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1. Introduction

It is known that the critical groups are useful in distinguishing critical points
(cf. [5]). We shall present here a few examples from semilinear elliptic boundary
value problems showing how they work in the study of multiple solutions. Let

us consider the problem

- {—Au=ﬂ%w,

ulan =0,
where €2 is a smooth bounded domain in R". Let A; be the j-th eigenvalue of
—A with zero Dirichlet boundary data. We assume:
(g1) g€ CH(Q x RLRY), g(z,0) =0,
(g2) ¢'(2,0) < A1 VZEQ
(g) lim oo 9(z, 1)/t 2 goo > X,
g satisfies one of the following three conditions:

(i) goo & o(—A), the spectrum of —A.
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(i) goo € o(—A) and ¢(z,u) £ 9(z,u) — goou is bounded and satisfies the
Landesman-Lazer condition

m m
f@(x,z tjgoj(a:)) dr — oo  as Z t?—»oo

=1

where ®(z,t) = f(: &z, s) ds, span{p1, @2, - . ., Pm} = Ker(—A — gooI).

(iii) goo € o(—A) and ¢ satisfies the strong resonance condition: for. all
¢; € R™ with |¢;] — oo for all u; — u in Hj(f2) and for all v € H (),
we have

lim ¢(:z:, uj(z) + Z{;ei(x))v(m) dr=0

j—oo Jo
and

lim A rb(x, uj(z) + zmj g;le,-(z))v(z) dz =0

Hm
J i=1

where {e;(z)}, is an orthonormal basis of the eigenspace Ker(—A —
gooI)a and Ej = ( ‘71" _12’ ’g;n)

Our first result is

THEOREM A. Assume g satisfies (g1)—(gs). Then (1.1) has at least three

nontrivial solutions.

For the second result, we assume that g satisfies

(g4) M1 < ¢'(%,0) < A < goo for all z € Q, where g, satisfies one of the
conditions (i), (ii), (iii) given in (g3).

Then we have

THEOREM B. Assume g satisfies (g1),(g4). Assume also that there exists

to # 0 such that g(z,to) = O for all z € Q. Then (L.1) has at least three

nontrivial solutions. Moreover, if we replace (g4) by

(g4)" A2 < g'(2,0) < Ak < goo for all €T,
then (1.1) has at least four nontrivial solutions.

COROLLARY. Assume g satisfies (g1), (84). Moreover, assume that there
ezists t; < 0, to > 0 such that g(z,t;) =0 for allz € Q, i =1,2. Then (1.1) has
at least five nontrivial solutions.

REMARK. Many authors have made contributions to this problem. The re-

sults for at least one nontrivial solution were obtained in [2], [11], [9], for at
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least two nontrivial solutions in [3], [1] and [10] under the assumption go, < A;.
Further results have been given by many authors (see e.g. [5] and references
therein). |

Our theorems deal with the case go, > A2. Theorem A is quite similar to the
superlinear case (see [13]). But Theorem B and its Corollary are more delicate.

2. Proof of Theorem A

Set
Flu) = /Q Bwuﬁ_c(z,u)] dz

forue X2 H(Q), where G(z,t) = fot g(z,7)dr. It is well known that f €
C?(X, R) satisfies the Palais-Smale condition. Any critical point of f corresponds
to a (weak) solution of (1.1). Without loss of generality, we assume that f has
only a finite number of critical points.

Theorem A is proved in the following two steps:

STEP 1. (1.1) has two nontrivial solutions, one is positive, another is nega-

tive.
Set
9(z, ), t>0,
2.1 _’E,t =
(21) 01(,1) { 0 S
and consider the modified problem
—Au=g, (:C, u);
(2.2)
u|39 =0.
We define

filw) = /9 [%|vu|2—al(m,u)] i

where Gi{z,t) = fot g1(z,7)dr. Then fi € C*°(X,R). We claim that f;
satisfies (PS). Let (u,) be a sequence such that

|f1(un)| < c
and
(2.3) Viun) >0  asn— oo.
From (gs) and (2.1) we get

(2.4) 91(z,t) = goot + O(t) for t > 0 large.
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(2.3) implies that for all p € X
(2.5) /Q [VunVe — g1(z, un)glds — 0 asn— oo,
Set ¢ = uy,; we have
funl? < [ 0102, tn)tin d-+ Olal) < O+ CllunlEa + O

If ||un||z, is bounded, then so is |[u,|. Otherwise, ||un|zz — +oo. Let v, =
Un/|lunllz2- Then |jvn|lzz = 1 and |lu,|| is bounded. A subsequence of v,
converges to v with [|v]| 2 = 1, strongly in L? and weakly in Hj. From (2.5) it
follows that

(2.6) / [VuVe — goovtldz =0,  Vy € Hy,
Q

where
vt = max{0, v}.

The regularity theory implies

{Av+ng+=0 in Q,

2.7
@7) v=0 on 9.

By the maximum principle v = vt > 0. But goo # A1, and hence v = 0 which
contradicts ||v||z2 = 1. A standard argument shows that (u,) has a convergent
subsequence. (PS) is true for f;.

From (g) there exist p > 0,6 > 0 such that

fW>8  VueS,={ueX|[ul=p}
and from g, > Az we can take ¢ large enough so that

fi(ter1) <0,

where ¢, is the first eigenfunction of —A with zero Dirichlet boundary data.
Consequently, by the mountain pass lemma, (2.2) has a weak solution u;. By
the maximum principle and regularity of solution of elliptic BVPg, we know
that the solution u; of (2.2) is classical and u; > 0 for x € Q and the outward
directional derivative du(z)/0n < 0 for z € 0. Therefore u, is a solution of
(1.1).

Similarly, we get a negative solution uy of (1.1).
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Thus we may restrict ourselves to the space C}. Since filez 58 C* in a
Cl-neighborhood of u;, the Splitting Lemma, the Shifting Theorem and the
characterization of a mountain pass point carry over to filez (cf. [5]). Again,
according to [6], the deformation flow remains in C}. Consequently,

(2.8) rank C, (f1,u1) = 6n

where C,(f, u) denotes the g-th critical group of f at u. Thus,

(2.9) ranqu(flc.&(ﬁ),ul) = ranqu(f1|Cé(§),u1) =0g Vg=0,1,2,...
By the same method, we have

(210) rank Cq(flC&v U2) = 0q1 Vq = 0, 1, 2, R

STEP 2. The existence of the third solution.
Let X~ (X™) be the negative (resp. positive) subspace of —A ~ g, I. Then,
there exists R > 0 such that

sup flu) < inf f(v).
uweX~,[lufl>R ) veX+ )

According to [12], we know that f possesses a critical point u satisfying
(2.11) rank Cp, (f,u) # 0,

where 2 < m = dim X~. By Chapter III, Theorem 1.1 and Corollary 1.2 of [5],
we have

Cm(flCé’u) = Cm(f’ u‘)

Since @ is a local mimimizer, we have
(2.12) rank Cy(f|cz, 8) = rank Cy(f,8) = 4.

Combining (2.9)-(2.12) shows that u is a third nontrivial solution of (1.1). The-
orem A is proved.

REMARK 2.1. When g, satisfies condition (iii), f satisfies the (PS), condi-
tion for all ¢ # 0. The first deformation theorem can be extended to study the

fake critical set (see [7]).
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3. Proof of Theorem B

The proof is divided into three steps. We suppose to > 0; the proof for to < 0
is similar.
STEP 1. Let us define

0, t <0,
g(z,t) = ¢ g9(=,t), t €[0,t0),
01 t> tO’
and
(3.1) fluw) = / Ewuﬁ - G(z, u)} dz,
Q

where G(z,t) = fot G(z,7)dr. Since f is bounded below and satisfies (PS),
there is a minimizer u! of f According to the maximum principle, we obtain:
either u! = 0 or 0 < ul(z) < tp for all z € Q, and ('3u1/6n|an < 0. But by
assumption ¢’(z,0) > A;, 0 is not a minimizer, i.e., u! # 6. Thus u! must be
a local minimizer of the functionals f and f; (the latter was defined previously
in Theorem A), in the C3(0) topology. However, according to Chapter III,
Theorem 1.1 and Corollary 1.2 of [5] (as well as [4]), one concludes that u! is
also a local minimizer of f in HJ(Q2) topology. Thus

(3.2) rank C,(f, u') = é40.

STEP 2. As in the proof of Theorem A, we obtain a critical point u? satisfying
(3.3) rank C (f,u®) #0

with m =dim X~ > 2.
We only want to show u® # 6. Indeed,

(34) rank Cy(f,0) =0

for all ¢ > dim €D, ¢; 5, ker(—A — M), because ¢'(z,0) < Ag.
From A < goo, We oObtain

(3.5) Cm(f,6) = 0.

Therefore u2 # 6.
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STEP 3. Under (g4)’ we can get one more solution by the mountain pass

lemma.

In Step 1 we have obtained a u' € Cx which is a local minimizer of f,
where Cx = C N CY(R) and C = {u € HY(Q) |tp1 < u < ty, a.e. for ¢ small}.
Therefore, d? f(u!) is nonnegative and we have

1

(3.6) Id — (—A) g/ (z,u') = d*f(u!) > 0.
Let
v=u—ul, g1(z,v) = g(z,v +u') — g(z,ul).
We have
(3.7) 1(z,0) = ¢'(z,u")

and (1.1) is equivalent to

—Av = gy(z,v),
(3.8)

v]an = 0.
Let

gl(xvt)v t Z 07

3.9 gi{z,t) =
(3.9) g1(z,t) {0, £ <0,
and define

A = [ [31ve - i@ as,

o = [ [51vo - Gran]|as,

where G1(z,t) = f(; g1(z, ) dr, él(m,t) = fot gi1(z, 1) dr.
From (3.6) and (3.7) we get

(3.10) ~A(-g1(z,6)) > 0.

From (3.10) we know that 8 is a local minimizer of fi By Step 1 in the proof of
Theorem A, f, satisfies (PS). Using the mountain pass lemma, we immediately
get a critical point v+ of f;. From (3.6), one shows v # @. Consequently, by
the Strong Maximum Principle, v+ > 6 and then, by the same argument used

in (2.8), we get

(3.11) rank Cp(ﬁb& ,0T) = 6p1.
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Let ut = vt + u'. Then u* > u!. Note that

(3.12) f1(v) = f(u) + const

and thus

(3.13)  rank Cp(f|cs,u™) = rank Cp(filgy,v*) = rank C,,(fl|cé,'u+) = 8.

In a similar way, we get a negative solution v~ of (3.8). Let u~ = v~ +u!. Then
u~ < u! and u~ is a solution of (1.1) which satisfies

(3.14) rank Cy(f|cz,u™) = 6p1.
By A2 < ¢'(z,0) we have
(3.15) rank Cp(f|cy,0) = rank Cp(f,0) = bpk, k>2.

Now (3.14) and (3.15) imply v~ # 6. Combining this with Step 2, we get four
nontrivial solutions. Theorem B is proved.

PrROOF OF COROLLARY. By the assumption that there exists ¢; < 0 such
that g(z,¢;) = 0, we can proceed in the same way by using a cut-off function
and obtain two more other negative solutions: a local minimizer, and a mountain

pass point.
REMARK. After finishing this work, we found a recent paper by E. N. Dancer

and Y. H. Du [8], in which some results are very similar to ours.
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