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Recently, some versions of the KKM theorem in topological spaces without
linear structures have been considered by Bardaro and Ceppitelli [1], [2], Chang
and Ma [5], 6], Park [13], Bielawski [3], Horvath [11], Shin and Tan [14] and Cheng
and Lin [7]. The purpose of this paper is to obtain some more geneial topological
types of the KKM theorem and Fan's matching theorem. As applications, we
shall utilize our main theorems to study the minimax problems and the existence
of solutions for a class of generalized variational inequalities. Our results not only
generalize the corresponding results of Ky Fan [8], [9], Park [13], Bardaro-Ceppitelli
[1], [2], Bielawski [3] and Browder [4] but also contain the main results of Lin et al.
[10], [12] and Wu [15].

Throughout this paper, we assume that topological spaces X and Y are Haus-
dorff spaces.

DEFINITION 1. Let X be a topological space, {Ca} be a family of nonempty
connected subsets of X, indezed by all finite subsets of X, such that A C Cp. The
ordered pair (X,{Ca}) is called a W-space.

Note that Hausdorff topological linear spaces, convex spaces, contractible spaces
and connected spaces are special cases of W-spaces. Moreover, if (X,{['a}) is a
H-space with A C T'4 ([1], [2]), then (X, {T'4}) is also a W-space.
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Let C(X,Y) = {S§: X — Y : S is a continuous mapping} and C*(X,Y) =
{§ € C(X,Y) : 5" maps each connected subset of Y into a such subset of X}.

DEFINITION 2. Let (X,{Ca}) be a W-space.
(1) F: X — 2Y is called a W-KKM mapping if for any z1,z, € X

2
F(Clayany) € |J F(=).
i=1

(2) A subset D of X is called a W-convez set with respect to a subset C of X if
Jor a finite subset A of C, Cy C D. In particular, if C = D, then D is said to be
W-convez.

(3) A subset L of X is said to be W-compact if for any finite subset A of X,
there exists a compact W-conver set Ly such that LUA C Lg4.

(4) F : X - 2¥ is called a generalized W-KKM mapping (briefly, a GW-
KKM), if there exists a S € C*(X,Y) such that S™'F : X — 2X s ¢ W-KKM
‘mapping.

1. Main results

Now, we give the topological versions of the KKM theorem and the matching
theorems:

THEOREM 1. Let (X,{Ca}) be a W-space, Y be a topological space and F :
X — 2Y be a W-KKM mapping. If the following conditions are satisfied:

(i) F(z) is nonempty open (or closed) for each z € X,
(i) F~(y) is open for eachy €Y,
(iii) for any finite subset A of X, [\ ¢4 F(x) is connected,
then
(1) the family {F(x) : z € X} of sets F(z) has the finite intersection property.
(2) If for each z € X, F(x) is closed and there exists an zo € X such that
F(zo) is compact, then \,cx F(z) # 0.

PrROOF. We prove the conclusion (1) by induction. By the condition (i),
F(z) # @ for all z € X. Suppose that for any n elements of {F(z) :z € X},n > 2,
their intersection is nonempty. Now, we shall prove that for any n + 1 elements of
{F(z) : z € X}, their intersection is also nonempty. Suppose the contrary, then
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there exists some subset {z,...,%Zs,Zp+1} in X such that

n+1

n F(.’L’,) = @
i=1

Letting H = ﬂ:”'; F(z;), by the assumption of induction and the condition (iii),

we see that H N F(x;),i = 1,2, is nonempty connected and
(1.1) (HNF(z1))N(HN F(z2)) = d.
Since F' is a W-KKM mapping, for the set {z1,z2}, we have
F(Clz; 5)) C F(z1) U F(z3).

Therefore we have

HnF(C{zl,zz}) - (HnF(.'L‘]_)) U(H ﬂF(l‘z))
Let

Ei={ze¢ C{zl,mz} :(HNF(z)) C (HNF(21)},

Ey = {27 (S C{:ﬁ,mz} : (HOF(.’II)) C (HnF(Z‘z)}
Since z1 € E; and z3 € E3, E; and E; both are nonempty. By the conditions (i)
and (1.1), we know that C,, 5,3 = E1 U E;. Because C{z,,2;} is connected and
Ey N E; =, we know that either E; or E2 must not be a closed set. Without loss

of generality, we can assume that Ej is not closed. Taking zo € (E3 \ E5)n Ey,
then there exists a net {z4}aer in E such that z, — zp. Since zg € Eq,

(1.2) HNF(zo) C HNF(z1).
Since z,, € Es,
(1.3) HNF(z,) CHNF(x2)

for all o € I. It follows from the induction hypothesis that H N F(zg) # 0. Take
Yo € HNF(zo). By (1.2), yo € HN F(z;). On the other hand, from (1.1) we know
Yo € HN F(z;) and hence go & F(z2). It follows from (1.3) that yo ¢ F(z,) for all
a € I. Hence we have
{Zataer C X\ F(yo)-

In view of the condition (ii), we know that X \ F~*(yo) is closed and z, — z,, and
hence zo € X \ F~(yo), i-e., yo € F(zo). This contradicts yo € H N F(z0). This
implies that {F(z) : z € X} has the finite intersection property.

Next we prove the conclusion (2). In fact, by the assumption, for each £ € X ,
F(z) is nonempty closed and there exists zo € X such that F(z4) is compact.
Therefore {F(z) N F(2o) : + € X} is a family of closed sets in F(zo) which has
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the finite intersection property. Consequently, {F(z) N F(zg) : z € X} has the
nonempty intersection property. Thus we have

0# () (F(z)NF(zo)) = [ Fla)
zeX T€X
This completes the proof.
Recall that a set U C X is compactly open (resp., compactly closed) if for any
compact set K C X, UN K is open (resp., closed).

THEOREM 2. Let (X,{Ca}) be a compact W-space, Y be a topological space,
G : X — 2 be a mapping with compactly open values, and for allz € X, G(z) # Y.
Suppose further that the following conditions are satisfied:
(i) for each y € Y,G(y) is closed,
(ii) for any finite subset A of X, Y \ |, c4 G(z) is connected,
(iil) G(X) =Y.
Then for any S € C*(X,Y), there exist 21,22 € X, To € Ciy, 2,) and 2o €
X\ S7'G(zp) such that

S(z0) € [} G(zs).

i=1

PROOF. Let F(z) =Y \ G(z), z € X. Then F : X — 2Y is a mapping with
nonempty compactly closed values. If the conclusion of this theorem does not hold,
then there exists S € C*(X,Y) such that for any z;,z3 € X,

5@ ¢ (16 =Y\ U Fiz)

for all z € Clg, 4,3 and z € X \ S7'G(z). Hence z ¢ X \ UL, S7'F(z;), i,
z €L, S~1F(z;). Therefore for all z € C(y, 4,}, we have

2
X\ S7'G(z) c | S F(zi),
i=1
2

or STYY\G(z))=S'F(z) C U S71F(x;)
i=1
for all z € C{g, 4,}. This implies that S™'F : X — 2% is a W-KKM mapping.
On the other hand, since S is continuous and F : X — 2¥ is a mapping with
nonempty compactly closed values, S~F : X — 2% is a mapping with nonempty
closed values. By the condition (ii) we know that the mapping S~'F satisfies the
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condition (iii) in Theorem 1. On the other hand, since

Fly)={zeX:yeF(z)}
—{se Xy ¢G)
={zeX:z¢ G ()}
=X\G7'(y)

for all y € Y, by the condition (i), we know that F~!(y) is an open set for ally € Y.

Therefore (S™'F)~'(2) = F~'(8(2)) is open for each z € X, and so the mapping

S~F : X — 2% satisfies the condition (ii) in Theorem 1. Thus by Theorem 1,

we know that (,cx ST'F(z) # 0 and so (,cx F(z) # 0, i.e., G(X) # Y. This

contradicts the condition (iii). Therefore, the conclusion of Theorem 2 is proved.
By the same way as in Theorem 2, we can prove the following :

THEOREM 3. Let (X,{C4}) be a compact W-space, Y be a topological space,
G : X — 2Y be a mapping with nonempty compactly open values and for allz € X,
G(z) # Y. Suppose further that the following conditions are satisfied:

(i) for ally € Y,G (y) is closed,
(ii) for any finite set A C X, X \ (N ea S™'G(z) is connected, where S €
C(X,Y) is a given mapping,

(ifi) G(X) =Y.

Then there exist {z1,22} C X, 2o € Clg,,5,}, 20 € X \ S™1G (o) such that

2

S(z0) € [ F(zs).

i=1

THEOREM 4. Let (X,{C4}) be a W-space, Y be a topological space, G : X — 2Y
be a mapping with nonempty compactly open values and S € C(X,Y). If the
following conditions are satisfied :

(i) G~(y) is closed for ally € Y,
(i) G(X) =Y,
(iii) there exist a W-compact set L C X and a compact set K C Y such that
Y\G(L) C K and for any compact W-convez subset Xo with L C Xy C X,
and for any finite subset A C Xo, Xo \ U,c4 S7'G(z) is connected,

then there ezist {z1,22} C X, 7o € C{g, 2,}, and 20 € X \ S7'G(z0) such that

S(z) € [) G(=s).
=1
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PRrooF. First, if G(L) = Y, then by the W-compactness of L, there exists a
compact W-convex set Ly with L C L;. Therefore we have G(L;) = Y. By the
W-convexity of L;, we know that (Ly, {Canr,}) is a compact W-space. Thus, by
Theorem 3, the conclusion is proved.

Next, if G(L) #Y, then Y \ G(L) # . By the assumption, we know that K is
compact,

(1.4) Y\G(L)CKCY =G(X)

and for any r € X, G(z) is compactly open. Hence there exists {z},...,z/,} € X
such that K C |J-; G(z}). It follows from (1.4) that there exists {z1,...,2Z.} C
X \ L such that

Y\G() c U G(x;).

Let M = {z1,...,%,}. By the W-compactness of L, there exists a compact W-
convex set Lyr O LU M such that G(Ly) =Y and (Lm,{Cancr,, }) is a compact
W-space. Hence by Theorem 3, the conclusion of Theorem 4 is proved.

THEOREM 5. Let (X,{Ca}) be a compact W-space, ¥ be a topological space,
F: X — 2Y be a mapping with nonempty compactly closed values. If the following
conditions are satisfied:

(i) F~Y(y) is open for eachy €Y,
(ii) for any finite set A C X, [,c4 F(x) is connected.

(iii) F' is a GW-KKM mapping with nonempty values,
then

ﬂ F(z) #£0.

z€X

PROOF. Suppose that (,cx F(z) = 0. Let G(z) =Y \ F(z) for all z € X.
Then G : X — 2Y is a mapping with compactly open values and

GX)=|JG@)=|JW\F@)=Y\|J Flz)=Y.

z€X z€X z€EX
On the other hand, since foreachy € Y
Gl y)={reX : yeGlx)}={z€X : y¢ F(z)} = X\ F }y),

by the condition (i), G~!(y) is closed. Since F': X — 2¥ is a GW-KKM mapping,
there exists a § € C*(X,Y) such that S™1F : X — 2% is a W-KKM mapping. By
the condition (ii), we know that G also satisfies the condition (ii) in Theorem 2.
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Thus, by Theorem 2, there exist {z1,z2} C X, To € Cg, 2,} and zg € X\ S~ 1G(z0)
such that S(zo) € N2, G(;), i-e.,

2
g€ X\ U S7LF (z;).
=1
However, it follows from 2o ¢ S~1G(z¢) that zg ¢ X \ S™1F(zg). Therefore we
have )
%0 € STVF(z,) € STVF(Clay 00y) C | ST F(2:),

=1

which contradicts zp € X \ U?=1 S~1F(z;). This completes the proof.

REMARK. Theorems 1 ~ 5 are the topological versions of the KKM theorem
and Fan’s matching theorem without linear structures on the given spaces, which
generalize the corresponding results of Ky Fan [8], [9], Bardaro-Ceppitelli [1], [2],
Park [13], Bielawski [3] and Horvath [11].

By using Theorem 1, we can obtain the following:

THEOREM 6. Let (X,{Ca}) be a W-space, Y be a topological space, F : X — 2Y
be a GW-KKM mapping with nonempty open values. If the following conditions
are satisfied:

(i) F~Y(y) is open for eachy €Y,
(ii) for any finite set A C X, [,c4 F(z) is connected,
then {F(z): x € X} has the finite intersection property.

PROOF. Since F : X — 2" is a GW-KKM mapping, there exists a $ € C*(X,Y)
such that S'F : X — 2% is a W-KKM mapping. Since F is open valued,
S—1F is also open valued. By the condition (i), F~*(y) is open for all y € Y.
Therefore for each z € X, the set (S7'F)71(2) = {z € X : z € §7'F(z)}
= F~1(5(z)) is also open. From condition (ii) and S € C*(X,Y), for any f-
nite set {s1,...,2n} C X, Ni=; S~1F(z;) is connected. By Theorem 1, for any
finite set A C X, ,c4 ST F(z) # 0. Therefore, (.4 F(z) # @, which implies
that {F(z) : z € X} has the finite intersection property.

REMARK. Theorem 6 generalizes and improves the corresponding result of
Chang-Ma [4].
In the following, we give two other matching theorems:

THEOREM 7. Let (X,{Ca}) be a W-space, Y be a compact topological space,
G : X — 2Y be a mapping with closed values. If the following conditions are
satisfied:
(i) G~(y) is closed for ally €Y and G(z) #Y for allz € X,
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(ii) for any finite set AC X, Y \ [ 4 G(x) is connected,
(iil) G°(X) 2 Uzex G%(z) =Y, where G°(z) denotes the interior of G(z),

then for 'any S € C*(X,Y), there exist 1,70 € X, 9 € Clzy,22) and zp € X \

S~1G(zq) such that
2

S(z) € [ G(zy).

i=1
PROOF. Letting F(z) =Y \ G(z), z € X, then F : X — 2Y is a mapping with
open values. If the conclusion of the theorem does not hold, then there exists a

8 € C*(X,Y) such that for any x1,72 € X, z € Cf, 5,} and z € X \ §71G(z), the
following holds:

2 2 2
S(z) ¢ [ G(=:) =Y\ F(z:)) =Y\ (] Fz:).

i=1 i=1 i=1
Therefore, z ¢ X \ U2_, S1F(x;), ie., z € (J°_, S"'F(z;). By the same way
as stated in Theorem 2, we can prove S~1F : X — 2% is a mapping with open
values and satisfies all the conditions in Theorem 1. Hence by Theorem 1, the
family {S~1F(z) : £ € X} of sets has the finite intersection property. Therefore
{F(z) : £ € X} has the finite intersection property and so {F(z): z € X} has the

finite intersection property. Since Y is compact, (), x F(z) = §. Since

(N F@) = (1Y \G@) =Y\ J %) =Y \GX) #9,

zeX ze€X ‘ rzeX

G°(X) #Y. This contradicts the condition (iii) and completes the proof.
Similarly. we can prove the following:

THEOREM 8. Let (X,{Ca}) be a W-space, Y be a compact topological spacc,
G : X — 2Y be a mapping with closed values and S € C(X,Y) be a given mapping.
If the following conditions are satisfied:
(i) for anyy €Y, G7(y) is closed and G(z) #Y for allz € X,
(ii) for any finite sct AC X, X \ Uyeca ST G(x) is connected,
(i) G¥(X) =Y,
then there ezist {z1,72} C X, zg € C{.’I:]_,Z'Q} and zo € X \ S7YG(xy) such that

2
ﬂmeﬂmm.
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2. Minimax Theorems of Topological Types

As applications, we shall first use the results presented in section 1 to study
Minimax Theorems of topological types.

THEOREM 9. Let (X,{Ca}) be a W-space, Y be a topological space, f,g :
X x Y — R satisfy the following conditions:
(i) v+ g(z,y) and z — g(z,y) are upper semi-continuous and y — f(z,y) is
lower semi-continuous,
(i) f(z,9) < 9(z,9) for all (z,y) € X x Y,
(iii) (a) for any finite set AC X andr € R, {y €Y :g9(z,y) <r,Vz € A} is
connected,
(b) for any {z1,z2} C X, there exists a connected subset C(y, »,3 C X

such that {mla‘z‘Z} - 0{21,:!2} and g(.’z,y) > nnn{g(:l:l,y).g(zg,l/)} fOT' all
z€Cig .y andy ey,
(iv) Y is compact.
Thern

sup inf g(z,y) > inf su z,Y)-
me;}yeyg( y)_yeymegf( y)

PROOF. Letting o = sup,cx infyey g(z,y), B = infyey sup,.x f(z,y) and
a < f3, then there exists rg € R such that @ < rg < 3.
Now we define two set-valued mappings F,G : X — 2¥ by
F(z)={y€Y: f(z,y) <ro}, z€X,
Gz)={yeY :g9(z,y) <ro}, z€X.
By the condition (ii), we have G(z) C F(z) for all z € X. By the condition (i) and
the choice of rg, we know that G(z) is a nonempty open set, which means that G
satisfies the condition (i) in Theorem 1.

By the condition (iii)(a), G satisfies the condition (iii) in Theorem 1. By con-
dition (iii)(b), for any z;,z3 € X, there exists a connected subset Cy,, ...} with

{z1,22} C C{g, o,) Such that

for all € C{g,,0,3 and y € Y. Hence for any yo € G(C{z, ,z,})» there exists
zo € Cyz, z,} such that yo € G(z9), i-e., g(zo.y0) < ro. In view of (2.1), we have

ro > g(x1,%0) or 7o > g(ra2, yo)-
This implies that yo € G(x;) U G(z3). Hence ve have
G(Clar.ny) € Gla1) UGlaz).
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which means that G : X — 2Y is a W-KKM mapping. By the upper semi-continuity
of z +— g(z,y), we know that G satisfies the condition (ii) in Theorem 1. Hence
by Theorem 1 (1), {G(z) : £ € X} has the finite intersection property. Since
G(z) C F(z) for all z € X, {F(z) : z € X} has the finite intersection property.

Since Y is compact, [, cx F(z) # 0. By the lower semi-continuity of y — f(z,y),

we have F(z) C {y €Y : f(z,y) < ro}. Hence it follows that

n{yEY:f(z,y)Sro}#(?).

zeX

Taking yo € Y, we have f(x,yp) < rg for all z € X. Hence

Jnf sup flz,y) < o,
i.e,, 8 <o < B. This is a contradiction. Therefore we have a > 8. This completes
the proof.

We would like to point out that Theorem 9 contains the main results of Lin et
al [10], [12] and Wu [15] as its special cases, i.e., as an immediate consequence of
Theorem 9, we have the following:

COROLLARY 10. (cf. [15]) Let X be a separable compact spacc, Y be a pathcon-
nected space. Letu: X XY — R be a function satisfying the following conditions:

(i) z — u(z,y), y — u(z,y) are continuous,
(ii) for any yo, y1 € Y, there ezists a continuous mapping S : [0,1] — Y
such that S(0) = yo, S(1) = y1, and for any x € X and r € R, the set
{t €[0,1] : u(z, S(¥)) > r} is connected,
(iii) for any finite set {y1,...,yn} C Y and for any cice: r € R, the sel
{z : u(z,y:) <r, i=1,...,n} is connected.

Then

inf sup u{z,y) = sup inf u(z,y).
Jnf sup (z,y) sup inf (z,9)

PROOF. Define a function 2 : ¥ x X — R by h{y.«j = w{x.y) lor all w € X
and y € Y. Taking f = g = h, it is easy to see that the conditionus (i}, (i), {iii)(a)
and (iv) in Theorem 9 are satisfied.

Next we prove that the condition (iii)(b) in Theorem 9 is ¢)so satisfied.

In fact, by the condition (i), for any yo, y1 € Y, therc exists a continuous
mapping S : [0,1] — Y such that S(0) = yo, S(1) = y; and for any 2 € X and
r € R,

{t €[0,1] : u(z, S(t)) > 7}
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is connected. Taking Cfy, 4,3 = S(I), where I = [0,1], it is obvious {vo,1n} C
Clyom} and Cyyy 4} is connected. For any y = S(to) € S(I) and z € X, taking

r= min{u(a:, y0)7 ’U,(iL', yl)}a
by the condition (ii), we know that the set {t € I : u(z, S(t)) > r} £ Ais connected.
It is obvious that {0,1} C A and hence [0,1] C A C [0, 1], which implies that A = T.
Thus for a given ty € I, we have
U(.’E, S(tO)) > Inin{u(z’ yo)a u(:z:, yl)}

By the arbitrariness of y = S(¢y) € S(I) and z € X, we have

w(z,y) 2 min{u(z, yo), u(z,y1)}
for all y € §(J) and s € X. Therefore we have

h(y’ -7") > min{h(yo’ 1“)’ h(yla "E)}
for all y € S(I) and z € X, which implies that the function A satisfies the condition
(iii)(b) in Theorem 9. Thus, by Theorem 9 we have

(2.2) sup inf h(y,z) > 1nf sup h(y, ).
yey zeX zeX yEY

On the other hand, it is obvious that

(2.3) sup inf h(y,z) < inf sup h(y,z).
yey T€X z€X ycy

Therefore, combining (2.2) and (2.3), we have

sup inf h(y,z) = 1nf sup h(y, )

yey zEX yGY

sup inf u(y,z) = mf sup u(y, ).

yev 2€X X yey

REMARK. In the proof of Corollary 10, we didn’t use the separability of X and

the lower semi-continuity of u(z,-). Therefore Theorem 9 not onlv contains the
main results in Wu [15] us its special case but also sharpens its conditions.

3. Application to Variational Inequalities

As another application, we shall use the matching theorem presented in section
1 to study the existence problem of solutions for a class of generalized variational
inequalities.
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THEOREM 11. Let (X,{Ca}) be a W-space, Y be a topological space, X be a
compact space. Let (E,C) be a topological Riesz space, where C is a closed cone with
C°+#0, andr € E. Suppose that h: X xY — E satisfies the following conditions:

(i) for any z € X, the set {y € Y : h(z,y) ¢ r + C°} is nonempty and
compactly closed,
(i) for anyy €Y, the set {x € X : h(z,y) € r +C°} is compactly closed,
(i) for any finite set A C X, ,ca{y €Y : h(z,y) ¢ r +C°} is connected,
(iv) the set {x € X : h(x,y) € £ =C°} is W-convez for each y €Y.

Then the following generalized variational inequality
(3.1) hiz,y) g r+C° forallze X

has a solution in Y.

PRrOOF. For any z € X, we define a mapping F : X — 2¥ by
F(z)={y€Y :h(z,y) €r +C°}.

By the condition (i), F is a mapping with compactly open values, and for any
z € X, F(z) #Y. By the condition (ii), F~'(y) is a closed set for any y € Y. By
the condition (iii), F satisfies the condition (ii) in Theorem 2.

If the conclusion of Theorem 11 does not hold, then for any y € Y, there
exists z € X such that h(z,y) € r + C°, which means y € F(z). Hence we have
F(X) =Y. This implies that F satisfies all the conditions in Theorem 2. Hence
by Theorem 2, for any S € C*(X,Y), there exist {z1,22} C X, 2o € C(g, 4,} and
2z € X \ S71F (o) such that (o) € ﬂle F(z;), ie., {z1,22} C F71(8(20)). Tt
follows from the condition (iv) that Cfs, 2,3} C F ~1(8(zp)). Since zq C Cla, w2}
S(zg) € F(zo)-

On the other hand, it follows from zg € X \ S™1F(z¢) that 20 ¢ S~ F(x), i.c.,
S(z0) ¢ F(xzo). This is a contraction. Therefore, the variational inequality (3.1)
has a solution in Y.

Similarly, we can prove the following:

THEOREM 12. Let (X,{C4}) be a compact W-space, Y be a topological spece,
E be a topological Riesz space and r € E. Suppose that the mepping h: X <Y — E
satisfies the following conditions:

(i) for each z € X, the set {y € Y : h(z,y) < r} is nonempty compacily
rlosed,
(ii) for each y € Y, the set {z € X : h(x,y) £} is compactly closed,
(iii) for any finite set A C X, (e4{y €Y : h(z,y) <1} is connected,
(iv) for each y €Y, the set {z € X : h(z,y) £ r} is W-conves.
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Then the following variational inequality
(3.2) h(z,y) <r forallz e X

has a solution in Y.
By using Theorem 7, we have the following:

THEOREM 13. Let (X,{C4}) be a W-space, Y be a compact topological space,
h:X xY — R andr € R. If the following conditions are satisfied:
(i) y & h(z,y) is continuous and {y € Y : h(z,y) < r} # 0,
(ii) = — h(z,y) is upper semi-continuous,
(ili) for any finite set A C Z, (,ca{y €Y : h(z,y) < r} is connected,
(iv) for eachy €Y, {z € X : h(z,y) > r} is W-convez,

then the following vasiational inequality
(3.3) h(z,y) <r forallzreX
has a solution in Y.

PROOF. Letting G(z) ={y € Y : h(z,y) > r}, z € X, by the condition (i) for
each z € X, G(z) is a closed set, G(z) #Y and

Gz)={yeY : h(z,y) >r}.

In view of the condition (ii), for each y € ¥, G™'(y) is closed. By the condition
(iii), G satisfies the condition (ii) in Theorem 7.

If the conclusion of Theorem 13 does not hold, then for any y € Y, there exists
z € X such that h(z,y) > r, ie, y € G°(z). Hence G°(X) = Y. This implies
that G satisfies the condition (iii) in Theorem 7. Therefore by Theorem 7, for any
§ € C*(X,Y), there exist {71,272} C X, z¢ € Clzy,2,} and 20 € X \ S™1G(zg) such
that S(zp) € ﬂ?zl G(z;). Hence we have

{z1,22} € G7Y(S(20)) = {z € X : h(z,S(20)) > r}.

In view of the condition (iv), we have C(,, 4,3 C G71(S(20)). Since zo € Cloy 22}
zg € G71(8(20)), i.e., S(z0) € G(zy).

On the other hand, since 29 ¢ S™'G(z0), S(20) ¢ G(xy). This is a contraction.
Therefore the variational inequality (3.3) has a solution in Y. This completes the
proof.

As an immediate consequence of Theorem 13, we can obtain the following:

COROLLARY 14. (cf. [4]) Let E be a locally convez topological linear space,
K C E be a compact convez subset, T : K — E* be a continuous mapping, where
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E* is the dual of E. Then the following variational inequality

(3.4) (Ty,z —y) >0 forallzeX
has a solution in K.

PROOF. Taking X =Y =K, h(z,y) = Tz,y—z),y € K,and r =1/n, n =
1,2,..., in Theorem 13, it is easy to see that h satisfies all the conditions in Theorem
13. Thus, by Theorem 13, for each n =1,2,..., there exists a y, € X such that

1
(Tz,yn —z) < - for all z € K.

Since K is compact, without loss of generality, we can assume that y, — yo € K.
Hence, for all z € K, we have

(3.5) (Tz,yo—z) <0 for all z € K.

For any w € K, letting v = tw + (1 — t)yo, t € (0,1), then v € K. In (3.5), taking
x = v, we have (Tv,t(yo — w)) <0 for all t € (0,1). Thus we have

(36) (T'l), w—= yO) > 0.
Letting £ — 0 and so v — yp, from (3.6), we have
{Tyo,w —yo) >0 for all weK.

This completes the proof.
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