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1. Introduction

Let g : R — R be a continuous function with g(0) = 0. We are concerned with
the existence of nontrivial weak solutions u in C1([0, 7] x R) to the autonomous
hyperbolic problem

Ut — Uy = g(u) in ]0,7[ X R,
(1.1) u(0,t) = u(m,t) =0 on R,
u(z,t+T) =u(z,t) on[0,7] xR,

where T' > 0 is a rational multiple of 7. We say that u € C([0,7] x R) is a
weak solution if the semilinear hyperbolic equation is satisfied in the distribution
sense, while the boundary and periodicity conditions are satisfied in the classical
sense.

Since the fundamental paper of Rabinowitz [20] concerning the superlinear
case, several authors have treated this problem. Here we are interested in the case
where g has linear growth at infinity. When the right hand side has the general
form g(x,t,u), the existence of at least one nontrivial solution, or even multiple
solutions, has been established in [1], [2], [11], [12], [17]. In the autonomous
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case, the presence of a S'-action allows one to prove multiplicity results of a
different kind. The first paper in this direction is [3], where the right hand
side of the form g(z,u) is considered. The nonlinearity g is supposed to be
monotone in the second variable. Moreover, suitable regularity is imposed on g
with uniform bounds on D, g, in order to perform a finite-dimensional reduction
of the pro‘blem. When g is independent of z, and T = 27b/a with a,b € N* :=
N\ {0} and b odd, the monotonicity assumption on g has been removed in [13].
Since the same finite-dimensional reduction is used, uniform bounds on D.g
are still imposed. These conditions on D, g are relaxed in [4], [10], where the
problem is directly treated in an infinite-dimensional setting, but only the case
sg(s) < s? is considered, because of the difficulties created by the fixed point set
of the S*-action. Finally, let us point out that further results can be obtained
when g is odd (see [3], [4], [8], [13], [16]).

Our aim is to prove a multiplicity result of the type of [4], including also
the case j2s% < sg(s) < (j +1)%s2. As in [4] and [13], we do not assume the
monotonicity condition on g, but we restrict ourselves to the case where g is
independent of x and the given period has the form T = 27b/a with b odd. On
the other hand, we work directly in an infinite-dimensional setting, as in [4].
Actually, the only regularity we impose on g is just continuity.

To state our result, let us consider the set

42
{jz_%]ﬂ;jeN*,keN,jisoddandkiseven},

whose role will be explained in the third section. Since this set is unbounded
from above and from below and has no finite accumulation point, we can denote
by {As : h € Z} a strictly increasing enumeration of it.
We assume that
(A;) T =2nb/a with a,b € N* and b odd;
(A2) there exists h € Z such that
Ar < liminf M < limsup &)- < Ap+1;
fs|—oo0 8 ls]—oo
(As) either sg(s) < s? for every s € R, or there exists j € N* such that
j282 < s5g(s) < (5 + 1)%s? for every s € R.

Let us state our main result.

THEOREM 1.2. Besides (A1), (A2) and (A3), assume that either

lim inf ﬂ > )‘h+1

s—0 S
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or
lim sup ?@ < Ap.
5—0 s
In the first case denote by m the number of elements of

2
{(j, k) € N* x N* : j is odd, k is even and Apy1 < 52 — %kz < 1imi(1)1f i(?}
85—

in the second case the number of elements of

2
{(j,k) € N* xN*: j is odd, k is even and limsupg—(:l <j- %kr" < Ah}.
s—0

Then (1.1) possesses at least m weak solutions of class C([0, 7] x R), which are
geometrically distinct and nonconstant in time. Moreover, if g is of class C¥,
these solutions are of class C*+1([0, 7] x R).
Let us point out that the possibility
lim _g(s) =—
s—0 §
is not excluded. We then get the existence of infinitely many weak solutions.
In the next section we recall from [14] a critical point theorem which will
play a crucial role in our argument. In the third section we prove Theorem 1.2.

2. A recall of critical point theory

Let X be a real Hilbert space on which S? acts by orthogonal transformations,
let Fix (S') be the set of fixed points of the action and let S, be the sphere
centered at the origin of radius .

Let f: X — R be a functional of the form

#(@) = 3 (Lala) - w(a)

where L : X — X is linear, continuous, symmetric and equivariant, Yp: X >R
is of class C' and invariant and V¢ : X — X is compact.
In [14] we have proved the following result.

THEOREM 2.1. Assume there exist two closed invariant linear subspaces V,
W of X and r > 0 with the following properties:

a) V + W is closed and of finite codimension in X ;

b) Fix(S') CV +W;

c) L(IW)Cw;

d) supg, v f < +o0 and infy f > —o0;

e) z & Fix (S') whenever Vf(z) =0 and infw f < f(z) < supg v f;
f) f satisfies (PS). whenever infw f < ¢ < supg_ny f.
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Then f possesses at least
%(dim(V AW) - codimx (V + W)

distinct critical orbits in f~!([infw f,supg v f1)-

The above theorem is related to similar results contained in {5]-[7], which
were the basic tool used in [4]. The main difference consists in the fact that
we require only Fix (S*) C V + W, while in those papers one must have either
Fix (8') C V or Fix(S') C W. Just this improvement allows us to treat the
case j25% < sg(s) < (j +1)2s2.

3. Proof of the main result

By the change of variable i(z,t) = u(z,t/w), w = 2r/T, problem (1.1) can

be transformed into the equivalent problem

wiuy — gy = g(u)  in]0,7[ xR,
(3.1) u(0,t) = u(m,t)=0 onR,

u(z,t+ 2m) = u(z,t) on [0,7] xR.

From [9], [15], [18] and [19], we recall some basic facts about the weak formulation
of (3.1).
Let @ = ]0,n[ x |0, 2x[. In L(Q;C) we can consider the Hilbert basis given
by
ez, t) = %sin(jx) exp(ikt), jeEN", keZ.

It is readily seen that w?(ejx )it — (€jk)ze = Ajk€jk, With Ajx = 7% — w?k2.
Let

+oo  +oo
E= {u €LH(Q:R) = Y D (L4 Dlugel” < +oo}.
j=1lk=—0c0
where .
Ujk = ;/ u(x, t) sin(jz) exp(—ikt) dz dt.
Q
The space E, endowed with the scalar product
+o00 +oo
() =3 > L+ k) ustir,

j=1k=—0c0

is a real Hilbert space continuously embedded in L?(Q;R).
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Let A: E — FE be the linear, continuous and symmetric operator defined by

400 +oo +00 +00
(Aufp) =" > Apuptie = > (1+|AJk|)1+'A o] Lk
j=1 k=—o00 J=1k=—o00

so that R(A) = {u € E : Ajz = 0 = ujx = 0}, and let f : E — R be the
functional defined by

flu) = %(Au|u) — /(; G(u) dz dt,

where G(s) = [, g(c) do. By assumption (Aj), it is readily seen that f is well
defined and of class C 1. Moreover, if u is a critical point of f with v € R(A), then
u € C'([0,7] x R) and u is a weak solution of (3.1). If, in addition, g € C*(R),
then u € C*¥*+1([0, 7] x R).

PROPOSITION 3.2. Let u € E be a critical point of f with u independent
of t. Then f(u) =

PROOF. Let us consider the case j2s% < sg(s) < (j +1)%s%. Let c: R — R
be the Borel function defined by

_[o@ys  ifs#o,
c(s)_{j2+j+1/2 if s = 0.

For every v € H}(0, ) we have
/ (ugve — c(u)uv) dz = 0.
0

Let u = uy + u, with uy,uz € H}(0,7), [j(u1z)?dz < j2 f07r u?dzx and
Jo(u2,z)?dz > (j + 1)? [ uddz. If we set v = up — u; in the above equation,
we find after easy calculations

/ etw) - s + [(G+17 - cw)dde <o
0 0

It follows that (c(u) — 72)u? = (( + 1)% — ¢(u))uZ = 0 a.e. in ]0,x[. Since ¢ is
continuous on R\ {0}, we deduce that c(u(z)) € {52, (j+1)?} whenever u(x) # 0.
In any case it follows that u(z)g(u(z)) = 2G(u(z)), so that

e =2r [ (Just) - ) o =

The case sg(s) < s? can be treated in a similar way, with some obvious

simplifications. O
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The compact Lie group S! acts on E by means of time-translations, hence
by orthogonal transformations. It is readily seen that A is equivariant and f is
invariant.

Now, following [13], set

X ={u € E: ujz =0 whenever j is even or k is odd}.

Then X is a closed invariant linear subspace of E compactly embedded in
L?(Q;R). Moreover, A(X) C X, A: X — X is an isomorphism and Vf{X)
cX.

Therefore constrained critical points on X are in fact free critical points
on E. Since X C R{A), they are subjected to the regularity properties we
have mentioned before. Moreover, by [3], distinct critical orbits give rise to
geometrically distinct solutions. From now on f will denote the restriction of f
to X.

It is easy to see that the set of eigenvalues of the problem

(\u) €R x X,
{ (Aulv) = A [y uvdz dt, Vv e X,

is just the set {\s : h € Z} of the introduction. Let coo = $(An + An41) and let
L : X — X Dbe the linear continuous operator such that

(Lulv) = (Aujv) — cwf wv drdt.
Q

Of course, L is symmetric, bijective and equivariant and it induces an orthogonal

decomposition
X=X (L)y®e X*(L),

where X~ (L) is the negative space of L and X (L) is the positive space of L.

Moreover, we have

Yu e X (L): (Lu|u) < (An — coo)/ u? dz dt,
Q

Yu € XT(L): (Lulu) > (Apg1 — coo)/ u? dx dt
Q
and there exists v > 0 such that
Vu€ X7(L): (Luju) < —v|ul?,

Vue X+H(L) : (Lulu) > vlul
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We can write

7(u) = 5 (Lul) - b(u),
with
Dlu) = /Q [G(u) - %cwuz] da dt.

Since X is compactly embedded in L2, the map V¢ : X — X is compact.

LEMMA 3.3. For every c € R the functional f satisfies (PS),.

PROOF. Let (ux) be a sequence in X with Vf(up) — 0 and f(us) — c.
Since L is an isomorphism and V4 is compact, it is sufficient to show that (u)
is bounded in X. By contradiction, assume that [[usf| — +o0o. Take A, X € R
with

AL<AL liminf@ < limsup@ <A< Aht1

|s}—oo 8 |8]—c0

and define g, : R — R by
9oo(8) = g(8) — Coos.

Set @ = A — Coo and & = A — Coo, S0 that

a < liminfgw—(s) < limsupM < Q.
|s|—o0 s |8]—o0 s

Let 900 (3) = Moo (8) + Yoo (8)s with

min{max{g.o(s)/s,a}, @} if s#0,
Coo ifs=0:.

enle) = {

Of course, Yo is a Borel function with g < v.,.(s) < @ for every s € R and
Noo € Cc(R). Let vy = up/|lun||. We have, up to passing to a subsequence,
vp —vin X, vy — v in L3(Q) and Yoo (us) — a in L>(Q) witha < a <@ ae.
in Q. Moreover,

7700(“"1)_’ . oo
0 R L7@

Let P*: X — X*+(L) and P~ : X — X (L) denote the orthogonal projections.
Since (P*v, — P~vy) is bounded in X, we have

(LP*vy|Ptug) — (LP v |P wy) — / ncl]ou(ulf) (Ptop — P™uy) dz dt
Q@ llun

= / Yoo (un)vp (Pt up — P~u)dzdt — 0.
Q
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Since Ptv, — P~ v, — PYv — P~ v in L2, we get
v< / av(Ptv — P™v)dz dt,
Q
hence v # 0. On the other hand, we also have

(Lvp|Ptv — P7v)

_ / nTr(Uh) (Ptv— P v)dzdt — / Yoo (u)vn(PTv — P7v) dz dt — 0,
Q unl| Q

so that
(LP*v|P*t9) — (LP™v|P™v) — / a(Ptv)dzdt + / a(P~v)?dxdt
Q Q
= (Lv|PTv — P v) — / a(Ptv+ P v)(PTv — P v)dzdt =0.
Q

It follows that

(Anr1 — Coo —B) / (P+o)2 dzdt+ (coo+a— M) / (P~v)2dzdt <0,
Q Q

which yields Ptv = P~v = 0: a contradiction. O

LEMMA 3.4. The functional f is bounded from below on X+ (L) and from
above on X~ (L).

PROOF. For some constant € > 0, we have Goo(s) < i1as? + ¢, where
Goo(5) = f3 9oo(c) do. On the other hand, we also have

Vwe XH(IL):  (Lwjw) > (ns1 — coo) / lw[? da dt = W f lwf? da dt.
Q 2

Since @ < {An+1 — An)/2, the functional f is bounded from below on X*(L).
In a similar way, we show that f is bounded from above on X~ (L). O

LEMMA 3.5. Let Gp: R — R be a continuous function such that

Go(s) Go(s)

- _. - - > .
;2£1+82 > —o00, llilll(lilf —2 2 0
Then
timinf ] 2 / Go(u) dz dt > 0.
uex Je
PROOF. Let

o= {00 128
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Then 7 : R — R is bounded, continuous, with 7(0) = 0 and G, (8) > —0(s)s>.
If (u) is a sequence in X with uj, — 0, then up to a subsequence, u;, — 0 a.e.
and vp, := un/|lup|| is strongly convergent in L2(Q). Since

”Uh||_2/QGo(Uh)d$dt2 —/Q'yo(uh)v,%d:rdt,

the assertion follows. O

Now we can prove the main result of the paper.

PROOF oF THEOREM 1.2. First of all, consider the case

g(s)

liminf === > )
mint =2 > Aht1

and denote by ¢g the left hand side of the above inequality. Let Ly : X — X be

the linear continuous operator defined by
(Lou|v) = (Aulv) - cu/ wv dz dt.
Q

It is readily seen that Ly is symmetric and equivariant. Consider the orthogonal

decomposition
X = X" (Lo) ® X(Loy) ® X*(Lp)

into the negative space, the null space and the positive space of Ly. Moreover,
set Go(s) = G(s) — 3cos?, so that

7() = 3 (Loulu) - /Q Go(u) das dt.

By Lemma 3.5 we have

lim inf [Juf| 2 / Go(u) dzdt > 0.
u—0 Q

ueX

If we set V = X~ (Lo) and W = X (L), it follows that

fu)
lim sup :——= < 0.
u=0 [l

Therefore there exists » > 0 such that

(3.6) sup f < 0.
S.nV
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We want to apply Theorem 2.1 to the functional f : X — R. Of course V' and
W are closed invariant subspaces of X with L(W) C W. Since coo < ¢, We
have V + W = X. By (3.6) and Lemma 3.4, assumption d) of Theorem 2.1 is
satisfied. Condition €) follows from Proposition 3.2 and (3.6), while hypothesis
f) is implied by Lemma 3.3.

On the other hand (see [4]), 3 dim(V N W) is just the number m introduced
in Theorem 1.2. By Theorem 2.1 the assertion follows.

g(s)

limsup == < Ap,
s—0 s

In the case

denote by cg the left hand side of the inequality if it is finite, otherwise let ¢cp be
any real number less than A;. We introduce Lg and Gy as in the previous case
and set V = X*(Lg) and W = X~ (L). Then we can apply the same argument
to the functional —f and the conclusion follows also in this case. O
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