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Fractional Brownian Input
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Abstract: A fractional Brownian queueing model, that is, a fluid queue with
an input of a fractional Brownian motion, has been applied in network model-
ing since the self-similarity and long-range dependence were observed in Inter-
net traffic. In this paper, a fluid queue with an aggregated fractional Brownian
input, which is a generalization of a fractional Brownian queueing model, is
considered and the maximum queue length over a time interval [0, t] is studied.
The impact of an aggregated fractional Brownian input on the queue length
process is analyzed and the main results on the maximum queue length are
compared with some related known results in the literature.

1. Introduction

In the 1990s, researchers observed the properties of self-similarity and long-range
dependence in Internet traffic. Since then, various models have been proposed to
model these complex features. In [17], Norros proposed a fluid queueing model with
an input of a fractional Brownian motion. Different from the traditional queueing
models, a fluid model has an input process with a continuous sample path. Since a
fractional Brownian motion with Hurst parameter H ∈ (1/2, 1) has the properties
of self-similarity and long-range dependence, e.g., [7], [15], it is used to capture the
complex features of Internet traffic.

A fractional Brownian queueing model is a useful model for analyzing the impact
of self-similarity and long-range dependence on the queueing performance, however
there are some generic shortcomings in this model. Firstly, since the input process is
Gaussian, negative increments, which are not meaningful for a queueing model, can
be observed at small time scales. Secondly, the actual Internet traffic is regulated by
TCP/IP protocol, which is a closed-loop congestion control mechanism. A fractional
Brownian queueing model, which is open-loop as are many queueing models, cannot
capture the dynamics of Internet traffic over small time scales, i.e., less than the
typical round trip packet time. Although the model has some shortcomings, it can be
used to approximate other aspects of Internet traffic under certain circumstances.
It has been empirically demonstrated in [8] that a fractional Brownian queueing
model is appropriate for the backbone traffic, in which millions of independent
flows are highly aggregated, traffic control on a single flow would not dominate
the whole traffic and the time scale is larger than the typical round trip time. In
recent network measurements [12], it was observed that for small time scales, less
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than a millisecond, the traffic in the Internet backbone is memoryless or of short
memory; while for larger time scales, in milliseconds, the long-range dependence
characterizes the backbone traffic. From a practical point of view, see [18], [21],
a fractional Brownian queueing model is an approximation of Internet traffic and
can produce meaningful results for queueing performance, such as inter-congestion
event times and congestion durations, which are in a time scale larger than the
typical round trip time.

In practice, it has been observed that the Hurst parameter estimated in network
does not remain constant. For this reason, besides a fractional Brownian motion,
other Gaussian processes have been proposed to model network traffic, such as an
aggregation of independent fractional Brownian motions, [5], [19], [22, p 335] and an
integrated Ornstein-Uhlenbeck process [3], [4], [5]. Here a queue with an aggregated
fractional Brownian input is studied and the maximum queue length over a time
interval [0, t] is analyzed. For a queue with a single fractional Brownian input, i.e.,
a fractional Brownian model, the maximum queue length was considered in [23].
In this paper, the results of [23] are extended, and the impact of an aggregated
fractional Brownian input on the queueing behavior is analyzed.

The structure of the paper is as follows: In Section 2, some preliminaries on
a queueing model with an aggregated fractional Brownian input are given, the
maximum queue length is defined and some results in the literature are reviewed.
In Section 3, the main results are presented and compared with some known related
results. Section 4 is devoted to the proofs of the main results, Theorems 3.1 and
3.2.

2. Preliminary

The definition of a fractional Brownian motion is as follows.

Definition 2.1. A standard fractional Brownian motion with Hurst parameter H ∈
(0, 1),

{
BH(t), t ∈ [0,∞)

}
on the complete probability space (Ω, F , P ) is a real-

valued Gaussian process with continuous sample paths such that for s, t ∈ [0,∞),
E[BH(t)] = 0 and E[BH(s)BH(t)] = 1

2 [s2H + t2H − |s− t|2H ].

More properties of a fractional Brownian motion can be found in [7], [15] and
the references therein. The queueing model is a single fluid queue with an infinite
buffer size and a fixed service rate. Let A(t) = mt+Y (t) be the cumulated arrivals
to the queue up to time t, where m is a mean input rate and Y = {Y (t), t ≥ 0} is
a continuous Gaussian process with stationary increments. Let µ denote a service
rate and c = µ−m be the surplus rate. For the stability of the queue, it is assumed
that c > 0.

In the case that Y is a fractional Brownian motion, this model is called a frac-
tional Brownian queueing model, which is proposed by Norros [17] to capture the
self-similarity of Internet traffic. Here a more general Gaussian process is considered
initially. It is assumed that the input process Y is an aggregation of independent
standard fractional Brownian motions, that is,

Y (t) =
N∑

i=1

σiB
Hi(t)(1)

where for i = 1, ..., N , σi’s are real-valued coefficients and {BHi(t), t ≥ 0} are
independent fractional Brownian motions with Hurst parameters Hi ∈ (0, 1). Let
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J ⊂ {1, ..., N} be the set of all indices j such that Hj = max1≤i≤N {Hi} and

σ =
√∑

i∈J
σ2

i .(2)

Note that for N = 1, the model is a fractional Brownian queueing model. Let
G =

∑N
i=1 σ2

i and γ = 2 min
1≤i≤N

{Hi}, then for t ∈ [0, 1], E
[
Y 2(t)

]
≤ Gtγ . Based on

[14, Lemma 12.2.1], there exists a constant CG,γ > 0, which only depends on G and
γ, such that for all x,

P

(
sup

0≤s≤1
Y (s) > x

)
≤ 4 exp

(
−CG,γx2

)
.(3)

Let Q = {Q(t), t ≥ 0} denote the queue length process. In the literature, the process
Q is also called a workload process or a storage process. Suppose Q(0) = 0, then
for each time t ≥ 0, the queue length Q(t) can be written as

Q(t) = Y (t)− ct + sup
0≤s≤t

(−Y (s) + cs) .(4)

In general, for 0 ≤ s ≤ t, Q(t) can be written in terms of Q(s) as

Q(t) = Y (t)− ct + max
{

sup
s≤r≤t

(−Y (r) + cr) , Q(s)− (Y (s)− cs)
}

.(5)

Let Q(∞) d= limt→∞Q(t) be the steady state queue length where the limit denotes
convergence in law. Let M(t) denote the maximum of the queue length in [0, t],
that is,

M(t) = max
0≤s≤t

Q(s).(6)

The properties of M(t) have been analyzed for different queueing models, see e.g. [1],
[2], [11], and were applied in network systems to estimate certain traffic parameters.
In the context of renewal processes, that is, the queue length process is renewal,
some asymptotic properties of the maximum queue length were analyzed in [9].

To discuss asymptotic properties of M(t), it is convenient to introduce a station-
ary version of the queue length process. It follows from [13], also see [9], [23], that
one can construct a probability space supporting both the process {Y (t), t ≥ 0}
and a stationary process Q∗ = {Q∗(t), t ≥ 0} such that
(i) Q∗(t) d= Q(∞) for all t ≥ 0,
(ii) For t ≥ 0,

Q∗(t) = Y (t)− ct + max
{

Q∗(0), sup
0≤s≤t

(−Y (s) + cs)
}

.(7)

Remark 2.1. Recall that Q(t) = Y (t) − ct + sup0≤s≤t (−Y (s) + cs), so it follows
from (7) that for all t ≥ 0, Q∗(t) ≥ Q(t).

Let M∗(t) be the maximum of the queue length process Q∗ over an interval [0, t],
that is,

M∗(t) = max
0≤s≤t

Q∗(s).(8)

The following proposition is used in the proofs of the main results. It shows
that the logarithmic overflow probability, i.e. log P (Q(∞) > b), is asymptotically
determined by the largest Hurst parameter H.
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Proposition 2.1. Let Y (t) =
∑N

i=1 σiB
Hi(t) be defined as in (1), H = max1≤i≤N Hi

and σ be as in (2). Let Q(∞) be the steady state queue length, then

lim
b→∞

log P (Q(∞) > b)
b2−2H

= −θ,(9)

where

θ =
c2H

2σ2H2H(1−H)2−2H
.(10)

The proof of this proposition is given in Section 4.1. Recently, the asymptotic
overflow probability, i.e., limb→∞ P (Q(∞) > b), was obtained using a double sum
method in [5].

The main results on the maximum queue length of a queue with an input of
an aggregation of fractional Brownian motions are given in Theorem 3.1 and 3.2.
Before the main results are presented, some results in the literature are reviewed.
The maximum queue length of a fractional Brownian queueing model was discussed
in [9], [23]. For H = 1/2, that is, the input traffic is a Brownian motion, the
property of M(t) was discussed in [9] using renewal theory. With some different
approaches, the maximum queue length of a fractional Brownian queueing model
with H ∈ (1/2, 1) is analyzed in [23]. The results from [9] and [23] are summarized
as follows. For brevity, let

β =
1

2− 2H
.(11)

Note that β > 1/2 since H ∈ (0, 1).

Theorem 2.1. Let Y (t) = σBH(t) where σ is a real-valued coefficient and {BH(t),
t ≥ 0} is a fractional Brownian motion with Hurst parameter H ∈ [1/2, 1). Let M(t)
be defined in (6). Then,
(i)

lim
t→∞

M(t)
(log t)β

=
(

1
θ

)β

(12)

in Lp for each p ∈ [1,∞) where θ and β are given in (10) and (11), respectively.
(ii) For H = 1/2, the convergence of (12) holds also almost surely.

The above theorem shows that for a fractional Brownian queueing model, the
maximum queue length M(t) grows like

(
θ−1 log t

)β for a large t.

3. Main Results

The following two theorems are the main results of this paper.

Theorem 3.1. Let Y (t) =
∑N

i=1 σiB
Hi(t) be defined as in (1), H = max1≤i≤N Hi

and σ be defined in (2). Let M(t) be defined in (6), then

lim
t→∞

M(t)
(log t)β

=
(

1
θ

)β

(13)

in Lp for each p ∈ [1,∞) where θ is given in (10) and β is given in (11).
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The proof of this theorem is given in Section 4.1. According to Theorem 3.1,
for a queue with an aggregated fractional Brownian input, the asymptotic behavior
of M(t) only depends on the largest Hurst parameter. For example, suppose that
Y (t) = 0.99BH1(t) + 0.01BH2(t) where

{
BH1(t), t ≥ 0

}
and

{
BH2(t), t ≥ 0

}
are

independent fractional Brownian motions with H1 = 0.55 and H2 = 0.95, respec-
tively. Since the coefficient of BH1 is relatively large, when the transient behavior
is considered, the component of BH1 dominates the queueing performance, that is,
the component of BH2 can be ignored. However, when the asymptotic behavior is
discussed, by Theorem 3.1, the maximum queue length will be dominated by the
component of BH2 . Therefore, even though the coefficient of BH2 is relatively small,
when large time periods are considered, the component of BH2 is not negligible. In
this example, since the coefficient of BH2 is small, the convergence of the maximum
queue length is slow and may be difficult to observe from simulations.

It can be observed that the first part of Theorem 2.1 is a special case of Theorem
3.1. The result of Theorem 3.1 can be further extended to a general Gaussian
queueing model, that is, where Y is a general Gaussian process. Under some mild
assumptions, it can be shown that asymptotically a suitably normalized maximum
queue length is determined by a suitable function of the asymptotic variance of the
input Y . The assumptions on Y are satisfied for most Gaussian processes that are
applied to model network traffic in the literature, such as a fractional Brownian
motion and an integrated Ornstein-Uhlenbeck process. The general result and the
assumptions will be presented in a future paper. In the following, the maximum
queue length of a fractional Brownian queueing model is revisited and a stronger
result is obtained.

Theorem 3.2. Let Y (t) = σBH(t) where σ is a real-valued coefficient and {BH(t),
t ≥ 0} is a standard fractional Brownian motion with Hurst parameter H ∈ (0, 1).
Let M(t) be defined in (6), then

lim
t→∞

M(t)
(log t)β

=
(

1
θ

)β

a.s.(14)

and in Lp for each p ∈ [1,∞) where θ is given in (10) and β is given in (11).

The proof of this theorem is given in Section 4.2. Theorem 3.2 extends the result
of Theorem 2.1 in two directions: (i) the convergence result of (12) holds almost
surely for any H ∈ (0, 1); (ii) the Lp convergence is true for H ∈ (0, 1/2). As dis-
cussed in [9], [23], [24], the maximum queue length M(t) can be applied to estimate
the overflow probability P (Q(∞) > b), which is important for the admission con-
trol in network systems. From Proposition 2.1, it is known that asymptotically the
logarithmic overflow probability is essentially determined by H and θ. Assume that
the Hurst parameter H of the input traffic is known, following Theorem 3.2, the
value θ can be strongly consistently estimated by using the maximum queue length
M(t), i.e., limt→∞

M(t)2−2H

log t = 1
θ a.s.

4. Proofs of the main results

The proofs of Theorems 3.1 and 3.2 are given in Section 4.1 and 4.2, respectively.
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4.1. A queue with an aggregated fractional Brownian input

Proof of Proposition 2.1. It is sufficient to show that Y satisfies Hypotheses 2.1 and
2.3 in [6]. Apply the same notation as [6], let v(t) = t2−2H and a(t) = t. Note that∑N

i=1 σ2
i t2Hi ∼ σ2t2H , then

λ(ξ) = lim
t→∞

log E
[
exp

(
ξ v(t)(Y (t)−ct)

a(t)

)]
v(t)

= lim
t→∞

−ξct2−2H + 1
2ξ2t2−4H

∑N
i=1 σ2

i t2Hi

t2−2H

=
1
2
ξ2σ2 − cξ.

So (i) and (ii) of Hypothesis 2.1 are satisfied. Let h(t) = t2−2H and a−1(t) = sup{s ∈
[0,∞); a(s) ≤ t}. It can be verified that for ξ > 0, g(ξ) = limt→∞

v(a−1(t)/ξ)
h(t) =

ξ2H−2, which satisfies Hypothesis 2.1(iii). Let Wt = Y (t) − ct. For n ∈ Z, let
W ∗

n = sup0≤r<1 Wn+r. Recall that Y has stationary increments and it is assumed
that the components of Y , i.e., the fractional Brownian motions, are independent,
then for ξ > 0,

lim sup
n→∞

log E
[
exp

(
ξn1−2H (W ∗

n −Wn)
)]

n2−2H

= lim sup
n→∞

log E
[
exp

(
ξn1−2H sup0≤r≤1 (Y (n + r)− c(n + r))− Y (n) + cn

)]
n2−2H

≤ lim sup
n→∞

log E
[
exp

(
ξn1−2H sup0≤r≤1 Y (r)

)]
n2−2H

≤
N∑

i=1

lim sup
n→∞

log E
[
exp

(
ξn1−2H sup0≤r≤1 BHi(r)

)]
n2−2H

.

From [16], it is obtained that for i = 1, ..., N ,

E

[
exp

(
ξn1−2H sup

0≤r≤1
BHi(r)

)]
=
∫ ∞

0

P

(
sup

0≤r≤1
BHi(r) ≥ log x

ξn1−2H

)
dx

≤ 2
∫ ∞

0

P

(
BHi(1) ≥ log x

ξn1−2H

)
dx.

Simple calculations lead to
log E[exp(ξn1−2H sup0≤r≤1 BHi (r))]

n2−2H → 0 as n → ∞, which

implies
log E[exp(ξn1−2H(W∗

n−Wn))]
n2−2H → 0 as well. Therefore Hypothesis 2.3 is satisfied

and the proposition follows [6, Corollary 2.3].

According to Proposition 2.1, there exists a constant K0, such that,

K0 = inf
{

u :
log P (Q∗(0) > u)

u2−2H
≤ −θ

2

}
.(15)

To prove Theorem 3.1, the following two technical lemmas are needed.

Lemma 4.1. Let β be defined in (11). Then for all t ≥ e, p ∈ (1,∞) and K =
max{K0, (4/θ)β} where K0 is defined in (15),∫ ∞

3K

typ−1P
(
Q∗(0) >

y

3
(log t)β

)
dy < ∞.(16)
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Proof. Rewrite P
(
Q∗(0) > y

3 (log t)β
)

as

P
(
Q∗(0) >

y

3
(log t)β

)
= exp

((y

3

)1/β

log t
log P

(
Q∗(0) > (y/3)(log t)β

)
(y/3)1/β log t

)
.

Since y/3 ≥ K ≥ K0 and log t ≥ 1, from (15), it follows that
P
(
Q∗(0) > y

3 (log t)β
)
≤ exp

(
− θ

2

(
y
3

)1/β log t
)
. Then∫ ∞

3K

typ−1P
(
Q∗(0) >

y

3
(log t)β

)
dy ≤

∫ ∞

3K

yp−1 exp
(
−θ

2

(y

3

) 1
β

log t + log t

)
dy.

From K ≥ (4/θ)β and y ≥ 3K, it follows that − θ
2

(
y
3

)1/β + 1 ≤ − θ
4

(
y
3

)1/β . By
substitution, it follows that∫ ∞

3K

yp−1 exp
(
−θ

2

(y

3

) 1
β

log t + log t

)
dy ≤ 3p · 4βpβ

(θ log t)βp
Γ(βp) < ∞.

Lemma 4.2. Let β be the constant defined in (11). Then for t ≥ e, p ∈ (1,∞) and
K = max

{
K0,

√
8/CG,γ

}
where CG,γ is the constant in (3),∫ ∞

3K

typ−1P

(
sup

0≤s≤1
Y (s) ≥ y

6
(log t)β

)
dy < ∞.

Proof. From (3), it can be obtained that

P

(
sup

0≤s≤1
Y (s) ≥ y

6
(log t)β

)
≤ 4 exp

(
−CG,γy2

36
(log t)2β

)
.

So ∫ ∞

3K

typ−1P

(
sup

0≤s≤1
Y (s) ≥ y

6
(log t)β

)
dy

≤
∫ ∞

3K

4yp−1 exp
(
−CG,γy2

36
(log t)2β + log t

)
dy.(17)

Since β > 1/2 and t ≥ e, from (17), it follows that∫ ∞

3K

typ−1P

(
sup

0≤s≤1
Y (s) ≥ y

6
(log t)β

)
dy

≤
∫ ∞

3K

4yp−1 exp
(
−(log t)

(
CG,γy2

36
− 1
))

dy.

Since y ≥ 3K ≥ 3
√

8/CG,γ , then CG,γy2

36 − 1 ≥ CG,γy2

72 . Let z = y2, by substitution,
it can be verified that∫ ∞

3K

4yp−1 exp
(
−CG,γy2

72
log t

)
dy ≤ 2

(
CG,γ(log t)

72

)− p
2

Γ
(p

2

)
< ∞.
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Proof of Theorem 3.1. The proof mainly follows the arguments of [23] in which the
self-similarity of a fractional Brownian motion is used implicitly. Here the input
process Y (t), which is an aggregation of independent fractional Brownian motions,
is not self-similar, so the Slepian inequality, [20, Theorem C.1], is applied to solve
the problem. It is first shown that limt→∞

M∗(t)
(log t)β =

(
1
θ

)β in Lp for each p ∈ [1,∞),
then the result can be extended to M(t) naturally. The proof consists of three steps.
The following expressions, (18) and (19), are proved in Step I and II, respectively.
For a fixed δ ∈ (0, 1),

lim
t→∞

P

(
M∗(t) ≥

(
1− δ

θ
log t

)β
)

= 1,(18)

lim
t→∞

P

(
M∗(t) ≥

(
1 + δ

θ
log t

)β
)

= 0.(19)

From (18) and (19), it follows that limt→∞
M∗(t)
(log t)β =

(
1
θ

)β in probability. In Step

III, the uniform integrability of the random variables
(

M∗(t)
(log t)β

)p

is proved for t ≥ e

and p ∈ [1,∞).
Step I Let δ ∈ (0, 1) be fixed. For brevity, let α(t) =

(
1−δ

θ log t
)β

. Fix ∆ ∈ (0, t),
from the definition of Q∗, it follows that

Q∗(t) ≥ Y (t)− ct− inf
0≤s≤t

(Y (s)− cs)(20)

≥ Y (t)− ct− Y (t−∆) + c(t−∆)
= Y (t)− Y (t−∆)− c∆.

Consequently,

P (M∗(t) ≥ α(t)) = P

(
sup

0≤s≤t
Q∗(s) ≥ α(t)

)
≥ P

(
sup

1≤k≤bt/∆c
Y (k∆)− Y (k∆−∆) ≥ α(t) + c∆

)
.(21)

Let v2(t) = E
[
Y 2(t)

]
=
∑N

i=1 σ2
i t2Hi be the variance function of the process Y .

For j = 1, 2, ..., let

Z∆
j =

Y (j∆)− Y (j∆−∆)
v(∆)

.(22)

Since Y has stationary increments,
{
Z∆

j

}
is a sequence of stationary standard

normal random variables. From (21), it can be obtained that

P (M∗(t) ≥ α(t)) ≥ P

(
sup

1≤j≤bt/∆c
Z∆

j ≥ α(t) + c∆
v(∆)

)
.(23)

Choose ε ∈ (0, δ] and let ∆ be dependent on t such that

∆t =
(

2σ2(1− ε)
c2

H2 log t

)β

,(24)
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where H is the largest Hurst parameter and σ is as in (2). Then (23) can be written
as

P (M∗(t) ≥ α(t)) ≥ P

(
sup

1≤j≤bt/∆tc
Z∆t

j ≥ α(t) + c∆t

v(∆t)

)
.(25)

Consider the covariance of {Z∆t
j }, for all t ≥ 0, j = 1, 2, ... and k = 0, 1, ...

cov(Z∆t
j , Z∆t

j+k) =
∑N

i=1 σ2
i ∆2Hi

t

[
(k + 1)2Hi − 2k2Hi + (k − 1)2Hi

]
2
∑N

i=1 σ2
i ∆2Hi

t

For H ≥ 1/2, since for 1 ≤ i ≤ N , (k + 1)2Hi − 2k2Hi + (k − 1)2Hi ≤ (k +
1)2H − 2k2H + (k − 1)2H , then it is obtained that cov(Z∆t

j , Z∆t

j+k) ≤ f(k) where
f(k) = 1

2

[
(k + 1)2H − 2k2H + (k − 1)2H

]
. For H < 1/2, let f(0) = 1 and f(k) = 0

for k = 1, 2, 3, ..., then it can be verified that cov(Z∆t
j , Z∆t

j+k) ≤ f(k). Let {Z̃j , j =
1, 2, ...} be a sequence of stationary standard normal random variables such that the
covariance of Z̃j is determined by f(k). By the Slepian inequality, e.g. [20, Theorem
C.1], it follows from (25) that

P

(
sup

1≤j≤b t
∆t
c
Z∆t

j ≥ α(t) + c∆t

v(∆t)

)
≥ P

(
sup

1≤j≤b t
∆t
c
Z̃j ≥

α(t) + c∆t

v(∆t)

)
.(26)

From the definitions of v2(·) and ∆t, it can be verified that

α(t) + c∆t

v(∆t)
=

α(t) + c∆t√∑N
i=1 σ2

i ∆2Hi
t

≤ α(t) + c∆t

σ∆H
t

≤
√

2(1− ε) log t.

Let n = b t
∆t
c and tn =

{
t : t

∆t
= n

}
. Note that b t

∆t
c = n if and only if tn ≤

t < tn+1. Then for sufficiently large t ∈ [tn, tn+1), the following inequalities are
obtained

α(t) + c∆t

v(∆t)
≤
√

2 (1− ε) log t ≤
√

2 (1− ε) log tn+1.

Let un be defined as

un =
√

2 (1− ε) log tn+1.(27)

So from (26) and (27), it follows that

P

(
sup

1≤j≤b t
∆t
c
Z̃j ≥

α(t) + c∆t

v(∆t)

)
≥ P

(
sup

1≤j≤n
Z̃j ≥ un

)
.(28)

Following [14, Theorem 4.3.3], it is sufficient to prove that n(1 − Φ(un)) → ∞ as
n →∞. Recall that for x ≥ 0, 1− Φ(x) ≥ x√

2π(1+x2)
e−x2/2, so

n(1− Φ(un)) ≥ n
un√

2π(1 + u2
n)

exp
(
−u2

n

2

)
.
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From (27), it follows that e−u2
n/2 = t−1+ε

n+1 . Since limn→∞ un → ∞, there exists
an n0 such that for all n > n0, un ≥ 1. Then for n > n0, n(1 − Φ(un)) ≥

n
2
√

2πun
exp

(
−u2

n

2

)
. Thus,

n(1− Φ(un)) ≥ n

2
√

2πun

t−1+ε
n+1 =

n

2
√

2π(n + 1)
tεn+1

∆tn+1un
.

From (24) and (27), it can be observed that ∆tn+1 = C1(log tn+1)β and un =
C2(log tn+1)1/2 for some positive constants C1 and C2, respectively. Then as n →∞,

n
2
√

2π(n+1)

tε
n+1

∆tn+1un
→∞. Thus the expression (18) is verified.

Step II Let Vi = supi−1≤s<i Q∗(s), then M∗(t) ≤ max1≤i≤t Vi. By the station-
arity of Q∗, it follows that

P

(
M∗(t) ≥

(
1 + δ

θ
log t

)β
)
≤ tP

(
V1 ≥

(
1 + δ

θ
log t

)β
)

.

To verify (19), it is necessary to show that the right hand side of the above inequality
approaches to 0, that is, limt→∞ tP

(
V1 ≥

(
1+δ

θ log t
)β)

= 0. Since

V1 ≤ Q∗(0) + sup
0≤s≤1

(
(Y (s)− cs)− inf

0≤r≤s
(Y (r)− cr)

)
≤ Q∗(0) + sup

0≤s≤1
(Y (s)− cs)− inf

0≤s≤1
(Y (s)− cs)

and (1 + δ)β ≥ (1 + δ/2)β + δ/10 for β > 1/2, 0 < δ < 1, then

P

(
V1 ≥

(
1 + δ

θ
log t

)β
)

≤ P

(
Q∗(0) ≥

(
1 + δ/2

θ
log t

)β
)

+ P

(
sup

0≤s≤1
(Y (s)− cs) ≥ δ

20

(
log t

θ

)β
)

+ P

(
− inf

0≤s≤1
(Y (s)− cs) ≥ δ

20

(
log t

θ

)β
)

≤ P

(
Q∗(0) ≥

(
1 + δ/2

θ
log t

)β
)

+ 2P

(
sup

0≤s≤1
Y (s) ≥ δ

20

(
log t

θ

)β

− c

)

It can be observed that for a fixed δ, there exists t0 such that for t ≥ t0, δ
20

(
log t

θ

)β

−

c ≥ δ
40

(
log t

θ

)β

. So

P

(
V1 ≥

(
1 + δ

θ
log t

)β
)

≤ P

(
Q∗(0) ≥

(
1 + δ/2

θ
log t

)β
)

︸ ︷︷ ︸
L1

+2P

(
sup

0≤s≤1
Y (s) ≥ δ

40

(
log t

θ

)β
)

︸ ︷︷ ︸
L2
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It is necessary to show that lim
t→∞

tLi = 0 for i = 1, 2. For i = 1, it is equivalent

to show that log t+log P

(
Q∗(0) ≥

(
1+δ/2

θ log t
)β
)
→ −∞. Following Proposition

2.1, it is obtained that as t →∞,

log t

1 +
log P

(
Q∗(0) ≥

(
1+δ/2

θ log t
)β
)

log t

 ∼ log t

[
1 +

(
−1− δ

2

)]
→ −∞.

For i = 2, from (3), it follows that lim
t→∞

tL2 = 0.

Step III In this step, the uniform integrability of the random variables
(

M∗(t)
(log t)β

)p

for t ≥ e is proved. It is sufficient to show that for each p ∈ (1,∞),

sup
t≥e

E

[
M∗(t)
(log t)β

]p

< ∞.

Let y = x1/p, for t ≥ e,

E

[
M∗(t)
(log t)β

]p

=
∫ ∞

0

P

((
M∗(t)
(log t)β

)p

> x

)
dx

=
∫ ∞

0

P
(
M∗(t) > y(log t)β

)
pyp−1dy.

Let K = max
{

K0, (4/θ)β),
√

8/CG,γ

}
, then K < ∞ and

E

[
M∗(t)
(log t)β

]p

=
∫ 3K

0

P
(
M∗(t) > y(log t)β

)
pyp−1dy +

∫ ∞

3K

P
(
M∗(t) > y(log t)β

)
pyp−1dy

≤ (3K)p +
∫ ∞

3K

P
(
M∗(t) > y(log t)β

)
pyp−1dy︸ ︷︷ ︸

L3

.

Similar to the arguments in Step II, it can be verified that for all x > 0,

P (M∗(t) > x) ≤ tP

(
Q∗(0) + max

0≤s≤1
(Y (s)− cs)− min

0≤s≤1
(Y (s)− cs) > x

)
.

Then

P (M∗(t) > x) ≤ tP
(
Q∗(0) >

x

3

)
+ tP

(
max

0≤s≤1
(Y (s)− cs) >

x

3

)
+ tP

(
− min

0≤s≤1
(Y (s)− cs) >

x

3

)
≤ tP

(
Q∗(0) >

x

3

)
+ 2tP

(
max

0≤s≤1
(Y (s)) >

x

3
− c

)
.
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It is obtained that

L3 ≤ t

∫ ∞

3K

P

(
Q∗(0) >

y(log t)β

3

)
pyp−1dy

+ 2t

∫ ∞

3K

P

(
max

0≤s≤1
Y (s) >

y(log t)β

3
− c

)
pyp−1dy.

From the choice of K, it follows that y(log t)β

3 − c ≥ y(log t)β

6 . So

L3 ≤ t

∫ ∞

3K

P

(
Q∗(0) >

y(log t)β

3

)
pyp−1dy︸ ︷︷ ︸

L3,1

+ 2 t

∫ ∞

3K

P

(
max

0≤s≤1
Y (s) >

y(log t)β

6

)
pyp−1dy︸ ︷︷ ︸

L3,2

.

It is shown in Lemma 4.1 and 4.2 that L3,1 < ∞ and L3,2 < ∞ with the choice of

K, respectively. Therefore it is obtained that supt≥e E
[

M∗(t)
(log t)β

]p
< ∞. Combining

Step I, II and III, it is obtained that limt→∞
M∗(t)
(log t)β =

(
1
θ

)β in Lp for each
p ∈ [1,∞).

In the following, the result is extended to M(t). Recall that for all t ≥ 0, Q(t) ≤
Q∗(t). Consequently, M(t) ≤ M∗(t) for all t ≥ 0. In Step I, replacing (20) with
Q(t) = Y (t) − ct − inf0≤s≤t (Y (s)− cs), changing M∗(t) and Q∗(t) to M(t) and
Q(t), respectively, the rest remains unchanged. For Step II and III, since M(t) ≤
M∗(t) for all t ≥ 0, it is obtained that limt→∞ P

(
M(t) ≥

(
1+δ

θ log t
)β)

= 0 and

supt≥e E
[

M(t)
(log t)β

]p
< ∞. Thus the proof is complete.

4.2. Fractional Brownian queueing model

The Lp convergence stated in Theorem 3.2 has been shown in the proof of The-
orem 3.1. In the following, the almost sure convergence stated in Theorem 3.2 is
proved. An upper bound and a lower bound are derived in Proposition 4.1 and 4.2,
respectively. From these two propositions, limt→∞

M∗(t)
(log t)β =

(
1
θ

)β a.s. is concluded,
then the proof is extended to M(t). The following two lemmas are needed to prove
Proposition 4.1.

Lemma 4.3. Let θ and β be given in (10) and (11), respectively. Let δ ∈ (0, 1)
be fixed, then for almost every ω ∈ Ω, there exists a K (ω) < ∞ such that for
n ≥ K (ω),

Q∗(n)
(log n)β

<

(
1 + δ

θ

)β

a.s.(29)

Proof. Recall that Q∗(n) d= Q(∞) for all n. By the Borel-Cantelli lemma, it is suffi-
cient to prove that

∑∞
n=1 P

(
Q∗(n) ≥

(
1+δ

θ log n
)β)

< ∞. Choose ε ∈
(
0, δ

2(1+δ)θ
)
,

by Proposition 2.1, there exists N < ∞ such that
log P

(
Q∗(n)≥( 1+δ

θ log n)β
)

1+δ
θ log n

< −θ+ε
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for n ≥ N . Since ε < δ
2(1+δ)θ, then it can be verified that

∞∑
n=1

P

(
Q∗(n) ≥

(
1 + δ

θ
log n

)β
)
≤ N +

∞∑
N+1

e−(1+ δ
2 ) log n < ∞.

Fix an ω ∈ Ω for which (29) holds, then there exists a K(ω) such that

max0≤n≤btcQ∗(n, ω)
(logbtc)β

≤
max0≤n≤K(ω) Q∗(n, ω)

(logbtc)β
+ max

K(ω)≤n≤btc

Q∗(n, ω)
(log n)β

≤
max0≤n≤K(ω) Q∗(n, ω)

(logbtc)β
+
(

1 + δ

θ

)β

.

Let t →∞ and δ be arbitrarily small, then

lim sup
t→∞

max0≤n≤btcQ∗(n)
(logbtc)β

≤
(

1
θ

)β

a.s.(30)

Lemma 4.4. Suppose that σ > 0 and {BH(t), t ≥ 0} is a standard fractional
Brownian motion with H ∈ (0, 1). Let β be defined as in (11). Then

lim
t→∞

max0≤n≤btc
(
supn≤s≤n+1 σBH(s)− σBH(n)

)
(logbtc)β

= 0 a.s.

Proof. It is sufficient to show that for any ε > 0,

∞∑
btc=0

P

(
max0≤n≤btc

(
supn≤s≤n+1 σBH(s)− σBH(n)

)
(logbtc)β

> ε

)
< ∞.

Since supn≤s≤n+1 σBH(s)− σBH(n) d= sup0≤s≤1 σBH(s), it follows that

∞∑
btc=0

P

(
max0≤n≤btc

(
supn≤s≤n+1 σBH(s)− σBH(n)

)
(logbtc)β

> ε

)

≤
∞∑

btc=0

(btc+ 1)P
(

sup
0≤s≤1

σBH(s) > ε(logbtc)β

)
.(31)

From (3), it follows that

∞∑
btc=0

(btc+ 1)P
(

sup
0≤s≤1

σBH(s) > ε(logbtc)β

)

≤
∞∑

btc=0

4 exp
(
−CG,γε2

σ2
(logbtc)2β + log (btc+ 1)

)
.(32)

Since β > 1/2, there exists M such that for all btc > M ,

−CG,γε2

σ2
(logbtc)2β + log (btc+ 1) ≤ −2β logbtc.
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From (31) and (32), it can be obtained that

∞∑
btc=0

P

(
max0≤n≤btc

(
supn≤s≤n+1 σBH(s)− σBH(n)

)
(logbtc)β

> ε

)

≤
M∑

btc=0

4 exp
(
−CG,γε2

σ2
(logbtc)2β + log (btc+ 1)

)
+

∞∑
btc=M

4 exp (−2β logbtc)

≤
M∑

btc=0

4 exp
(
−CG,γε2

σ2
(logbtc)2β + log (btc+ 1)

)
+

∞∑
btc=M

4btc−2β < ∞.

Proposition 4.1. Let M∗(t) be defined in (8). Let θ and β be given in (10) and
(11), respectively. Then

lim sup
t→∞

M∗(t)
(log t)β

≤
(

1
θ

)β

a.s.

Proof. Since M∗(t) = sup
0≤s≤t

Q∗(s), then M∗(t) ≤ max
0≤n≤btc

(
sup

n≤s≤n+1
Q∗(s)

)
. From

(5), it follows that for s ∈ [n, n + 1],

Q∗(s) = σBH(s)− cs

+ max
(

sup
n≤r≤s

(
−σBH(r) + cr

)
, Q∗(n)−

(
σBH(n)− cn

))
.

Then it can be obtained that

sup
n≤s≤n+1

Q∗(s) ≤ Q∗(n) + sup
n≤s≤n+1

(σBH(s)− cs) + sup
n≤s≤n+1

(−σBH(s) + cs).

So

M∗(t) ≤ max
0≤n≤btc

Q∗(n) + max
0≤n≤btc

(
sup

n≤s≤n+1
σBH(s)− σBH(n)

)
+ max

0≤n≤btc

(
sup

n≤s≤n+1

(
−σBH(s) + σBH(n)

))
+ c.

Thus

M∗(t)
(log t)β

≤
max0≤n≤btcQ∗(n)

(logbtc)β
+

max0≤n≤btc
(
supn≤s≤n+1 σBH(s)− σBH(n)

)
(logbtc)β

+
max0≤n≤btc

(
supn≤s≤n+1

(
−σBH(s) + σBH(n)

))
(logbtc)β

+
c

(logbtc)β
,

as t →∞, from (30) and Lemma (4.4), the proposition follows.

The following lemma is needed to prove Proposition 4.2.

Lemma 4.5. Let M∗(t) be defined in (8) and θ, β be given in (10) and (11),
respectively. Let δ ∈ (0, 1) be fixed, then for almost all ω ∈ Ω, there exists an n0(ω)
such that for n ≥ n0(ω), M∗(n,ω)

(log n)β >
(

1−δ
θ

)β
.
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Proof. It is sufficient to check that
∑∞

n=1 P
(
M∗(n) ≤

(
1−δ

θ log n
)β)

< ∞. For a
fractional Brownian queueing model, it is known from [10, Equation (23)] that there
exists t0 < ∞ such that for t ≥ t0,

P (M∗(t) ≤ u(t)) ≤ exp

(
−c2t (u(t))h

2
e−θ(u(t))2−2H

)
,(33)

where u(t) is a function in terms of t, h = 2(1−H)2

H − 1 and c2 is a positive constant
in terms of c,H. Then from (33), for the fixed δ and a sufficiently large n, that is,
for all n ≥ bt0c+ 1, P

(
M∗(n) ≤

(
1−δ

θ log n
)β) ≤ exp

(
− c2

2

(
1−δ

θ

)βh
nδ (log n)βh

)
.

Thus it can be obtained that

∞∑
n=1

P

(
M∗(n) ≤

(
1− δ

θ
log n

)β
)

≤ (bt0c+ 1) +
∞∑

n=bt0c+1

P

(
M∗(n) ≤

(
1− δ

θ
log n

)β
)

≤ (bt0c+ 1) +
∞∑

n=bt0c+1

exp

(
−c2

2

(
1− δ

θ

)βh

nδ (log n)βh

)
< ∞.

Proposition 4.2. Let M∗(t) be defined in (8) and θ, β be given in (10) and (11),
respectively. Then lim inft→∞

M∗(t)
(log t)β ≥

(
1
θ

)β a.s.

Proof. From the definition of M∗(t), it can be observed that

M∗(t)
(log t)β

≥ M∗(btc)
(log(btc+ 1))β

=
M∗(btc)
(logbtc)β

(logbtc)β

(log(btc+ 1))β
.(34)

From Lemma 4.5, it is obtained that for a fixed δ ∈ (0, 1) and almost all ω ∈ Ω,
there exists t0(ω) such that for t ≥ bt0(ω)c,

M∗(btc)
(logbtc)β

>

(
1− δ

θ

)β

.(35)

Let t →∞ and δ be arbitrarily small, from (34) and (35), the proposition follows.

Proof of Theorem 3.2. From Proposition 4.1 and 4.2, it follows that

lim
t→∞

M∗(t)
(log t)β

=
(

1
θ

)β

a.s.

In the following, the proof is extended to M(t). For the upper bound, recall that
for all t ≥ 0, Q(t) ≤ Q∗(t), which implies that M(t) ≤ M∗(t) for t ≥ 0, then

lim sup
t→∞

M(t)
(log t)β

≤
(

1
θ

)β

a.s.(36)
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For the lower bound, rewrite M∗(t) = max0≤s≤t Q∗(s) as

M∗(t) = max
0≤s≤t

{
max

(
Q∗(0) + σBH(s)− cs, Q(s)

)}
= max

(
Q∗(0) + max

0≤s≤t

(
σBH(s)− cs

)
,M(t)

)
,

it can be observed that M(t) ≥ M∗(t) − Q∗(0) − maxs≥0

(
σBH(s)− cs

)
. Since

Q∗(0) d= maxs≥0

(
σBH(s)− cs

)
< ∞ a.s, then it can be derived that

lim inf
t→∞

M(t)
(log t)β

≥
(

1
θ

)β

a.s.(37)

Therefore from (36) and (37), the almost sure convergence of (14) follows.
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