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Abstract: For estimating a positive normal mean, Zhang and Woodroofe
(2003) as well as Roe and Woodroofe (2000) investigate 100(1 − α)% HPD
credible sets associated with priors obtained as the truncation of noninfor-
mative priors onto the restricted parameter space. Namely, they establish the
attractive lower bound of 1−α

1+α
for the frequentist coverage probability of these

procedures. In this work, we establish that the lower bound of 1−α
1+α

is ap-

plicable for a substantially more general setting with underlying distributional
symmetry, and obtain various other properties. The derivations are unified
and are driven by the choice of a right Haar invariant prior. Investigations
of non-symmetric models are carried out and similar results are obtained.
Namely, (i) we show that the lower bound 1−α

1+α
still applies for certain types

of asymmetry (or skewness), and (ii) we extend results obtained by Zhang and
Woodroofe (2002) for estimating the scale parameter of a Fisher distribution;
which arises in estimating the ratio of variance components in a one-way bal-
anced random effects ANOVA. Finally, various examples illustrating the wide
scope of applications are expanded upon. Examples include estimating para-
meters in location models and location-scale models, estimating scale para-
meters in scale models, estimating linear combinations of location parameters
such as differences, estimating ratios of scale parameters, and problems with
non-independent observations.

1. Introduction

For a lower bounded normal mean θ (say θ ≥ a) with unknown standard devi-
ation σ, and for independent observables X and W with X ∼ N(θ, σ2), W ∼
Gamma( r

2 , 2σ2), Zhang and Woodroofe [9] investigate 100× (1− α)% highest pos-
terior density (HPD) credible sets Iπ0(X, W ) associated with the (improper) prior
density π0(θ, σ) = 1

σ 1[a,∞)(θ)1(0,∞)(σ). Using the posterior density θ|(X, W ), which
brings into play a truncated Student pdf, they begin by constructing
Iπ0(X, W ) as the 100 × (1 − α)% Bayesian interval where the posterior density
is the largest.

Then, attractive features of the frequentist coverage of the Bayesian confidence
interval Iπ0(X, W ) are established. In particular, they show that

(1) Pθ,σ(Iπ0(X, W ) contains θ) ≥ 1 − α

1 + α
,
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for all (θ, σ) such that θ ≥ a and σ > 0.
For the case of a known standard deviation, similar developments were given

previously by Roe and Woodroofe [6]. Analogously to (1), they obtain that

(2) Pθ(IπU
(X) contains θ) ≥ 1 − α

1 + α
,

for all θ ≥ a; where IπU
(X) is the HPD credible set associated with the prior

“uniform” density πU (θ) = 1[a,∞)(θ). Interestingly, for the estimation of the ratio
of variance components in a one-way balanced model analysis of variance with
random effects, Zhang and Woodroofe obtain [8] results of the same nature.

The objective here is to present extensions of (1) and (2) to other probability
models, as well as generalizations to other restricted parameter space scenarios. A
notable feature resides in the universal resonance, for symmetric models and for
certain types of asymmetric models, of the lower bound 1−α

1+α . As well, additional
frequentist properties of the studied credible intervals are obtained. Although the
methods of proof follow for the most part those in the above mentioned papers of
Roe, Woodroofe and Zhang, it is particular interesting that the methods of proof
are unified. Moreover, we actually offer a useful simplification.

Inference problems for constrained parameter spaces has, for many years, held
the interest of statisticians. Correspondingly, as reviewed by Marchand and Straw-
derman [5] or van Eeden [7], it has been a fairly active field. Recently though, there
has been a renewed interest from the particle physicist community with high en-
ergy experiments leading to constrained parameter models (see for instance [2–4]),
and more specifically to the problem of setting confidence bounds in the presence
of constrained parameters. Actually, a vigorous and substantial debate has arisen,
focussing indeed on the choice of method, with an underlying Bayesian-frequentist
comparison of the respective advantages and disadvantages (e.g., [4]).

As an example for the normal model above with known variance, it has been
observed that the so-called “unified method” put forth by Feldman and Cousins [3];
which is a frequentist based method arrived at by the inversion of a LRT and which
leads to exact frequentist coverage; produces “quite short” intervals for small values
of X, in comparison at least to IπU

(X). Such observations are not surprising since
the methods differ in how they take into account the lower-bound constraint. As
argued by Zhang and Woodroofe [9] and Roe and Woodroofe [6], the HPD credible
intervals Iπ0(X, W ) and IπU

(X) are quite sensible ways to deal with the lower
bound constraint. If such is the case, then good frequentist coverage properties of
these Bayesian confidence intervals would render them more attractive, even from a
frequentist point of view. There lies as well an intrinsic interest in these procedures
given that the untruncated versions of the priors π0 and πU lead to the usual, and
introductory textbook, t and z two-sided 100× (1−α)% intervals; which of course
have exact coverage.

The paper is organized as follows. Symmetric models are treated in Section 2,
while asymmetric models are reserved for Section 4. The main finding of Section 2
relates to the choice of the truncation of the Haar right invariant prior for a large
class of problems, with underlying unimodality and symmetry, which leads to the
lower bound 1−α

1+α for the frequentist coverage probability of the associated HPD
credible set. Various other corollaries are available. For instance, an exact coverage
probability of 1

1+α for boundary parameter values is established, and the above
1−α
1+α lower bound is shown to hold for a Bayesian confidence interval which is
not HPD (see Remark 1, part c). Various examples, illustrating the wide scope
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of applications, are expanded upon in Section 3. The developments for asymmetric
models is more delicate requiring a categorization of different types of asymmetry.
In cases where the underlying models’ density is not monotone, the lower bounds
obtained in general are less explicit, but there is evidence that these lower bounds
can be quite large. Moreover, the last result (Corollary 2) actually recovers the
lower bound 1−α

1+α for certain types of underlying skewness, as a generalization of
the symmetric case.

2. Symmetric models

We first consider models with an observable scalar or vector X having densities
f(x; θ); θ ∈ A ⊂ �p; for which there exists a lower bound constraint of the form
τ(θ) ≥ 0; τ(θ) : �p → �. Moreover, we work with a structure, which is present
in previous work described above, and where there exists a linear pivotal quan-
tity of the form a1(X)−τ(θ)

a2(X) with underlying absolutely continuous, symmetric and
(strictly) unimodal density. An immediate example consists of symmetric and uni-
modal location densities f(x; θ) = f0(x−θ), with τ(θ) = θ ≥ 0 and the pivot X−θ.
Further examples are presented in Section 3.

We study HPD credible intervals Iπ0(X), based on (a1(X), a2(X)), associated
with a prior π0 obtained as the truncation onto the parameter space {θ : τ(θ) ≥ 0}
of a Haar right invariant density π(θ). To describe the construction of this interval
as well as several others that follow, it is useful to define the following quantities.

Definition 1. For a given continuous cumulative distribution function F , α ∈
(0, 1), y ∈ �, we define:

d1(y) = F−1(1 − αF (y)); d2(y) = F−1(
1
2

+
1 − α

2
F (y)); and

d(y) = max(d1(y), d2(y)).

In situations where we wish to emphasize the dependence of the above functions
on the pair (F, α), we will write instead d1F,α

, d2F,α
, and dF,α. To a large extent, the

frequentist properties which we establish below depend on the following property
of dF,α; which is easily established.

Lemma 1. For all (F, α), we have d(y) ≥ d(d0) = d0, with d0 = F−1( 1
1+α ). As

well, d(y) = d1(y) if and only if y ≤ d0.

Proof. A direct evaluation tells us that d0 = F−1( 1
1+α ) is a fixed point of d1, d2, and

hence of d. The result follows as d1(y) decreases in y, and d2(y) increases in y.

The following theorem is our first key result. Paired with Corollary 1, it will lead
to various applications which are generalizations of (1) and (2).

Theorem 1. For a model X|θ ∼ f(x; θ), and a parametric function τ(θ) : �p →
� such that τ(θ) ≥ 0 (constraint); suppose there exists a linear pivot T (X, θ) =
a1(X)−τ(θ)

a2(X) ; with a2(·) > 0; such that the distribution of T (X, θ)|θ is given by cdf G,
with pdf G′ which is symmetric and unimodal (without loss of generality, about 0).
Suppose further that there exists a prior π(θ) supported on the natural parameter
space such that:

(3) T (X, θ)|x =d T (X, θ)|θ;
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(i.e., the frequentist distribution of T (X, θ) for a given θ; which is independent of
θ and given by cdf G; matches the posterior distribution of T (X, θ) for any given
value x of X). Then, for the prior π0(θ) = π(θ)1[0,∞)(τ(θ)), we have:

(a) Iπ0(X) = [l(X), u(X)], with l(X) = max{0, a1(X)−dG,α(a1(X)
a2(X) )a2(X)} and

u(X) = a1(X) + dG,α(a1(X)
a2(X) )a2(X);

(b) Pθ(Iπ0(X) � τ(θ)) > 1−α
1+α , for all θ such that τ(θ) ≥ 0;

(c) Pθ(Iπ0(X) � 0) = 1
1+α , for all θ such that τ(θ) = 0;

(d) limτ(θ)→∞ Pθ(Iπ0(X) � τ(θ)) = 1 − α.1

Proof. (a) Denote hx, Hx, and H−1
x as the pdf, cdf, and inverse cdf of the

posterior distribution of τ(θ) under π0. Since T (X, θ) is a pivot, implying that
its distribution is, for any given θ, free of θ, we infer from (3) that, for θ ∼ π,
Pπ(T (X, θ) ≤ y|x) = G(y) , or equivalently Pπ(τ(θ) ≥ y|x) = G(a1(x)−y

a2(x) ) . By
definition of π0, this gives us for y ≥ 0

Hx(y) = Pπ0(τ(θ) ≤ y|x) = 1 − Pπ(τ(θ) ≥ y|x)
Pπ(τ(θ) ≥ 0|x)

= 1 −
G(a1(x)−y

a2(x) )

G(a1(x)
a2(x) )

;

and

H−1
x (∆) = a1(x) − a2(x)G−1((1 − ∆)G(

a1(x)
a2(x)

)).

Now, observe that the posterior density is unimodal, with a maximum at
max(0, a1(x)). From this, since our HPD credible interval may be represented as
{τ(θ) : hx(τ(θ)) ≥ c} for some constant c (e.g., [1], page 140), we infer that either:

(i) l(x) = 0 and u(x) = H−1
x (1 − α) = a1(x) − a2(x)G−1(α G(a1(x)

a2(x) ) ), or
(ii) l(x) = a1(x)− b(x) and u(x) = a1(x) + b(x); for some b(x) such that a1(x)−

b(x) > 0.

From the symmetry of G′, we have in (i): u(x) = a1(x) + a2(x)G−1 ×
(1 − α G(a1(x)

a2(x) ) ) = a1(x) + a2(x) d1G,α
(a1(x)

a2(x) ). For (ii), we obtain also with the
symmetry of G′ that:

Pπ0(a1(x) − b(x) ≤ τ(θ) ≤ a1(x) + b(x)|x) = 1 − α

⇔ Hx(a1(x) + b(x)) − Hx(a1(x) − b(x)) = 1 − α

⇔ G(
b(x)
a2(x)

) − G(− b(x)
a2(x)

) = (1 − α)G(
a1(x)
a2(x)

)

⇔ G(
b(x)
a2(x)

) =
1
2
[1 + (1 − α)G(

a1(x)
a2(x)

) ] (by symmetry)

⇔ b(x) = a2(x)G−1(
1
2

+
(1 − α)

2
G(

a1(x)
a2(x)

) ) = a2(x) d2G,α
(
a1(x)
a2(x)

).

Moreover, situation (ii) occurs iff

a1(x) > a2(x) d2G,α
(
a1(x)
a2(x)

) ⇐⇒ G(
a1(x)
a2(x)

) >
1
2

+
1 − α

2
G(

a1(x)
a2(x)

)
(4)

⇐⇒ a1(x)
a2(x)

> G−1(
1

1 + α
) = d0.

1More precisely, we are referring of course to a sequence of θ′is; i = 1, 2, . . . such the corre-
sponding τ(θi)’s have a limiting value of +∞.
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Finally, the result follows by combining (i) and (ii) and using Lemma 1.
(b) First, observe that the interval a1(X) ± dG,α(a1(X)

a2(X) ) a2(X) has the same
coverage probability as its subset Iπ0(X) for nonnegative values of τ(θ), since the
difference of these two sets can only help in covering negative values of τ(θ). Now,
along the lower bound d0 of Lemma 1 and the symmetry of G′, we have for θ’s such
that τ(θ) ≥ 0:

Pθ(Iπ0(X) � τ(θ)) = Pθ(a1(X) − a2(X)dG,α(
a1(X)
a2(X)

)

≤ τ(θ) ≤ a1(X) + a2(X)dG,α(
a1(X)
a2(X)

))

= Pθ(|T (X, θ)| ≤ dG,α(
a1(X)
a2(X)

))

> Pθ(|T (X, θ)| ≤ d0)

= 2G(d0) − 1 = 2G(G−1(
1

1 + α
)) − 1 =

1 − α

1 + α
.

(c) Since coverage at τ(θ) = 0 occurs if and only l(X) = 0, we have by (4) for
θ’s such that τ(θ) = 0:

Pθ(Iπ0(X) � 0) = Pθ(l(X) = 0) = Pθ(
a1(X) − 0

a2(X)
≤ d0) = G(d0) =

1
1 + α

.

(d) Since a1(X)−τ(θ)
a2(X) is a pivot, implying that “a1(X)

a2(X) → ∞” and G(a1(X)
a2(X) ) con-

verges to 1 in probability as τ(θ) → ∞, it follows that dG,α(a1(X)
a2(X) ) (equal to

G−1(1
2 + 1−α

2 G(a1(X)
a2(X) )) for large a1(X)

a2(X) ) converges in probability, as τ(θ) → ∞,
to G−1(1 − α

2 ). In view of the above, and as in part (b), we have

lim
τ(θ)→∞

Pθ(Iπ0(X) � τ(θ)) = lim
τ(θ)→∞

Pθ(|T (X, θ)| ≤ dG,α(
a1(X)
a2(X)

))

= Pθ(|T (X, θ)| ≤ G−1(1 − α

2
))

= 2G(G−1(1 − α

2
)) − 1 = 1 − α .

Observe how critical (3) is, namely in the last line of the proof of part (b) where
the identity G(G−1) arises. In fact, the “G−1” comes from the construction of
Iπ0(X) (hence the lhs of (3)), while the “G” comes from the frequentist coverage
assessment of Iπ0(X) (hence the rhs of (3)). Condition (3) may appear stringent but,
as shown below, it is attainable for a large class of problems if the prior π(θ) is Haar
right invariant (informally, a prior leaving the measure of sets constant under certain
transformations). For instance, consider a simple location model X ∼ f0(x−θ) with
known f0. Set Z = X − θ and consider the flat prior π(θ) = 1. It is easy to verify
that for any pair (x, θ), the distributions Z|θ and Z|x match with density f0(·),
which tells us that condition (3) holds here with the choice of the flat (right Haar
invariant also) prior. (It is important to note that the assumptions of symmetry
and unimodality are additional and specific to Theorem 1, and are not required for
the above illustration of (3). This is exploited namely in Section 4 (also see Remark
1, part c) where we make use of condition (3)).

The various applications (see Section 3) which will follow from Theorem 1 are
essentially all cases where the prior π(θ) is Haar right invariant (denoted πr(θ)) and
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the pivot satisfies the invariance requirement T (x, θ) = T (gx, ḡθ), for all x ∈ X ,
θ ∈ Θ, g ∈ G, ḡ ∈ Ḡ, with X , Θ, G, and Ḡ being isomorphic (“equivalent”). We
now pursue by showing how this invariance requirement and conditions lead to (3),
hence permitting the application of Theorem 1 for a given problem. We make use
of the following result (and notation) given in [1].

Lemma 2 (Result 3, p. 410 [1]). Consider an invariant decision problem for
which X , Θ, G, and Ḡ are all isomorphic. Then, for an invariant decision rule
δ(x) = x̃(a),

(5) Eπr(θ|x){L(θ, x̃(a))} = R(θ, δ(X)),

where πr(θ|x) is the posterior distribution with respect to the right invariant (gen-
eralized) prior density πr(θ).

Corollary 1. Suppose X , Θ, G, and Ḡ are all isomorphic, and that T (X, θ) is
a function for which T (x, θ) = T (gx, ḡθ), for all x ∈ X , θ ∈ Θ, g ∈ G, ḡ ∈ Ḡ.
Then condition (3) holds, that is Pθ[T (X, θ) ∈ A] = Pπr(θ|x)[T (X, θ) ∈ A] for each
measurable set A (where the lhs gives the frequentist distribution of T (X, θ) for
given θ, and the rhs gives the posterior distribution of T (X, θ) conditional on X for
the right invariant Haar measure).

Proof. It suffices to establish, for each measurable set A (in the range of T (X, θ)),
the identity:

(6) Pθ(T (X, θ) ∈ A) = Pπr(θ|x)(T (X, θ) ∈ A).

To do so, we apply Lemma 2 for loss LA(θ, d) = 1A(T (d, θ)), and for δ(X) = X.
With G = G∗, we indeed have that δ(X) is an equivariant decision rule since
δ(gX) = gX = g∗(X) = g∗(δ(X)). We also have by assumption on T :

LA(ḡ θ , g∗d) = LA(ḡ θ , g d) = 1A(T (g d , ḡ θ)) = 1A(T (d , θ)) = LA(θ, d),

which tells us that we have an invariant decision problem. Finally, applying Lemma 2
yields (6) and establishes the Corollary.

Now, prior to presenting various illustrations and applications of Theorem 1 (and
Corollary 1) in Section 3, we conclude this section by expanding on some interesting
aspects and implications of the results above.

Remark 1. (a) Exact values or very good approximations of the frequentist cov-
erage probability of Iπ0 , which seem difficult to establish, are not provided
explicitly by the results above. The exceptions are at the boundary where the
probability of coverage 1

1+α exceeds the nominal coverage probability 1 − α,
and when τ(θ) → ∞ where the coverage probability tends to 1−α. Numerical
evaluations are provided, for the normal models described in the introduc-
tion, by Roe and Woodroofe [6], and Zhang and Woodroofe [9]. Moreover,
as pointed out in these manuscripts for a normal model G, and as suggested
by the derivation above, the lower bound 1−α

1+α is, for a specific G, somewhat
conservative. But it has the advantage of being simple and derived in a uni-
fied fashion, applicable for a vast array of situations, and for quite general
symmetric and unimodal densities G′.

(b) In addition, the above development can be adapted to deal with the following
robustness issue. Indeed, suppose that the actual model is governed by sym-
metric pdf’s f1(x; θ), with corresponding cdf’s G1, in contrast to the bounds
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which are set using G. Then, following the proof of Theorem 1(b), above, we
have

Pθ(Iπ0(X) � τ(θ)) > P0(|T (X, 0)| ≤ d0) = 2G1(d0) − 1 ;

which provides lower bounds or envelopes depending on G1. Moreover, the
quantity 1−α

1+α remains a lower bound on the probability of coverage for a given
G1 as long as, simply,

(7) G1(d0) ≥ G(d0); (with d0 = G−1(
1

1 + α
)).

Here, various properties of families of distributions can be elucidated to give
realizations of (7). For instance, (7) holds as long as G′

1(y)
G′(y) is nonincreasing

in y; y > 0; or as a specific case if G′
1(y) = 1

σ G′( y
σ ), σ < 1, in other words f1

and f0 belong to the same scale family having increasing monotone likelihood
ratio in |y|.

(c) Interestingly, in the case of continuous but non-unimodal G′, the above de-
velopment remains valid with the difference that the interval Iπ0(X) is not
HPD, in other words Iπ0(X) is a credible interval with the same frequentist
properties as those given in Theorem 1, but it is not (necessarily) optimal in
the sense of being the credible region with the shortest length.

3. Examples

We enumerate a list of situations for which Theorem 1 applies. The list is also illus-
trative in the sense that we also specify components, such as the pivot T (X, θ) and
the prior π0 of Theorem 1. In all cases below with unimodal and symmetric den-
sity G′, the lower bound 1−α

1+α applies for the coverage probability of the confidence
interval Iπ0(X). In cases where the density G′ is unimodal but not symmetric, the
results of Section 4 will also apply to each one of the following situations as well.

(a) (location) X ∼ f0(x−θ); f0 unimodal and symmetric; τ(θ) = θ ≥ 0; T (X, θ) =
X−θ; π0(θ) = 1[0,∞)(θ). For example, this applies for a N(θ, σ) model known
σ and θ ≥ 0; but also to many other common univariate symmetric models
such as Logistic, Laplace, Cauchy and Student, etc.

(b) (location-scale) (X1, X2) ∼ f0(x1−θ1
θ2

, x2
θ2

); τ(θ) = θ1 ≥ 0; T (X, θ) = X1−θ1
X2

;
π0(θ) = 1

θ2
1(0,∞)(θ2)1[0,∞)(θ1). Observe that T (X, θ) is indeed a pivot here

as it can expressed as the ratio of the elements of the pair (X1−θ1
θ2

, X2
θ2

),
whose distribution is free of (θ1, θ2). An important case here arises with
the model Y1, . . . , Yn i.i.d. N(θ1, (θ2)2), and for which the sufficient statistic
(X1, X2) = (Ȳ ,

Sy√
n
) admits a location-scale model as above with the distrib-

ution of T (X, θ)|θ being Student with n − 1 degrees of freedom.
(c) (multivariate location) X = (X1, . . . , Xp) ∼ f0(x1 − θ1, . . . , xp − θp); τ(θ) =∑p

i=1 aiθi; T (X, θ) = (
∑p

i=1 aiXi) − τ(θ); π0(θ) = 1[0,∞)(τ(θ)). For example,
take X ∼ Np(θ, Σ); Σ known; in which case T (X, θ)|θ ∼ N(0, a′Σa), with
a′ = (a1, . . . , ap). An important case here (and in (d) as well) concerns the
estimation of the difference of two means θ1 − θ2, with the information that
θ1 ≥ θ2.

(d) (multivariate location-scale with homogeneous scale)
X = (X1, . . . , Xp, Xp+1) ∼ f0(x1−θ1

θp+1
, . . . ,

xp−θp

θp+1
,

xp+1
θp+1

); τ(θ) =
∑p

i=1 aiθi;



On the behavior of Bayesian credible intervals 119

T (X, θ) =
(
∑p

i=1
aiXi)−τ(θ)

Xp+1
; π0(θ) = 1

θp+1
1(0,∞)(θp+1)1[0,∞)(τ(θ)). For ex-

ample, consider (X1, . . . , Xp)′ and Xp+1 independent with (X1, . . . , Xp) ∼
Np((θ1, . . . , θp), θ2

p+1Ip) and X2
p+1 ∼ Gamma(r/2, 2θ2

p+1), in which case the

distribution of T (X, θ)|θ is distributed as {(
∑n

i=1 a2
i )

√
2
r}Tr, with Tr distrib-

uted Student with r degrees of freedom.
(e) (scale with support being a subset of �+ or �+) X ∼ 1

θ f1(x
θ ); τ(θ) = log(θ)−

log(a) ≥ 0; T (X, θ) = log(X
θ ) (i.e., a1(X) = log(X) − log(a), a2(X) = 1);

π0(θ) = 1
θ 1[0,∞)(τ(θ)). The constraint on τ(θ) corresponds to a lower bound

constraint on θ, and confidence intervals for τ(θ) provide confidence inter-
vals for θ, with corresponding frequentist coverage probabilities. As a specific
example, consider a lognormal model with scale parameter θ; θ ≥ a(> 0);
where X

θ ∼ eδZ , Z ∼ N(0, 1), and δ being a known and positive shape pa-

rameter. Here f1(y) = (
√

2πδy)−1 e−
(log y)2

2δ2 1(0,∞)(y), and the distribution of
T (X, θ)|θ is normal with mean 0 and standard deviation δ. Additional ex-
amples arise from scale models such that X

θ and (X
θ )−1 are equidistributed

which implies symmetry for the distribution of the pivot T (X, θ) = log(X
θ ).

Further specific examples where X
θ and (X

θ )−1 are equidistributed include the
half-Cauchy with f1(y) = 2

π (1+y2)−11(0,∞)(y), and Fisher distributions with
matching degrees of freedom in both numerator and denominator. On the
other hand, if X ∼ Gamma(α, θ) for instance, then the distribution of log(X

θ )
is not symmetric (for any α), but the results of Section 4 apply nevertheless
(see Example 2).

(f) (multivariate scale) (X1, . . . , Xp) ∼ (Πp
i=1

1
θi

) f1(x1
θ1

, . . . ,
xp

θp
); τ(θ) =∑p

i=1 ai log(θi). For instance in correspondence to the problem of estimating
the ratio of two scale parameters under the lower bound constraint θ2

θ1
≥ a,

τ(θ) = log(θ2) − log(θ1) − log(a); T (X, θ) = log(X2
θ2

) − log(X1
θ1

) − log(a) (i.e,
a1(X) = log(X2

X1
) − log(a), a2(X) = 1); π(θ) = 1

θ1θ2
1[a,∞)( θ2

θ1
). Specific exam-

ples here arise whenever X1 and X2 are independent with the distributions of
log(Xi

θi
); i = 1, 2; being symmetric (see part (e) above). Hence, Theorem 1 can

be applied for instance to estimating a lower-bounded ratio of two lognormal
scale parameters.

We note that none of the above situations requires independence between the
vector components (and see Example (g)). Theorem 1 applied to Example (a) and
(b) extends the results of Roe and Woodroofe [6], Zhang and Woodroofe [8, 9]
obtained for the normal case. The asymmetric case studied by Zhang and Woodroofe
(2002) which deals with a Fisher distribution is contained in part (e) (here Theorem
2 and perhaps Corollary 2 apply). Numerical displays of Iπ0(X) and of its coverage
probability, in comparison namely to other confidence interval procedures, are given
in the above papers, as well in [4].

The developments above are neither limited to samples of size 1 of X, nor to cases
where X is a sufficient statistic. Further applications are available by conditioning
on the maximal invariant V . For instance, the results are applicable for location
parameter families with densities f(x1 − θ, . . . , xn − θ), provided the conditional
distribution of X̄n =

∑n
i=1 Xi given the maximal invariant v = (x1−x̄n, . . . , xn−1−

x̄n) satisfies the conditions required for G (a.e. v). We conclude this section with
an illustration with spherically symmetric models, and specifically to a multivariate
student model.
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(g) (sample of size n with underlying spherically symmetric distribution) Suppose
the distribution of X = (X1, . . . , Xn) is spherically symmetric about (θ, . . . , θ)
with density f(x; θ) = h(

∑n
i=1(xi − θ)2), or equivalently,

(8) f(x; θ) = h(n(x̄n − θ)2 +
n∑

i=1

(xi − x̄n)2).

Considering now the pivot Z = T (X, θ) = X̄n − θ and the maximal invari-
ant V = (X1 − X̄n, . . . , Xn−1 − X̄n), Theorem 1 applies for the procedure
Iπ0(X, V ) which is constructed as in part (a) of Theorem 1 but with the cdfs
Gv associated with the conditional distributions Z|V = v, or equivalently by
virtue of (8) with the conditional pdfs

(9) G′
Z|v(z) ∝ h(nz2 + B(v));

with B(v) = v′(In−1 + 11′)v, 1′ = (1, . . . , 1); as B(v) =
∑n

i=1(xi − x̄n)2. The
key points being that the conditional distributions Z|V = v are free of θ, and
that the bounds on conditional coverage associated with Gv are free of v. As a
specific example, consider a multivariate Student model for X = (X1, . . . , Xn)
with d degrees of freedom, location parameter (θ, . . . , θ), scale parameter σ,
such that h(y) ∝ (1 + y

dσ2 )−( d+n
2 ) in (8). An evaluation of (9) tells us that

G′
Z|v(z) ∝ (1 + nz2+B(v)

dσ2 )−( d+n
2 ) ∝ (1 + z2

νσ′2 )−( ν+1
2 ), with ν = d + n − 1 and

σ′2 = σ2d+B(v)
n(d+n−1) . In other words, the conditional cdfs GZ|v, which are used

to construct Iπ0(X, v), are those of a univariate Student distribution with

degrees of freedom d + n − 1 and scale parameter σ′ =
√

σ2d+B(v)
n(d+n−1) .

4. Asymmetric models

Here, we investigate and extend the results of Section 2 to unimodal, but not
necessarily symmetric densities. However, as illustrated with the next example,
unified lower bounds on the frequentist coverage probability, such as those given in
Theorem 1, are not possible and conditions on the type of asymmetry are required.

Example 1. Consider an exponential location model with density e−(x−θ)1(0,∞)(x−
θ); and θ ≥ 0. For the uniform prior π0(θ) = I[0,∞)(θ), the (1 − α) × 100% HPD
credible interval is given by Iπ0(X) = [l(X), u(X)], with l(x) = log(1 − α + αex)
and u(x) = x. Observe that the interval never covers the value θ = 0, so that the
coverage probability P0(Iπ0(X) � 0) is equal to 0. Hence, a very different situation
arises in comparison to the case of symmetric G′s. Moreover, it is easy to establish
that

Pθ(Iπ0(X) � θ) = Pθ(θ ≥ log(1 − α + αeX))

= Pθ(X ≤ log(1 +
eθ − 1

α
))

= 1 − e−( log(1+ eθ−1
α )−θ )

= (1 − α)
eθ − 1

α + eθ − 1
.
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Hence, the coverage probability can be quite small and never exceeds the nominal
coverage level 1− α. 2 Finally, as one may anticipate, the same characteristics will
arise for more general models with a property of monotone decreasing densities (see
Theorem 2, part b).

As in Theorem 1 and Corollary 1, the results below apply to models X|θ ∼ f(x; θ)
and for estimating τ(θ) under the constraint τ(θ) ≥ 0.

Assumption 1. We assume again the existence of a linear pivot T (X, θ) =
a1(X)−τ(θ)

a2(X) such that −T (X, θ) has cdf G, with (strict) unimodal G′. Moreover,
we assume without loss of generality that the density G′ has a mode at 0.

The confidence interval procedures studied are HPD credible based on (a1(X),
a2(X)), and associated with the truncation π0 of the Haar right-invariant πr onto
the constrained parameter space; i.e, π0(θ) = πr(θ)I[0,∞)(τ(θ)). We pursue with
the introduction of various quantities and related properties which will help in
describing the (1− α)× 100% HPD credible interval Iπ0(X), as well as some of its
frequentist properties. In particular, as illustrated above in the contrasting results
of Example 1 and of Theorem 1, and since the frequentist properties which we
can hope to establish depend on the type of asymmetry present, we breakdown, in
Definition 4 and Corollary 2, these asymmetries into different relevant types. This
is achieved in part with the introduction of the function UG,α in Definition 3 below;
which will also relate to familiar qualitative features such as skewness to the right
(see Corollary 2).

Definition 2. For cdf G with unimodal at 0 density G′, and ∆ ∈ (0, 1), define
γ1(∆) and γ2(∆) as values that minimize the length |γ1 + γ2| among all intervals
[−γ1, γ2] such that G(γ2) − G(−γ1) = ∆.

Observe that the above defined γ1(∆) and γ2(∆) are indeed uniquely determined,
and nonnegative given the unimodality. Furthermore, note that if G(0) ∈ (0, 1), then
we also have G′(−γ1(∆)) = G′(γ2(∆)).

Definition 3. Let 1 − α ∈ (0, 1) and G be a cdf with unimodal density G′ with a
mode at 0. Let

(10) UG,α(y) = −y + γ1((1 − α)(1 − G(−y)));

be defined for values y such that −y belongs to the support of G′, (i.e., y ∈
(−G−1(1),−G−1(0))).

Definition 4. Let 1 − α ∈ (0, 1). Let C1, C2, and C3 be classes of cdfs G with
unimodal at 0 densities G′ such that

C1 = {G : there exists an interior point y0 ∈ (−G−1(1),−G−1(0))
such that UG,α(y0) = 0}

C2 = {G : UG,α(y) ≥ 0 for all -y on the support of G’}
C3 = {G : UG,α(y) ≤ 0 for all -y on the support of G’}

Lemma 3. In the context of Definition 4, the classes C1, C2, and C3 can alter-
natively be described as C1 = {G : G(0) ∈ (0, 1)}, C2 = {G : G(0) = 0}, and
C3 = {G : G(0) = 1}.

2On the other hand, the coverage rises fast as θ increases and attains, for instance, Theorem
1’s lower bound 1−α

1+α
as soon as θ = log 2.
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Note. In other words, the class C2 consists of decreasing densities G′; the class C3

consists of increasing densities G′, and C1 consists of densities G′ which increase on
�− and decrease on �+.

Proof. First observe that

UG,α(y)|y=−G−1(0) = G−1(0) + (γ1(1 − α)) ≤ 0,

with equality iff G−1(0) = γ1(1 − α) = 0, i.e., G(0) = 0. Similarly,

UG,α(y)|y=−G−1(1) = G−1(1) + γ1(0) = G−1(1) ≥ 0,

with equality iff G(0) = 1. From these properties, we infer that

(i) G(0) ∈ (0, 1) ⇒ G ∈ C1;
(ii) G ∈ C2 ⇒ G(0) = 0;
(iii) G ∈ C3 ⇒ G(0) = 1.

Furthermore, if G(0) = 0, then γ1 = 0 and for such G’s: UG,α(y) = −y ≥ 0 for all
values y ≤ −G−1(0) = 0, implying that

(iv) G(0) = 0 ⇒ G ∈ C2.

Also, if G(0) = 1, then −γ1(1 − α) = G−1(α) and G(−γ1((1 − α)(1 − G(−y))) =
α(1 − G(−y)) + G(−y) ≥ G(−y); telling us that UG,α(y) ≤ 0 for all y ≥ −G−1(1),
and implying that

(v) G(0) = 1 ⇒ G ∈ C3.

Finally the converse of (i) follows from (iv) and (v).

Although y0 depends on (α, G), we will not stress this dependence unless neces-
sary. Here are some useful facts concerning Definition 4’s y0 .

Lemma 4. (a) For G ∈ C1, we have UG,α(y) < 0 iff y > y0;
(b) Furthemore, we have

(11) γ2((1 − α)(1 − G(−y0)) = G−1((1 − α) + αG(−y0)).

Proof. (a) We prove the result for y > y0 only, with a proof for y < y0 following
along the same lines. We want to show that UG,α(y) < 0 for y > y0, i.e.,

(12) −y < −γ1((1 − α)(1 − G(−y))).

Define

A = G(−y0) − G(−y)
B1 = G(−y0) − G(−γ1((1 − α)(1 − G(−y)))) and
B2 = G(γ2((1 − α)(1 − G(−y)))) − G(γ2((1 − α)(1 − G(−y0)))).

Observe that A > 0 since −y < −y0. Since the quantities γ2(z), 1 − G(−z), and
G(z) are all increasing in z, it follows as well that B2 ≥ 0. Now, with the definition
of γ1 and γ2, and the identity UG,α(y0) = 0, we have

B1 + B2 = (1 − α)(1 − G(−y)) + G(−y0) − G(γ2((1 − α)(1 − G(−y0))))
= (1 − α)(1 − G(−y))

+ G(−γ1((1 − α)(1 − G(−y0)))) − G(γ2((1 − α)(1 − G(−y0))))
= (1 − α)(1 − G(−y)) − (1 − α)(1 − G(−y0))
= (1 − α)(G(−y0) − G(−y)) = (1 − α)A < A (since A > 0).
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Finally, the inequality B1 < A is equivalent to (12) and establishes part (a) for
y > y0.

(b) Using the identity UG,α(y0) = 0 and Definition 2, we have directly

−y0 = −γ1((1 − α)(1 − G(−y0)))
⇔ G(−y0) = G(−γ1((1 − α)(1 − G(−y0))))
⇔ G(−y0) = G(γ2((1 − α)(1 − G(−y0)))) − (1 − α)(1 − G(−y0))
⇔ 1 − α + αG(−y0) = G(γ2((1 − α)(1 − G(−y0))));

which is indeed equivalent to (11).

Lemma 5. Under Assumption 1,

(a) the (1 − α) × 100% HPD credible interval Iπ0(X) is of the form [l(X), u(X)]
with either:

(13) (i) l(x) = 0, u(x) = a1(x) + a2(x)G−1(1 − α + αG(−a1(x)
a2(x)

));

or

(ii) l(x) = a1(x) − a2(x)γ1((1 − α)(1 − G(−a1(x)
a2(x)

))),
(14)

u(x) = a1(x) + a2(x)γ2((1 − α)(1 − G(−a1(x)
a2(x)

)));

(b) Furthermore, (i) occurs iff G ∈ C2 or G ∈ C1 with a1(x)
a2(x) ≤ y0; (and equivalently

(ii) occurs iff G ∈ C3, or G ∈ C1 with a1(x)
a2(x) ≥ y0).

Proof. Part (b) follows from (14), the definition of the classes Ci; i = 1, 2, 3; and
Lemma 4. To establish part (a), proceed as in the proof of Theorem 1 by denoting
Hx, and H−1

x as the cdf, and inverse cdf of the posterior distribution of τ(θ) under
π0. Since −T (X, θ) is a pivot with cdf G, implying that its distribution for any
given θ is free of θ, we infer from (3) that, for θ ∼ π, Pπ(T (X, θ) ≥ y|x) = G(−y) ,

or equivalently Pπ(τ(θ) ≤ y|x) = G(y−a1(x)
a2(x) ) . By definition of π0, this gives us for

y ≥ 0,

Hx(y) = Pπ0(τ(θ) ≤ y|x) =
Pπ(0 ≤ τ(θ) ≤ y|x)

Pπ(τ(θ) ≥ 0|x)
=

G(y−a1(x)
a2(x) ) − G(−a1(x)

a2(x) )

1 − G(−a1(x)
a2(x) )

,

and

H−1
x (∆) = a1(x) + a2(x)G−1(∆ + (1 − ∆)G(−a1(x)

a2(x)
)).

Now, observe that the posterior density τ(θ)|x (∝ G′(y−a1(x)
a2(x) )I[0,∞)(y)) is uni-

modal, with a maximum at max(0, a1(x)). Hence, we must have either: (i) l(x) =
0, u(x) = H−1

x (1 − α) yielding (13); or (ii)

Hx(u(x)) − Hx(l(x)) = 1 − α, with u(x) − l(x) minimal

⇐⇒ G(
u(x) − a1(x)

a2(x)
) − G(

l(x) − a1(x)
a2(x)

) = (1 − α)(1 − G(−a1(x)
a2(x)

)),

with u(x) − l(x) minimal,

yielding (14) by definition γ1 and γ2 (see Definition 2).
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Theorem 2. Under Assumption 1, we have

(a) For G ∈ C2, Pθ(Iπ0(X) � τ(θ)) > 1 − α for all θ such that τ(θ) ≥ 0; and
Pθ(Iπ0(X) � 0) = 1 for all θ such that τ(θ) = 0;

(b) For G ∈ C3, Pθ(Iπ0(X) � τ(θ)) < 1 − α for all θ such that τ(θ) ≥ 0; and
Pθ(Iπ0(X) � 0) = 0 for all θ such that τ(θ) = 0;

(c) For G ∈ C1, Pθ(Iπ0(X) � τ(θ)) > (1 − α)(1 − G(−y0)) for all θ such that
τ(θ) ≥ 0; and Pθ(Iπ0(X) � 0) = 1−G(−y0) for all θ such that τ(θ) = 0 (with
y0 given in Definition 4);

(d) For unimodal G′, we have limτ(θ)→∞ Pθ(Iπ0(X) � τ(θ)) = 1 − α.

Proof. (a) If G ∈ C2, Iπ0(X) is given by (13) with probability one. This implies
that Pθ(Iπ0(X) � 0) = 1 for all θ. As well, u(x) ≥ a1(x)+a2(x)G−1(1−α) implying
that

Pθ(Iπ0(X) � τ(θ)) = Pθ(τ(θ) ≤ u(X))
≥ Pθ(τ(θ) ≤ a1(X) + a2(X)G−1(1 − α))

= Pθ(
τ(θ) − a1(X)

a2(X)
≤ G−1(1 − α)) = G(G−1(1 − α)) = 1 − α.

(b) If G ∈ C3, Iπ0(X) is given by (14) with probability one. This implies that
Pθ(Iπ0(X) � 0) = 0 for all θ (in particular for those θ such that τ(θ) = 0). As well,
since l(x) = a1(x)−a2(x)γ1((1−α)(1−G(−a1(x)

a2(x) ))) ≥ l(x) = a1(x)−a2(x)γ1(1−α),
and similarly u(x) ≤ a1(x) + a2(x)γ2(1 − α), we infer that

Pθ(Iπ0(X) � τ(θ)) ≤ Pθ(a1(X) − a2(x)γ1(1 − α)
≤ τ(θ) ≤ a1(X) + a2(X)γ2(1 − α))

= Pθ(−γ(1 − α) ≤ τ(θ) − a1(X)
a2(X)

≤ γ2(1 − α)) = 1 − α.

(c) First, given that coverage at τ(θ) = 0 occurs if and only if l(X) = 0, we have
for θ such that τ(θ) = 0

Pθ(Iπ0(X) � 0) = Pθ(l(X) = 0) = Pθ(
a1(X) − 0

a2(X)
≤ y0) = 1 − G(−y0).

For the more general lower bound, the idea here is the same as the one in Theorem
1, namely to work with a subset (with probability one) I ′(X) of Iπ0(X) for which
the coverage of I ′(X) is equal to (1 − α)(1 − G(−y0)). To achieve this, we first
establish that

(15) u(x) ≥ a1(x) + a2(x)γ2((1 − α)(1 − G(−y0))).

Indeed, if a1(x)
a2(x) ≤ y0, then u(x) ≥ a1(x) + a2(x)G−1((1 − α + αG(−y0)) = a1(x) +

a2(x)γ2((1 − α)(1 − G(−y0))), using (11). On the other hand, if a1(x)
a2(x) ≥ y0, then

(15) follows directly as both γ2(z) and 1 − G(−z)) increase with z. Similarly, if
a1(x)
a2(x) ≥ y0, l(x) is bounded above by a1(x) − a2(x)γ1((1 − α)(1 − G(−y0))). The
above bounds on l(x) and u(x) imply that the coverage probability of Iπ0(X) is
bounded below by the coverage probability of [max(0, a1(x) − a2(x)γ1((1 − α)(1 −
G(−y0))), a1(x) + a2(x)γ2((1 − α)(1 − G(−y0)))]; or equivalently by the coverage
probability of

I ′(X) = [a1(x)−a2(x)γ1((1−α)(1−G(−y0))), a1(x)+a2(x)γ2((1−α)(1−G(−y0)))].
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But finally, using the definition of γ1 and γ2, assumption (3), and the fact that
−T (X, θ)|θ) has cdf G, we have Pθ(Iπ0(X) � τ(θ)) > Pθ(I ′(X) � τ(θ)), with
Pθ(I ′(X) � τ(θ)) = Pθ(a1(X) − a2(X)γ1((1 − α)(1 − G(−y0))) ≤ τ(θ) ≤ a1(X) +
a2(X)γ2((1 − α)(1 − G(−y0))) = Pθ(−γ1((1 − α)(1 − G(−y0))) ≤ τ(θ)−a1(X)

a2(X) ≤
γ2((1 − α)(1 − G(−y0))) = (1 − α)(1 − G(−y0).

(d) The result may be established along the lines of part (d) of Theorem 1.

The next result is a specialization of Theorem 2 to cases where the density G′ is
skewed to the right, or in other words the density of the pivot a1(X)−τ(θ)

a2(X) is skewed
to the left. Namely, the following result demonstrates that the lower bounds on the
frequentist coverage probability for symmetric densities G′ also apply necessarily
to right-skewed densities G′.

Corollary 2. Under the conditions of Theorem 2 suppose further that

(16) G(−γ1(1 − z)) ≤ z

2
; for all z ∈ (0, 1];

(or equivalently G(−γ1(1−z)) ≤ 1−G(γ2(1−z)) by definition of γ1 and γ2). Then,
under the assumptions of Theorem 2, we have

(a) Pθ(Iπ0(X) � τ(θ)) > 1−α
1+α for all θ such that τ(θ) ≥ 0;

(b) Pθ(Iπ0(X) � 0) ≥ 1
1+α for all θ such that τ(θ) = 0.

Proof. If G ∈ C2, the lower bounds hold of course by virtue of Theorem 2. If G ∈ C1,
then we must have

G(−y0) = G(−γ1(1 − α)(1 − G(−y0))) ≤
1 − (1 − α)(1 − G(−y0))

2
,

with the inequality following from (16). The above now tells us that 1−G(−y0) ≥
1

1+α , and parts (a) and (b) follow from Theorem 2. There remains to show that
G ∈ C3 is incompatible with condition (16). But, if G ∈ C3 (i.e., G(0) = 1), then
(16) cannot hold for z = 1 as G(−γ1(0)) = G(0) = 1 > 1

2 .

Remark 2. Corollary 2 includes the particular case of symmetry with equality in
(16) and, therefore, can be viewed as a generalization of the results of Theorem
1. The lower bounds on coverage probability given in Theorem 2 and Corollary
2 correspond to the ones given by Zhang and Woodroofe [8] for a lower bounded
scale parameter of a Fisher distribution, and arising in the estimation of the ratio of
variance components in a one-way balanced model analysis of variance with random
effects.

Example 2 (Lower bounded Gamma scale parameter). As a followup to
Example (e) of Section 3, consider a Gamma(r, θ), θ ≥ a > 0, where X|θ ∼ 1

θ f1(x
θ )

with f1(y) = yr−1e−y

Γ(r) 1(0,∞)(y). Considering the cdf G of −(log(X
θ ) − m), where m

is chosen in such a way that G′ has a mode at 0, which is required in Lemma 5 and
Theorem 2, we obtain that −(log(X

θ ) − log r) has pdf

G′(y) =
rr

Γ(r)
e−r(y+e−y),

and cdf G(y) = P (Gamma(r, 1) ≥ re−y). For instance, with the exponential case
(r = 1), we have G(y) = e−e−y

. Definition 2’s γ1(∆) and γ2(∆) satisfy the equation
−γ1(∆) + eγ1(∆) = γ2(∆) + e−γ2(∆) with G(γ2(∆))−G(−γ1(∆)) = ∆, but are not
available explicitly. Hence, as will be the case in general, neither the lower and upper
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bounds l(X) and u(X) of Lemma 5, nor Definition 4’s y0, are available explicitly.
However, Theorem 2 (parts c and d) do apply. For instance, with r = 3, α =
0.05, a numerical evaluation yields y0 ≈ 0.912968 and 1 − G(−y0) ≈ 0, 979353,
which gives the exact coverage at the boundary θ = a, and which tells us that
Theorem 2’s lower bound on coverage (1−α)(1−G(−y0)) is approximatively equal
to (0.95)(0.979353) = 0.930386. We were unable to establish but believe that (16)
holds for the cdf’s of this example, which would permit the application of Corollary
2, but observe that the lower bound of 0.930386 actually exceeds Corollary 2’s lower
bound of 0.95

1.05 = 0.904762.

We conclude by pointing out that the results of this paper do leave open several
questions concerning further coverage probability properties of the Bayesian confi-
dence interval Iπ0(X). Namely, as seen in the above example, it would be desirable
for the quantity 1 − G(−y0) of Theorem 2 to be made more explicit. Further nu-
merical evaluations of 1 − G(−y0), which also suggest quite high lower bounds on
coverage, are given by Zhang and Woodroofe [8] in their particular case of a lower
bounded Fisher distribution scale parameter.
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