distinct random effects distributions with
independent priors. Formally the earlier choice assumes Gj ≡ G, j = 1, . . . , J
with a prior p(G). The latter assumes Gj ∼ p(Gj), independently, j = 1, . . . , J .
We refer to the two choices as extremes since the first choice implies maximum
borrowing of strengths, and the other choice implies no borrowing of strength. In
most applications, the desired level of borrowing strength is somewhere in-between
these two extremes.

Figure 5.1 illustrates the two modeling approaches. Note that in Figure 5.1 we
added a hyperparameter η to index the prior model p(Gj | η) and p(G | η), which
was implicitly assumed fixed. The use of a random hyperparameter η allows for
some borrowing of strength even in the case of conditionally independent p(Gj | η).
Learning across studies can happen through learning about the hyperparameter η.
This is exactly the construction in Cifarelli and Regazzini (1978), which was used in,
among others, Muliere and Petrone (1993) and Mira and Petrone (1996). However,
the nature of the learning across studies is determined by the parametric form of η.
This is illustrated in Figure 5.2. Assume Gj ∼ DP(α,G�

η), independently, j = 1, 2
and a base measure G�

η = N(m,B) with unknown hyperparameter η = (m,B).
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Fig 5.1. One common RPM G (panel a) versus distinct RPMs Gj , independent across studies
(panel b).

In this case, prediction for a future study G3 can not possibly learn about the
multimodality of G1 and G2, beyond general location and orientation.

A natural next step in the model elaboration would now be to consider more
complex choices for the hyperparameter η. Ideally, when G� = η is an RPM itself,
then we could potentially achieve arbitrary learning across the studies. This is
exactly the construction of the hierarchical and nested DPs. See §5.4.2 and §5.4.3.
However, these approaches are not suitable to model more general types of data
such as spatial and/or temporal data. In §5.2 we introduce a still more general and
widely used extensions of the DP that achieves the desired borrowing of strength
while preserving the computational advantages of the DP.

5.2. Dependent DP (DDP)

MacEachern (1999) introduced what has meanwhile become by far the most com-
monly used prior for dependent RPMs, p(Gx : x ∈ X). The model is known as the
dependent DP (DDP). The beauty of the model is the elegance and simplicity of
the construction. Recall the stick breaking representation of a DP random measure
G ∼ DP(M,G�), where

G(·) =
∞∑
h=1

whδmh
(·),

mh ∼ G�, independently across h and wh = vh
∏

g<h(1−vh) with vh ∼ Beta(1,M),
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Fig 5.2. Gj ∼ DP(M,G�) with common G� = N(m,B). Learning across studies is restricted to
the parametric form of η.
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i.i.d. The DDP uses the same construction for each Gx,

(5.1) Gx(·) =
∞∑
h=1

whδmx,h(·).

Here mh = {mx,h : x ∈ X} are independent realizations from a stochastic process
on X (such as a Gaussian process), and the whs are constructed as before. Keeping
mx,h independent across h ensures that each Gx marginally follows a DP prior. The
simple, yet powerful idea of the DDP construction is to introduce dependence over
x, i.e., to link the Gx through dependent locations of the point masses. Implicit in
the notation used in (5.1) is the definition of weights wh that are common across
x. This variation of the DDP model is sometimes referred to as “common weight”
(or “single p”) DDP. However, the proposal in MacEachern (1999) is more general
than (5.1), allowing also varying weights wx,h. This more general construction is
used, for example, in the time series DDP proposed in Nieto-Barajas et al. (2008)
who define a DDP prior for a time series {Gt, t = 1, . . . , T} of random probability
measures by introducing dependence of the weights wt,h (see §5.5.2).

Griffin and Steel (2006) define another interesting variation of the basic DDP
by keeping both sets of parameters, locations and weights, unchanged across x.
Instead they use permutations of how the weights are matched with locations.
The permutations change with x. One advantage of such models is the fact that
the support of Gx remains constant over x, a feature that can be important for
extrapolation beyond the observed data.

5.3. ANOVA DDP

De Iorio et al. (2004) and De Iorio et al. (2009) define the ANOVA DDP as a varia-
tion of the DDP that is particularly useful for multivariate categorical covariates x.
For illustration, assume x = (u, v) for two categorical factors u and v. For example
Gu,v could be the random effects distribution for patients who are treated in related
multi-arm clinical studies. Here u could be indexing related studies and v could be
the different treatment arms.

The simplest form of dependence for a set {mx,h} of random variables indexed
by two categorical covariates x = (u, v) is an ANOVA model with main effects for
u and v. This is exactly the model used in De Iorio et al. (2004). In particular, we
assume mx,h = μh + αh,u + βh,v for u ∈ {0, . . . , U} and v ∈ {0, . . . , V }, and assign
normal priors on μh, αh,u and βh,v, with αh,0 = βh,v = 0 for identifiability. Also, let
θh = (μh, αh,u, βh,v, u = 1, . . . , U, v = 1, . . . , V )′ denote the column vector of all
ANOVA effects. Finally, let G�(θh) denote the joint normal prior on the ANOVA
effects. We write {Gx, x ∈ X} ∼ ANOVA DDP(G�,M).

Implementation becomes particularly easy when the ANOVA DDP model is used
in a DPM model, i.e., the random Gx is convoluted with an additional kernel, for
example

yi | mi ∼ N(mi, s
2), mi | xi = x,G ∼ Gx,

with {Gx, x ∈ X} ∼ ANOVA DDP(G�,M). In this case, inference can be reduced
to a standard DP mixture of normal model. To do so, let di denote a design vector
that selects the relevant ANOVA factors corresponding to xi for observation yi. We
can equivalently write

yi | θi ∼ N(d′
iθi, s

2), θi | F ∼ F,(5.2)
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Fig 5.3. Posterior estimated survival functions E(Sx | data), arranged by sex and rural vs. urban
birth place. The three curves in each panel correspond to the three birth cohorts.

with F ∼ DP(F �,M), a DP mixture of normal linear models. The mixing measure
G in the DP mixture is a probability model for complete vectors of ANOVA fac-
tors, F =

∑
h whδθh . Inference can therefore proceed like in a standard DP mixture

model. Although the description implicitly assumed univariate outcomes yi, ex-
tending the model to multivariate outcomes is straightforward using corresponding
multivariate ANOVA models for mx,h.

Example 13 (ANOVA DDP) De Iorio et al. (2009) use an ANOVA DDP prior
to implement non-parametric survival regression with multiple covariates. We apply
their model to analyze data on childhood mortality in Columbia (Somoza, 1980).
The dataset includes observations for 1437 children (using only the oldest child for
each mother) and covariates including gender (binary), birth cohort (categorical
with 3 levels), and an indicator for the child being born in a rural area (binary).
The dataset includes extensive censoring, with 87% of the children alive at the time
of observation.

Let Sx(t) denote the probability of a child with covariates x surviving beyond
time t. The ANOVA DDP defines a prior probability model on G = {Sx; x ∈ X}.
Figure 5.3 shows point estimates of the survival functions for all combinations of
gender, rural and birth cohort as E(Sx | data). However, posterior inference under
the nonparametric ANOVA DDP model delivers more than point estimates. Figure
5.4 shows pointwise central 95% posterior probability intervals for Sx(t).

5.4. Multilevel Modeling of Exchangeable RPMs

5.4.1. Weighted Mixtures of DPs

We consider now the problem of modeling exchangeable collections of RPMs, i.e.,
G = {Gj : j = 1, . . . , n}, where the prior p(G) is invariant with respect to the order
in which the Gjs are included in the model. The data are (yi,j), where j = 1, . . . J
denotes the study under which the observations were generated and i = 1, . . . , Ij
indexes observations within study j.
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Fig 5.4. Posterior estimated survival functions (solid lines) with 95% credible interval (dotted
lines). All three panels represent children belonging to the third birth cohort. The labels indicate
the levels of the other two covariates.

Müller et al. (2004) and more recently Griffin et al. (2010) and Kolossiatis et al.
(2012) use a construction based on the superposition of random measures. By shar-
ing part of the probability mass across different studies the construction creates the
desired dependence. Figure 5.5 illustrates the idea.

In Müller et al. (2004) each of the RPMs Gj is defined as a combination of a
common F0 and a study-specific Fj . Let

Gj | ε, Fj , F0 = εF0 + (1− ε)Fj , F0 ∼ (M,H), Fj ∼ DP(M,H),(5.3)

with yi,j ∼
∫
p(yi,j | θ)Gj(dθ). The model is completed with a prior on ε,

p(ε) = π0δ0 + π1δ1 + (1− π0 − π1)Beta(a, b),

where Beta(x; a, b) denotes a beta distributed random variable x with parameters
(a, b). Note that this prior on ε includes point masses on 0 and 1, allowing for the
two extreme cases of common and conditionally independent Gj across studies.

Example 14 (Dependent RPMs) Müller et al. (2004) use the hierarchical model
(5.3) as a prior probability model for random effects distributions in two related stud-
ies. The data are log white blood cell counts over time for breast cancer patients in
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Fig 5.6. Some typical patients. The data show yijk for 6 arbitrarily selected patients from studies
j = 1 and j = 2. The triangles are the observed WBC. The solid line shows the posterior fitted
mean curve, and the dotted lines show 95% central HPD intervals for the mean curve.

two related studies. Figure 5.6 shows the data for some selected patients from the
two studies.

The model includes a non-linear regression mean curve f(t; θji) for blood count
data for patient i, in study j, i = 1, . . . , ni and j = 1, 2. The mean curve is indexed
with patient-specific random effects θij. The random effects θij are 9-dimensional
and are assumed to arise from a study-specific random effects distribution Gj. The
model is completed with the hierarchical prior in (5.3) for {G1, G2, G3}, including
a future third study j = 3. Figure 5.7 shows posterior inference for the unknown
distributions F0, F1 and G1 as bivariate scatterplots of random draws from the
posterior means E(F0 | Data), E(F1 | Data) and E(G1 | Data). Figure 5.8 shows
posterior predictive inference for a patient from a future third study j = 3.

Note that, in equation (5.3), the marginal prior for Gj is constructed as a sum of
two RPMs that follow DP priors. Hence, the implied marginal prior p(Gj) is not in
general a DP itself. For many applications this might not be a concern. If desired,
however, it is possible to construct the combination of the two RPMs F0 and Fj

such that the implied marginal prior p(Gj) is again in the same family as p(Fj);
such a model is developed in Kolossiatis et al. (2012). In particular, assuming a DP
prior for p(Fj) it is possible to choose p(ε) such that p(Gj) is a DP prior again.

The construction is easiest described by using a representation of the DP prior
as a normalized gamma process. Let μ ∼ GaP(M G�) denote a gamma process, i.e.,
μ(B) ∼ Gamma(M G�(B), 1) for any measurable set B. Without loss of generality
assume J = 2. Kolossiatis et al. (2012) use independent gamma processes μj ∼
GaP(M G�), j = 0, 1, . . . , 2. Then

Fj(B) =
μj(B)

μj(X)
, j = 0, 1, 2
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F0 F1

G1 = ε F0 + (1− ε) F1

Fig 5.7. Posterior estimated distributions E(F0 | Data), E(F1 | Data) and E(G1 | Data).

(a) Estimated WBC (b) Pr{WBC > 1000 } (c) E(T14 | y)
profile on day 14 T14 = days WBC below 1000.

Fig 5.8. Posterior predictive inference for a hypothetical future patient in a future study j = 3.
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is a DP random probability. If we define the prior for ε as

ε = μ0(X)/ (μ0(X) + μ1(X)) ,

then

Gj(B) = εF0(B) + (1− ε)F1(B) =
μ0(B) + μ1(B)

μ0(X) + μ1(X)

follows marginally a DP prior again since the sum of the two gamma processes μ1

and μ2 is a gamma process again, μ0 + μ1 ∼ GaP ((M0 +M1)G
�).

5.4.2. Hierarchical DP

Consider conditionally independent DP priors for each Gj ∈ G = {Gj ; j =
1, . . . , J}, i.e., Gj ∼ DP(M,G0), independently. Recall the discussion in §5.1. The
simplest way to borrow strength across Gjs is through the base measure G0. How-
ever, if G0 is modeled parametrically, then the specific form of that parametric
family determines and limits how information can be shared across the Gjs. For
example, if G0 = N(φ, 0) is indexed with a location parameter φ then borrowing
strength across the Gj can only be through that location parameter. To avoid this
limitation we could instead use a nonparametric prior for G0, e.g., G0 ∼ DP(B,H).
This is exactly the construction of the hierarchical Dirichlet process (HDP) of Teh
et al. (2006). An early version of the same model appears in Escobar and Tomlinson
(1999).

As a DP random measure, G0 is discrete G0(·) =
∑∞

h=1 wlδ˜θh(·). Any θ drawn

from G0 is necessarily equal to one of the θ̃h. In other words, the atoms of Gj agree
with those of G0. Hence, Gj can be written as

Gj(·) =
∞∑
h=1


j,hδ˜θh(·),

where p{(
j1, 
j2, . . . , 
jJ) | (w1, w2, . . . , wJ)} = Dir(w1, w2, . . . , wJ) for any fi-
nite J . In other words, all the Gjs use the same set of atoms but assign different
(albeit related) weights to them (see Figure 5.9).

One implication of sharing the same atoms θ̃h across all Gjs is that HDP mixture
(HDPM) models allow co-clustering across different groups. Similar to (3.9) the
HDPM can be written as a hierarchical model

yi,j | θi,j ∼ p(yi,j | θi,j), θi,j | Gj ∼ Gj , Gj | G0 ∼ DP(M,G0), G0 ∼ DP(B,H),

where j = 1, . . . , J and i = 1, . . . , Ij . Let {θ��r ; r = 1, . . . , k} denote the unique
values among all θij , j = 1, . . . , J , i = 1, . . . , Ij . Using ties to define clusters Sr =
{(ij) : θij = θ��r } we get a random partition model where yi,j and yi′,j′ can be
assigned to the same cluster, even if they belong to different studies j �= j′.

An appealing feature of the HDP is that it inherits the simple form of the predic-
tive probability distribution from the DP prior. Conditional on G0, the predictive
probability distribution for θij ∼ Gj is unchanged from (3.3). Let kji denote the

number of distinct values {θ�hj , h = 1, . . . , kji } among the draws {θ1,j , . . . , θi−1,j}
and nj

i−1,h =
∑i−1

�=1 I(θ�j = θ�hj). Then

θi,j | θi−1,j , . . . , θ1,j ∼
kj
i∑

h=1

nj
i−1,h

M + i− 1
δθ�

h,j
+

M

M + i− 1
G0, 1 ≤ i ≤ Ij ,
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Fig 5.9. Stylized representation of the hierarchical Dirichlet process. For each distribution, the
location of the vertical lines on the horizontal axis corresponds to the value of the atoms (˜θh),
while the height corresponds to the weight associated with it. The group-specific distributions
G1, . . . , GJ are conditionally independent draws from a Dirichlet process with baseline measure
G0, so the atoms are drawn from it. But, since the baseline measure G0 is also drawn from a DP,
it is discrete, and the atoms of the Gjs have to be identical to those originally drawn to construct
G0.

where the unique values θ�hj in turn are draws from G0. We have a second instance
of the Pólya urn (3.3) for a sequence of draws θ�hj ∼ G0. A minor notational
complication arises by the double index hj . Index the θ�hj in sequence by running the
first index h faster than the second index j, i.e., first we list all unique values among
{θi1, i = 1, . . . , I1}, then all additional unique values among {θi2, i = 1, . . . , I2}
that have not yet been recorded, etc. Recall that θ��r , r = 1, . . . , k�, are the unique
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values among the θ�hj . Let mh,j,r be the number of elements among {θ�11, . . . , θ�h−1,j}
equal to θ��r , and let Rh,j = h+

∑
j′<j kj′ . We get the predictive probability function

θ�h,j | θ�h−1,j , . . . , θ
�
1,1 ∼

k�
h−1,j∑
r=1

mh−1,j,r

B +Rh−1,j − 1
δθ��

r
+

B

B +Rh−1,j − 1
H,

where k�h,j is the number of unique values among θ�11, . . . , θ
�
h−1,j , θ

�
hj . The two Pólya

urns can be combined to define a collapsed Gibbs sampler similar to §3.3.1, for
details, see Teh et al. (2006).

Example 15 (Modeling documents using bag of words models) One of the
most illuminating applications of the hierarchical Dirichlet process mixture model
is in modeling a collection of documents (corpora) using bag-of-words models.

Bag-of-words models ignore the order in which observations appear in the text.
Individual words are treated as categorical data with a document-specific distribu-
tion. Let yi,j ∈ {1, . . . , D} be a categorical variable such that yi,j = d indicates
that the i-th word in the j-th document is the d-th word in a dictionary of size D.
In the simplest bag-of-words model, words from document j are assumed i.i.d. with
p(yi,j = d | θj) = θj,d. Information is shared across documents through a random-
effects distribution on the θjs, so that θj | G ∼ G. For example, for a nonparametric
specification we could set G ∼ DP(M,G0) with G0 being a (finite) Dirichlet dis-
tribution. This type of models can be considered “single topic” models because all
words within a document come from the same probability distribution over words.

A natural extension of this idea is to treat each document as being composed of
multiple topics, with topics being shared across documents. For example, a docu-
ment on the effect of singing on child health might deal with the topics “music”
(which places high probability on words such as “song,” “melody” and “piano”)
and “medicine” (which emphasizes words such as “health,” “symptom” and “treat-
ment”), while another document about the entertainment options available in San
Francisco this weekend might involve again the topic “music,” along with the topic
“outdoor activities” (focusing on words such as “hike,” “ocean” and “sun”). In this
extended model, topics corresponds to a different probability distribution over the
dictionary, and words are still independently drawn from one of the multiple topics
in the document. Such a model can be implemented using a HPDM with sampling
model

p(yi,j = d | θi,j) = θi,j,d

and HPDM prior

θi,j | Gj ∼ Gj , Gj | G0 ∼ DP(M,G0), G0 ∼ DP(B,Dir(η)).

Here G0 =
∑

whθ̃h is a distribution of multinomial probability vectors (over the

dictionary) θ̃h. Each θ̃h corresponds to a topic. Each Gj =
∑


jhθ̃h is a mixture
of topic-specific multinomial probabilities and is the distribution over words for doc-
ument j. The weights 
jh are the relative weights of the topics. To observe a word
in document j we first select a topic by drawing θij ∼ Gj, and then an actual word
with p(yij = d | θij) = θijd.

5.4.3. Nested DP

In the HPD, information is shared across the distributions G1, . . . , GJ by shar-
ing the atoms of the stick-breaking construction. This allows us to cluster draws
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across groups, but tells us nothing about how the distributions themselves should
be grouped together. There are no ties, p(Gj = G�) = 0 for j �= �. The nested
Dirichlet process (NDP), first introduced in Rodŕıguez et al. (2008), is an alterna-
tive construction for the collection G1, . . . , GJ which does allow for clustering of
the groups as well as clustering of the observations themselves.

Like the HDP, the NDP is a hierarchical model involving two Dirichlet processes,

Gj | Q ∼ Q, Q ∼ DP(M,DP(B,G0)).

Hence, in the NDP the baseline measure for the first Dirichlet process is given by
the second Dirichlet process rather than by a random distribution drawn from it.
The random probability measure Q is a distribution on distributions. Alternatively,
we could write NDP in terms of a stick-breaking construction,

Gj | Q ∼ Q, Q =

∞∑
k=1

wkδ ˜Gk
,

where wk = zk
∏

h<k(1 − zh), zk ∼ Beta(1,M), and G̃k ∼ DP(B,G0). Hence the
first level of the hierarchy generates a distribution on RPMs with point masses cor-
responding to the random distributions G̃1, G̃2, . . .. These random distributions are
then specified nonparametrically through draws from a common Dirichlet process,
so that G̃k =

∑∞
l=1 
k,lδ˜θk,l

, with 
k,l = vk,l
∏

h<l(1− vk,l), vk,l ∼ Beta(1, B), and

θ̃k,l ∼ G0 independently for every k and l.
Writing the NPD in terms of its stick-breaking construction highlights the nature

of the NDP as two-level clustering. First, the model clusters similar distributions
together, by sampling from Gj ∼ Q =

∑
wkδ ˜Gk

. Then the model clusters observa-
tions only across distributions that have already been clustered together.

An alternative characterization for the NDP is as a model for random partitions
of a set of random distributions. To see this consider the partition ρ = {S1, . . . , SK}
of {G1, . . . , GJ}, where Sk = {j : Gj = G�

k}, so that the G�
ks denote a set of distinct

random random measures. Then, the definition for Q implies that

p(ρ) =
MK(M − 1)!

∏K
k=1(nk − 1)!

(M + J − 1)K!
,

where nk denotes the umber of distributions in the set Sk. This is (3.5), with an
additional K! in the denominator to reflect the lack of ordering of the clusters in
ρ. From there we can write

(5.4) p(G1, . . . , GJ) = p(G�
1, . . . , G

�
K | ρ)p(ρ)

=

{
K∏

k=1

DP(G�
k | B,G0)

}{
MK(M − 1)!

∏K
k=1(nk − 1)!

(M + J − 1)K!

}
.

Finally, since sampling from Gj induces clusters we get two-level clustering.
Computation for NDP mixtures can be easily carried out by replacing the DP

with almost sure truncations as the ones discussed in §3.4 (see Rodŕıguez et al., 2008
for details). Alternatively, we can derive MCMC algorithms that avoid truncating
the process by extending the representation in (5.4). To do so, condition on ρ =
{S1, . . . , SK} and defineK sets of partitions σ1, . . . , σK with σk = {Rk,1, . . . , Rk,Lk

},
such that the k-th set is associated with the observations drawn from the distribu-
tion assigned to Sk. In other words, Rk,l = {θi,j : θi,j = θ�k,l} where θ�k,1, . . . , θ

�
k,Lk
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denotes a set of Lk unique draws from G�
k. Since each G�

k is independently drawn
from a DP, the implied prior on each σk is

p(σk) =
BLk(B − 1)!

∏Lk

l=1(mk,l − 1)!

(B + Īk − 1)Lk!
,

where Īk is the number of observations generated from distributions in group Rk,
and Lk < Īk is the number of clusters associated with them. Hence, the joint
distribution on G1, . . . , GK can be written in terms of ρ, (σk) and (θ�k,l),

p(ρ, (σk), (θ
�
k,l) | y) =

⎧⎨⎩
J∏

j=1

Ij∏
i=1

p(yi,j | θi,j)
⎫⎬⎭

{
K∏

k=1

Lk∏
l=1

p(θ�k,l)

}{
K∏

k=1

p(σk)

}
p(ρ).

MCMC algorithms can be generated by devising proposal distributions that mod-
ify ρ, (σk) and/or (θ

�
k,l). One such proposal distribution is discussed in Müller and

Nieto-Barajas (2008).

Example 16 (Assesing quality of care in US hospitals) The Department of
Health and Human Services makes available to the public a series of (self-reported)
quality of care measures for U.S. hospitals at http://www.hospitalcompare.hhs.gov/.
To illustrate the characteristics of the NPM, we consider a model for one of these
measures (the percentage of patients who received the appropriate initial antibiotic).
The information on hospitals is nested within states, so a NDP mixture is a natural
alternative to identify underperforming/overperforming states, as well as underper-
forming/overperforming hospitals within each group of states. The model clusters
states j into sets of states with matching distribution of hospitals. All hospitals
within each such set of states are then clustered into sets of hospitals with matching
distribution of quality of care measures.

More specifically, let yi,j be the (suitable transformed) quality of care measure-
ment in hospital i = 1, . . . , Ij of state j = 1, . . . , J . Then the model becomes

yi,j | θi,j ∼ N(μi,j , τ
2
i,j), (μi,j , τ

2
i,j) | Gj ∼ Gj , Gj | Q ∼ Q, Q =

∞∑
k=1

wkδ ˜Gk
,

where G̃k ∼ DP
{
B,N(μ | μ0, σ/

2κ0)IGamma(σ2 | ν0, τ20 )
}
.

Figure 5.10 presents the resulting density estimates for four states representative
of the clusters generated by the NDP. Note that the estimates demonstrate slightly
different levels of skewness in addition to different means.

Example 17 (Document clustering in multi-topic models) To help clarify
the differences between the NDP and the HDP, consider an alternative extension
of the bag-of-words model discussed in Example 15, where a nested DP is used to
model Gj, the document-specific topic distribution,

yi,j | θi,j ∼ Multinom(θi,j), θi,j, | Gj ∼ Gj , Gj | Q ∼ Q, Q =

∞∑
k=1

wkδ ˜Gk
,

and G̃k ∼ DP(B,Dir(η)). The structure on Q implies that documents with matching
distributions Gj will be clustered together, something that does not happen under

the HDP model. On the other hand, since the G̃ks are drawn independently, topics
are shared only among documents assigned to a common cluster, but not across
clusters of documents.
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Fig 5.10. Mean predictive density for four states under the NDP model: North Carolina (NC),
Wisconsin (WI), South Dakota (SD) and Oklahoma (OK).

5.5. DP Models for Time Course Data

5.5.1. Dynamic DP

The “single-p” DDP model can be used to construct collections of random distribu-
tions that evolve in discrete time. Consider a setting where at each time t = 1, . . . , T
we collect observations yt,1, . . . , yt,nt

from a model that is written as a convolution
of a normal linear model with a mixing measure Gt on the linear regression param-
eters:

yt,i | θt,i ∼ N(yt,i | xt,iθt,i, σ
2), θt,i | Gt ∼ Gt,

where xt,i is a row vector. To create a flexible model for the mixing distribution we
let

Gt(·) =
∞∑
h=1

whδ˜θt,h ,

and define the atoms sequentially by setting

θ̃0,h ∼ N(m0,C0), θ̃t,h | θ̃t−1,h ∼ N(Btθ̃t−1,h,Wt).(5.5)

If the weights are defined by the stick breaking prior, as in (5.1), then the model

becomes a DDP with point masses mh replaced by the stochastic process θ̃h =
(θ̃th : t = 1, 2, . . .) defined by the Markov model (5.5).
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This type of dynamic DDP was introduced in Rodŕıguez and Ter Horst (2008).
It can be interpreted as a type II multiprocess model, in the sense of West and
Harrison (1997). Since the weights (wh) are independent of t, the model can be
rewritten as a regular DP mixture model where Θi = (θ′0,i, θ

′
1,i, . . . , θ

′
T,i) and

yt,i | θt,i ∼ N(yt,i | xt,iθt,i, σ
2), Θt | G̃ ∼ G̃, G̃ ∼ DP(M, G̃0),

where the baseline measure G̃0 is the multivariate normal distribution induced by
(5.5). Using this representation in terms of a single DPM allows us to create a slight
generalization where we also mix over the observational variance σ2. In that case,

yt,i | θt,i ∼ N(yt,i | xt,iθt,i, σ
2
i ), (Θt, σ

2
i ) | G̃ ∼ G̃, G̃ ∼ DP(M, G̃0),

where G̃0 is defined as

θ̃0 | σ2 ∼ N(m0, σ
2C0), θ̃t | θ̃t−1, σ

2 ∼ N(Btθ̃t−1, σ
2Wt), σ2 ∼ IGamma(ν0, V0).

Another generalization, in which σ2 is constant across components but allowed to
evolve with time, is presented in Rodŕıguez and ter Horst (2010).

As with other DDP models, the representation in terms of a simple DPM also
allows us to employ all the computational tools described in §3.3 to make inferences
on this model. An important consideration, no matter which algorithm is used, is
that efficient sampling for the atoms can be accomplished using Forward-Backward
algorithms (Carter and Kohn, 1994; Frühwirth-Schnatter, 1994).

An appealing feature of this type of dynamic DDP models is their flexibility.
By appropriately choosing the structural parameters xt, Bt and Wt a number of
different evolution patterns can be accommodated, including trends, periodicities
and dynamic regressions.

Example 18 (Autoregressive models for distributions) Consider a mixture
of order-p autoregressive processes where xit = (1, 0, 0, . . . , 0) is a vector of length
p and

Bt =

⎛⎜⎜⎜⎜⎜⎝
φ1 φ2 φ3 · · · φp−1 φp

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · 1 0

⎞⎟⎟⎟⎟⎟⎠
is a p×p matrix. The model is completed by setting a prior on the vector of autore-
gressive coefficients (φ1, . . . , φp). To simplify computation, this can be chosen as a
multivariate Gaussian distribution.

Example 19 (Modeling the evolution of claim distributions) Rodŕıguez
and Ter Horst (2008) use the dynamic DDP to model the value of travel reimburse-
ment claims in a major international development bank between January 2005 and
May 2007. They use a simple random walk model where yt,i ∼ N(yt,i | θt,i, σ2

i ) and

θ̃t | θ̃t−1, σ
2 ∼ N(θ̃t−1, σ

2U). Figure 5.11 shows the smoothed and one-step-ahead
density estimates generated by the model for five months (January to May, 2007).

5.5.2. Time Series DDP

Nieto-Barajas et al. (2008) introduce another variation of DDP models that is suit-
able as a prior for a time series of random probability measures.Their construction
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Fig 5.11. Dynamic density estimates p(yt | DT ) and one-step ahead predictive distributions,
p(yt | Dt−1) for claims in 2007. Dots correspond to actual observations.

is very straightforward. Recall the representation of a DP random measure by the
stick breaking construction

(5.6) Gt =

∞∑
h=1

wthδ˜θh ,

where wth are weights specific to Gt and θ̃h are point masses. Recall that the
weights are defined by iterative stick breaking as wth = vth

∏
g<h(1 − vtg) with

beta distributed fractions vth. The locations of the point masses are assumed to be
common across all t. The use of the representation (5.6) already reveals that the
proposed construction will be a variation of a common location DDP, i.e., all RPMs
Gt have the same atoms θ̃h and only differ by the weights wht.

Nieto-Barajas et al. (2008) achieve the desired serial dependence by introducing
a sequence of latent binomial variables zth ∼ Bin(k, vth) and replacing the prior for
vth in the stickbreaking construction of the DP prior by

vth | zt−1,h ∼ Beta (1 + zt−1,h,M + {k − zth}) ,
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Fig 5.12. Estimated distributions for t ∈ {0, 5, 15, . . . , 240} under a tsDDP model. The dotted
curves show pointwise central 95% credible intervals.

t = 2, . . . , T . The marginal distribution of vth remains unchanged vth ∼ Beta(1,M),
and thus Gt ∼ DP, remains unchanged. The choice of k controls the level of de-
pendence, with larger k implying higher dependence. Nieto-Barajas et al. (2008)
use the model to analyze protein activation over time after an initial intervention.
Figure 5.12 shows the estimated distributions Gt for an application of the tsDDP
model to inference for protein activations over time after an intervention. Most of
the proteins are not impacted by the intervention, only some are. This is reflected in
a stable peak around 0 over time, and varying weight in the left tail, corresponding
to inhibition of some proteins.

5.6. Spatial DDP

A version of the “single p” DDP model that is suitable for point-referenced spatial
data is developed in Gelfand et al. (2005), and later extended in Duan et al. (2007).
In the original definition of the spatial DDP, realizations from a Gaussian process
are used as atoms in the stick breaking construction,

GS =

∞∑
h=1

whδ˜θh,S
, θ̃h,S =

{
θ̃(s) : s ∈ S

}
∼ GP {μ(s), γ(s, s′)} ,

with wh=vh
∏

k<h{1−vk} and vh∼Beta(1,M). In this definition, GP {μ(s), γ(s, s′)}
denotes a Gaussian process prior with mean function μ(s) and covariance function
γ(s, s′). See §1.3.1.
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The random distributions Gs can be used, for example, to model the distribution
associated with a spatial random-effects. Assume that T independent realizations
y1, . . . , yT with yt = (yt(s1), . . . , yt(sm))′ are available at locations s1, . . . , sm. The
model in Gelfand et al. (2005) implies that

yt | θt ∼ N(θt, σ
2I),

where θt = (θt(s1), . . . , θt(sm))′, θt | G̃ ∼ G̃, and G̃(·) = ∑∞
h=1 whδ˜θh(·). The GP

prior implies

θ̃h =

⎛⎜⎜⎜⎜⎝
θ̃h(s1)

θ̃h(s2)
...

θ̃h(sm)

⎞⎟⎟⎟⎟⎠ ∼ N

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

μ(s1)
μ(s2)

...
μ(sm)

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
γ(s1, s1) γ(s1, s2) · · · γ(s1, sm)
γ(s2, s1) γ(s2, s2) · · · γ(s2, sm)

...
...

. . .
...

γ(sm, s1) γ(sm, s2) · · · γ(sm, sm)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

In other words, for any finite sample, the spatial DDP reduces to a multivari-
ate DP mixture with a multivariate Gaussian baseline measure whose mean and
covariance matrix are structured according to μ(s) and γ(s, s′).

An appealing feature of the spatial DPM is that, although it can be centered
around a stationary model a priori, it produces a non-stationary model a posteriori.
Indeed, note that

E{y(s) | GS} =

∞∑
h=1

whθ̃h(s),

and

Cov{y(s), y(s′) | GS} =

{ ∞∑
h=1

∞∑
k=1

whwkθ̃h(s)θ̃k(s
′)

}

−
{ ∞∑

h=1

whθ̃h(s)

}{ ∞∑
h=1

whθ̃h(s
′)

}
,

while, a priori,

E{y(s)} = μ(s), Cov{y(s), y(s′)} =
1

M + 1
γ(s, s′).

An interesting alternative to the spatial DDP is the hybrid DP of Petrone et al.
(2009). They achieve a more parsimonious representation than the spatial DDP by
considering a mixture of unique processes, but with local mixture weights. Each
realization can pick up different unique elements at different locations. A related
model is discussed in Rodŕıguez et al. (2010).

5.7. Other Dependent Extensions of the DP

The previous sections have focused mostly on “single p” DDPs. The popularity of
this class of models is due to the fact that introducing dependence in the weights of
the process, and performing posterior computation in the resulting constructions, is
typically difficult. This section discusses dependent generalizations of DP mixtures
that induce dependence in the weights of stick-breaking representation by replacing
the beta-distributed random variables with more general random variables.
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5.7.1. Probit Stick-Breaking Processes

Recall the stick-breaking construction of the DP,

G(·) =
∞∑
h=1

whδ˜θh(·),

where θ̃h ∼ G0, wh = vh
∏

s<h(1 − vs) and vh ∼ Beta(1,M). Instead, consider
stick-breaking ratios where vh = Φ(αh) and αh ∼ N(μ, σ2). Here Φ(x) is a standard
normal c.d.f. In that case, we say that G follows a probit stick-breaking process
(PSBP) with baseline measure G0 and shape parameters μ and σ, denoted G ∼
PSBP(μ, σ,G0). In words, the beta prior for the stick breaking model in the DP
prior is replaced by a probit model. This simple change greatly simplifies extensions
to dependent priors across families of probabilities measures, similar to the DDP.

The probit stick-breaking process has been discussed by Rodŕıguez et al. (2009),
Chung and Dunson (2009) and Rodŕıguez and Dunson (2011), among others. The
random distribution G is well defined (in the sense that

∑∞
h=1 wh = 1 almost

surely), and very flexible. Indeed, from Proposition 3 and Corollary 1 in Ongaro
and Cattaneo (2004), the support of the PSBP with respect to the topology of
pointwise convergence is the set of absolutely continuous measures with respect to
the baseline measure G0.

The interpretation of the parameters of the PSBP is similar to those in the DP.
Indeed, if μ = 0 and σ = 1 then vh ∼ Uni[0, 1] and G follows a DP with M = 1;
also, as μ → ∞ then w1 → 1 and G becomes a degenerate distribution at a random
location θ̃1 ∼ G0. More generally, for any measurable set B, E{G(B)} = G0(B)
and

Var{G(B)} =
β2

2β1 − β2
G0(B){1−G0(B)},

where β1 = Pr(T1 > 0) = Φ(μ/
√
1 + σ2) and β2 = Pr(T1 > 0, T2 > 0), where

(T1, T2)
′ follows a bivariate joint distribution with mean E(Ti) = μ, Var(Ti) = 1+σ2

and Cov(T1, T2) = σ2. Hence, G0 represents the mean of the process, while μ and σ
control the variability of G around G0. Figure 5.13 presents various random samples
from PSBPs that illustrate the effect of the parameters on the realizations.

One appealing feature of the PSBP is the computational tractability of PSBP
mixture models. In particular, consider a truncated version model

yi ∼ p(yi | θi), θi | G ∼ GH ,

where GH(·) = ∑H
h=1 whδ˜θh(·) and (wh) and (θ̃h) are defined as before but setting

vH = 1. In that case, we can introduce random variables (zi,1), . . . , (zi,H−1) such

that zi,j ∼ N(αh, 1) and θi = θ̃h if and only if zik < 0 for k < h and zih ≥ 0. Note

that, if we let si = h if and only if θi = θ̃h, by integrating out the zihs we get

Pr(si = h) = Pr(zi,1 < 0, . . . , zi,h−1 < 0, zi,h > 0) = Φ(αih)
∏
k<h

{1− Φ(αik)} = wh.

Conditionally on the auxiliary variables (zih), the full conditional distribution
for αh is a Gaussian distribution, while conditionally on αh and the component in-
dicators (si), the zihs are independent and follow (truncated) normal distributions.
A similar data augmentation algorithm was originally proposed in the survival
analysis literature to fit continuation ratio probit models Albert and Chib (2001).
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Fig 5.13. Realizations of probit stick-breaking process. The thick line on each Figure corresponds
to the same baseline measure G0 (in this case, a standard normal distribution). The plots demon-
strate the effect of the parameters μ and σ (which control how close the realizations are to G0).

Alternatively, instead of explicitly truncating the mixing distribution G, designing
a slice sampling algorithm similar to the one described §3.3.2 is also possible.

The PSBP can be easily generalized to create dependent probit stick-breaking
processes (DPSBP) where dependence is introduced through the weights of the
distributions. This is done by replacing the random draws (αh) by independent
realizations (αh(x)) from an appropriate Gaussian process. We illustrate these ideas
with two examples.

Example 20 (An alternative to the hierarchical DP) Consider a situation
like the one we described in §5.4.2, where a partially exchangeable set of obser-
vations is collected. As before we model

yi,j | θi,j ∼ p(yi,j | θi,j), θi,j | Gj ∼ Gj ,
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for i = 1, . . . , Ij and j = 1, . . . , J . Consider modeling the mixing distributions as

Gj(·) =
∞∑
h=1


j,hδ˜θh(·),

where θ̃h ∼ G0, 
j,h = Φ(αj,h)
∏

k<h{1 − Φ(αj,k)}, αj,h ∼ N(μh, σ
2) and μh ∼

N(μ0, τ
2). This model shares a number of features with the HDP. For example,

the collection G1, . . . , GJ is exchangeable because the atoms and weights are condi-
tionally independent from each other. Also the distributions are centered around a
common mean, in the sense that the transformed weights (αj,1, αj,2, . . .) are centered
around a common value (μ1, μ2, . . .), i.e., E(αj,h) = μh (remember Figure 5.9).

Sampling from this model is straightforward using auxiliary variables. As before,
we introduce zi,jh ∼ N(αj,h, 1) and let si,j = h if and only if zi,j,s < 0 for s < h and
zi,j,h ≥ 0. Then, the full conditional distribution for αj,h is normally distributed,
i.e.,

αj,h | · · · ∼ N

⎛⎝{
1

1
σ2 + n

}−1
⎧⎨⎩μh

σ2
+

Ij∑
i=1

zi,j,h

⎫⎬⎭ ,

{
1

1
σ2 + n

}−1
⎞⎠ .

On the other hand, the latent variables zi,j,h can be sampled from truncated
normal distributions

zi,j,h | · · · ∼

⎧⎪⎨⎪⎩
N(αj,h, 1)I(zi,j,h < 0) h < si

N(αj,h, 1)I(zi,j,h ≥ 0) h = si

N(αj,h, 1) h > si,

where N(a, b2)I(A) represents the normal distribution with mean a and variance b2

truncated to the set A.

Example 21 (Modeling an uncountable collection of distributions) Con-
sider an index space X ∈ R

d and an uncountable collection of distributions GX =
{Gx : x ∈ X}. Define

Gx(·) =
∞∑
h=1

wh(x)δθh , wh(x) = Φ(αh(x))
∏
k<h

{1− Φ(αk(x))},

and αh(x) is a Gaussian process over X with mean μ and covariance function
σ2γ(x, x′). Given observations associated with locations x1, . . . , xn, the joint distri-
bution for the realizations of the latent processes αh(x) at these locations is given
by ⎛⎜⎜⎜⎝

αh(x1)
αh(x2)

...
αh(xn)

⎞⎟⎟⎟⎠ ∼ N

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
μ
μ
...
μ

⎞⎟⎟⎟⎠ , σ2

⎛⎜⎜⎜⎝
1 γ(x1, x2) . . . γ(x1, xn)

γ(x2, x1) 1 . . . γ(x2, xn)
...

...
. . .

...
γ(xn, x1) γ(xn, x2) . . . 1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

Models of this type can be used for time series observed in continuous time
(X = R

+), or to construct models for spatial data (X ⊂ R
2). In particular, this con-

struction allows us to easily generate spatial processes for discrete and non-Gaussian
distributions. Even more, we can introduce multivariate atoms, leading to a simple
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Fig 5.15. Density estimates for two NC locations. The left panel corresponds an in-sample pre-
dictions at Greenville, NC (see also Figure 5.14), while the right panel corresponds to an out-of-
sample prediction for a location in the Blue Ridge mountains next to Waynesville, NC.

procedure to construct non-stationary, non-separable multivariate spatial-temporal
processes. By interpreting X as a space of predictors, this construction also allows
us to generate flexible nonparametric regression models with heteroscedastic errors.

Rodŕıguez and Dunson (2011) use this approach to generate a flexible spatial
model for count data, which is used to model bird abundance in North Carolina.
Figure 5.14 presents estimates of the expected rate of sightings (per man-hour)
for the Mourning Dove, while Figure 5.15 presents predictive distributions for the
number of sightings at two different locations.
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Fig 5.16. Idealized representation for the construction of the kernel stick-breaking process.

5.7.2. Kernel Stick-Breaking Processes

The kernel stick-breaking process (KSBP) (Dunson and Park, 2007) is another
approach to create a prior over an uncountable collection of distributions GX =
{Gx : x ∈ X ∈ R

d}.
In its simplest version, the KSBP is constructed by rebalancing its weights ac-

cording to the distance between the value of the covariate x and a set of (random)
fixed basis locations Γ1,Γ2, . . .. More specifically, given a kernel K(·, ·) : X × X →
[0, 1] and a probability measure Q defined on the index space X , draw Γh ∼ Q for
h = 1, 2, . . . and, for every x ∈ X , create the countable collection (K(x,Γh)) (see
Figure 5.16). The distribution Gx is then defined as

Gx(·) =
∞∑
h=1

wh(x)δ˜θh ,

where θ̃h ∼ G0, wh(x) = uh(x)
∏

k<h{1 − uk(x)}, uh(x) = vhK(x,Γh) and vh ∼
Beta(1,M).

Example 22 (KSBP with Gaussian kernels) Consider a KSBP on X = R
d

where K(x, x′) is a Gaussian kernel, i.e.,

K(x, x′) = exp
{−λ||x− x′||2} ,

in which case

Gx(·) =
∞∑
h=1

{
vhK(x,Γh)

∏
k<h

[1− vkK(x,Γk)]

}
δ
˜θh

and, for example, Γh ∼ N(0, τ2). Note that, if λ → 0, then K(x,Γh) = 1 for
every pair (x,Γh), and the model reduces to a DP prior. Similarly, if M → 0, Gx

becomes a degenerate distribution at a random location θ̃1 for every x ∈ X . As
before, a model of this type can be used for nonparametric regression, and well as
for modeling non-stationary, non-separable temporal (X = R

+), spatial (X ⊂ R
2)

or spatio-temporal (X ⊂ R
3) processes with non-Gaussian marginals.
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A slightly more general version of this model can be obtained by replacing the
point masses by random distributions drawn from a Dirichlet process and/or by
replacing the prior on the vhs with a more general beta distribution, so that vh ∼
Beta(ah, bh). In any case, the weights of the KSBP satisfy

∑∞
h=1 wh(x) = 1 for all

x ∈ X , and each member Gxs is therefore well defined.
Consider now a conditionally independent sequence where θi | G, xi ∼ Gxi and

GX = {Gx : x ∈ X} is assigned a KSBP prior. An interesting feature of the KSBP
is that the joint distribution for θ1, . . . , θn | x1, . . . , xn obtained after integrating
the random elements in GX can be obtained in closed form. As with the Dirichlet
process, this joint distribution is obtained as a product of predictive distributions,
each one corresponding to a generalized Pólya urn.

Posterior inference for the KSBP can be accomplish using through a Markov
chain Monte Carlo algorithm that combines retrospective sampling and generalized
Pólya urn sampling steps. Details can be seen in Dunson and Park (2007).
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