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1. Introduction

This paper is a sequel to [14] and [15]. We study the first initial-boundary
value problem in a bounded domain Qr = Q x (0,T) C R™**! for the equations

(1) Mplu) = —us + Fr(uzz) = g, m=2,...,n,

where Fp(tzz) = Sm(tzz)/™ and Sp(uze) is the sum of all principal m-th
order minors of the Hessian u;,. Alternatively, Sy, can be defined as follows:

Sm('u:l:z) = Z )“i1 (u) cee )‘im (u)’

1< <%m

where Ax(u), k = 1,... ,n, are the eigenvalues of #,;. For m =1 equation (1) is
the well-studied heat equation. Its stationary part Fj(us.;) = Au is linear and
totally uniformly elliptic, that is, uniformly elliptic on the whole space C?(Q2).
For m > 1 all these properties fail and one has to describe the domains of
ellipticity of the equations

(2 Fr(tgz) = 0.

©1994 Juliusz Schauder Center for Nonlinear Studies

19



20 N. IvOCHKINA — O. LADYZHENSKAYA

Equations (2) are obviously elliptic on the set of strongly convex (or concave)
functions. In the case m = n this set appeared to be the very set of solvability
of the Dirichlet problem for (2) (see [1], [2], [4], [8]-[11], [21], [22])-

First, the study of equations (2) with m = 2,... ,n — 1, was also restricted
to the set of convex functions. But the domain of ellipticity strictly extends
when m decreases from n to 1. The reasonable choice of these domains leading
to solvability of the Dirichlet problem was suggested in papers [12] and [13] for
equations (2) and in [3] for some generalizations of (2).

Less is done for fully nonlinear parabolic equations. Most results concern
totally parabolic equations (see [16], [25], [26]). The non-totally parabolic equa-
tions studied so far include the equations u;detus; = f ([16], [24]) and the
equations describing deformations of closed compact surfaces caused by their
curvatures ([23], [5]).

To proceed with equations (1), following [12] let us introduce the subsets

Kn={Ae M}" : Sx(A) =spur,A>0, k=1,...,m},

where M?*™ is the set of all symmetric n X n matrices. It was shown in [12]
that K, is a connected set containing the unit matrix I. We shall keep the
same notation K, for the set of functions u from C?(Q2), with Hessian ug,(z)
belonging to K, for all z € Q. The set K, is the set of ellipticity for K,, ([12])
and it appears to be the “natural” set of solvability of the Dirichlet problem for
equations (2) with ¥ > 0 ([3], [12], [13]).

We seek solutions u of (1) in @ which belong to K, for any ¢ € [0,7] and

satisfy the condition
(3) u—p=0 ondQr,

where 8'Qr = 8"Qr U (0), 8"Qr = {(z,t) : z € 90, t € [0,T]}, and 2(0) =
{(z,t) : ¢ € Q, t = 0} We call such solutions admissible. In (3), ¢ is an
arbitrary sufficiently smooth function of (z,t) € Q1 belonging to K, for t = 0
and satisfying the necessary conditions of compatibility with g on the set I'g =
{(z,t) : z €89, t =0}

In order to describe our requirements on 52, we relate to every point z° € 99
cartesian coordinates “corresponding to z0”. This means that the axis z, is
directed along the inner normal v to O at z°. In some neighborhood of z° the

surface 0N is the graph of a function w, i.e.,

MN={z=(T,z,) : T=(z1,... ,Zn-1), |T! <&, zn =w(Z)}.
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For convenience we choose the tangent axes Z1,.-. ,2Zn—1 in such a way that
1 n—1 3
(41) Tn =w(Z) = > Z wir(2%)zi + O(|Z)%), |Z] < e.
k=1

Our hypothesis on 89 is
(42) (wri(z®) = Wik (2°)8F) € Ky € MIn=Dx(n—1),

Assume also that w € H*+ (B, (z0)) for any z° € 8Q and some ¢ > 0.
The main result of this paper is

THEOREM 1. The problem (1), (3) has a unique admissible solution u belong-
ing to the Holder space H**+*2+2/2(Q,) if the following conditions are satisfied:

(a) g € H2+a’1+a/2(§7‘); (ZS H4+a’2+a/2(§T): Pli=0 € Km, g and Y
satisfy on Ty the compatibility conditions up to the second order;
(b) the boundary 6N is a surface of class H4+e satisfying (4s);

(c) g and ¢ satisfy

. - : G
(5) mm{inelfrlem(cpm(m,O)), ming + Loin U } 2d = >0,

where d is the radius of the smallest ball By(z°) containing §2, a =
max{0; v ' maxq, ¢;} and v = (C™)¥/™.

The condition (c) can be replaced by the following condition (c):

The uniqueness in the class of admissible solutions is proved in a standard
way since K, is a convex set and (1) is parabolic on K,,. Namely, the difference
v = u — u” of two admissible solutions to the problem (1), (3) is a classical

solution to the linear parabolic equation
—Us + aijvmizj = 0’
where

dr&é; >0 for |¢] =1.

uT=7u " +(1—T7)u’

Qij gz 6;1 / aFm (’u’zm )

As s00n as v|g'@, = 0 the Hopf Theorem leads to v = 0.
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To prove the existence of a solution u we include the problem (1), (3) in the

family of problems
(7) M[uT] = gT, u’ — (p7|5,,QT = 0, u - (P0|Q(0) = 0, TE [0, 1],

where g7 = 7g + (1 — 7)g% ¢° = Fn(¢3.), ¥° = ¢°(z) = ¢(=,0) and ¢ =
T+ (1—1)¢°.

The problem (7) for 7 = 0 has the admissible solution w(z,t) = ¢°(z)
and for any 7 € [0, 1] satisfies all conditions of Theorem 1, which can be easily
verified. Therefore, an a priori estimate of the Holder norm ||u||8:a’2+a/ 2 of
any admissible solution u to problem (1), (3) under conditions (a)—(c) or (a), (b),
(¢) will provide the solvability of the problem. But it is known that the norm of
win H*+22+2/2(() can be estimated by the norm of u in H2+#1+8/2(Qr) with
some 3 > 0 in view of some results on linear uniformly parabolic equations with
Holder coefficients (see, for example, [6], [17]). So our task is to get a majorant
for ||u||8:ﬁ A+6/2) with some B > 0. A pecularity of this problem is due to the
fact that the quadratic form j(u;§) = %Zﬂl&{j with [¢] = 1 is positive on
any compact subset of K,,, but has zero lower bound on all K,,,. We shall prove
that there are some positive minorant and majorant for j (u;€) with any [£| =1
and admissible solution u. We start with a weaker information on j(u;€):

(8) E’I:B_Fm(u_m)z (n)llmzul.

=1 B'U.ﬁ m

This holds for any u € K,,, and follows from the inequality

0 ~1/m m
9) aaijsm(A)bij ZmSm(A)l Y S'm(B)l/ )

valid for arbitrary matrices A = (a;;) and B = (bi;) in Ky, ([7]).

We introduce some abbreviations. For any v € C%(2) we write v; = vy,
vy = v; cos(, x;), where 7 is any unit vector in R", vy = vi; cos(, z;) cos(, ;).

Let us now fix the number m in (1) and an admissible solution v of prob-
lem (1), (3), and introduce the functions (of (z,t) € Qr) F = Fin(uzs), Fij =
Fij(uzs) = bf—iij(um) and the linear operator L, = —8; + F,-,-agm corre-
sponding to this solution u = u(z,t), (z,t) € Q7.

Differentiating (1) with respect to ¢ and vy gives rise to the equations

(101) Ly (us) = gt
(102) Lu(uy) = gy,
O?F

(103) Ly (uqy) + B Gugy LU = Gy
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2. Estimation of the C%!(Q) norm of u

By (8)
(11) Ly (%(-’l’ = "50)2) = ;Fii >
for any z° € R™. Therefore
(124) L, (ut — g(w - :1:0)2> =g — aiFﬁ <0
=
and
(122) L, (ut + g(m - :1:0)2) =g+ biﬂi >0

i=1

with @ defined in Theorem 1 and b = max{0; v;” ! max Qr(—g:)}. If gp0(z,t) <0
in Q7, then

(13) Ly(us + g) = gt + Lu(g) = Fijgi; < 0 in Q.

These inequalities and the Hopf Theorem for the parabolic operator L, give

PROPOSITION 1. The estimates

a 02 : a2 b 0y2 b o

S — —Zd? < < ——(z— 2
(14) 2(::: z) +5;1C1?1;ut 2d < wu(z,t) < 2(::: z") +§1,18.)Tcut+2d
hold for any admissible solution u to problem (1), (3). In (14),

a = max{0; v; ! max g, }, b = max{0; v; ! max(—g;)}
Qr Q:
and z° is the center of a ball B4(z°) of radius d containing Q. If
(15) min g + min u 1a.d2=1/ >0
O g 5Qr (] 9 =3 ’

then
ur+g>vs3 >0 in@T.

If g2z <0 in Q, then

(16) ug + g > min (u; + g),
Qe
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and if, additionally,

17 i =1y >0,
(17) Lin (ut + g) = o

then

(18) ur+ g >y >0 in GT'

The estimate for maxq, |us| implies an estimate for maxg,. |u|. Now we
proceed with estimating maxg,, |uz|.
Hopf’s Theorem and (11) reduce the estimation of maxq,. |us| to estimating
max |u;| on 8’Qr. Indeed,
n
Lu[%(m—xo)zﬂ:uj] =clei¢:tgj20 in Qr

i=1

forany j=1,...,n if ¢1 > v  maxg, |gz|, and therefore

C1 C1 2
E(m — 3;0)2 £ u; (x, t) > (m,g)neag’(QT [E(:l: — mo) + Uj (x,t)
for any (z,t) € Qr-
By (14)—(18), majorants for maxs~ g, |uz| can be taken from the work [3]
devoted to the Dirichlet problem for the stationary equation (2) with a bounded
strictly positive function ¥. In fact, we consider u(z,t) as an admissible solution

to the problem

(19) { Fr(uge(z,t)) = U(z, t) = g(x, 1) + us(z,t), z €9,

u(z,t) — p(z,t) =0, T € 012,
with t as a parameter. It follows from (14)-(18) that
(20) 0<iy < \I’(.’L‘,t) < p1,

where p; = maxg, g + maxp g, Ut + %d2 < 00,V4 = V3 OT Vs,
To estimate maxg,. |uzz| we make use of the crucial property of Fy, — being
a concave function of (us;) into K,,,. By this property equation (103) implies

(21) Lu(tyy) 2 gyy 2 —M2
for any v € R” and ps = max{0; maxg,(—gy)}. This inequality and (11) give

L, (u7'Y + 052(.’1: - :1:0)2) > —pe+cy >0
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if ea > pa/v1, and from the Hopf Theorem we conclude that

n&z;xuw < (Iar,lgicu,” + 02—2d2, co = paf1s.
In this way estimation of u,, in Qr from above is reduced to that on 8"Qr.
An estimate of w,, in @r from below follows from the estimates of all Uy v
from above and from the inequality Fj(uzz) = Aw > 0, which holds for any
u € K. The freedom in the choice of v yields the estimates maxq, |u;;| < c3
for all 4,7 = 1,...,n with some constant under control.

Thus our next aim is to find bounds for |u;;| on 8" Q7. Some bounds for the
second derivatives u.,., of u in directions v and v tangent to 9Q follow from
the inequalities maxg» g, |ug| < ¢ and maxgr g, |@ze| < ¢. In order to majorize
MaX5" Qg |Uryyy, | Where vy, is tangent and v, normal to 9, we use (102) and an
observation from [9], [3]:

Lu(mkul — -'L'luk) = TGl — Ti9k; k,l = 1, e g Ty

which reflects the rotation invariance of Fip,(uzg)-
Take a point z° € 8Q and the “corresponding” cartesian coordinates z =
(Z,z5). In the cylinder

Q5(2°) = {(z,t) € Qr : [F] <&, 2o € (WE),w(E) + 2€), t €[0,T]}

with a small ¢ € (0,1] we define “barriers” w4 for the functions v* = Ty (u),
k < n, where Ty = Ok + wik(2°)(zk0n — n0k). The barriers have the form
wt = Fw + Ti(p), where

w=A| —an+ D2 +l7§w”(7;0)m2—6|5|2
R !

with positive constants A, B and §. We can choose § and € so small and A and

B so large that for any £ < n,

(221) Ly(wy) € Ly(v*) < Ly(w-),  (2,¢) € Q7(2°),
and
(222) w_ <vF <wy,  (z,t) € Q5.

By the Hopf Theorem, (22;), i = 1,2, guarantee the inequalities w_(z,t) <
v*(z,t) < wi(z,t), (z,t) € Q7, which together with v*(0,2) = w4 (0,t) permit
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us to calculate a majorant for |u,(0,t)|, ¥ < n. Thus we have explained how to
find majorants for

max |8,3 k < n.

355 1Ol
v, 4| can be taken from the work [3] devoted to
the Dirichlet problem for equations (2) and some their generalizations. This is
due to the fact that in [3] the only information used about ¥ was (20).

Note that the construction of a majorant for |u.,,, | in [3] is very complicated

and artificial. We have a more “transparent” construction and intend to publish

A majorant for maxsn Q. |02

it in another paper.
Let us summarize the results:

PROPOSITION 2. Under the assumptions of Theorem 1, the values maxg,. (|ul,
g |, [ue], [Uze]) for an admissible solution u € C*%(Qr) to problem (1), (3) can
be estimated by constants which are determined by the norm of g in C*1(Qy),
the norm of ¢ in C*%(Qr), constants from (5) (or (6)), the norm of 8Q in C*
and by the distance of the matriz (wag(z)) to OKm—1 (see condition (42)).

3. Estimation of the Hélder constants for u; and u,;

Now we intend to estimate the Holder constants (-) g? with some £ > 0 for
u; and u;; in Q7. From Proposition 2 we know the constants v and g in the

inequalities
(23) v) E<Ft&<p) &, V&eR,0<v<p
n=1 i=1

Theorem 1.1 of [18] gives a majorant for (ut)g 7), with some § > 0 since u; can
be considered as a bounded solution of the linear uniformly parabolic equation
(10;) with smooth known initial-boundary values and known », g and M =
maxqQ., |ut|'

Concerning the second spatial derivatives u;; of u we first estimate their
Hélder constants on 8”"Qr making use of cartesian coordinates (Z,z,) corre-
sponding to z° € 8. Majorants for the Lipschitz constants for uy; on 8”Qr
with k,l < n follow from the relation

u(Z,w(Z),t) = (@, w(Z, 1), 1), |Z] <&,

differentiated twice with respect to z; and ;. Majorants for (ukn)g,a,)QT, k<mn,
with a 8 > 0 are derived with the help of Theorem 5.1 of [19] (or [20]). This
theorem is applied to the functions 7*¢, k < n, where 7*(z,t) = ux(z,t) -
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or(2,t) + Wi (Z)[un(z,t) — @n(z,t)] and ¢ = {(z) is a smooth cut-off function
which is zero outside the ball B.(z?), ¢ < 1. Each 7*¢ satisfies in 651(:1:0) =
[Q N Be(z%)] x (0,T) the equation L,(7%¢) = ®; with a known majorant for
maxg, |®x|, and 7*¢ is equal to zero on §” 651 (2°). This information is sufficient
to get majorants for (ukn)g?,)QT, k < n. A majorant for (unn)g,l,’,)QT is calculated
elementarily from (1).

Finally, majorants for (u,-,-)g?, are guaranteed by Theorem 2.
THEOREM 2. Suppose u € C*%(Qr) satisfies the equation
(24) —uy + F(z,t, u, Uz, Uzz) = 0.
Assume that
(a) maxg, |u| < My, maxq,. |us| < My, maxg, |uz:| < Ms,
(uis)oh, < Ms, (u)%) < My, p > 0;
(b) F € C*(II), where
I = {(z,t,u,p,7) € R¥**™"" : (2,4) € Qp, ul < Mo, Ip| < My, |r] < My}

and ||F|lgaqry < Ms;
(c) equation (24) is parabolic on the solution u, i.e.,

0
au_'F(ma t,u, um”:'-‘-’:)lu:u(a:,t)&i&j < ﬂ'§21 O<v<u Ve ]Rl;
ij

(d) F is a concave function of u;j on v = u(z, 1), i.e.,
2

vg? <

F(z, t,u, Uy, uz:c)lu=u(m,t)£ij£kl <0, vﬁij € R

OuijOup
Then there exists a £, € (0, 8] such that
(25) (utj)(Qﬂ;) S Q(MO,MI,JM-27M37M47 M51 V—lv Hy n))

where ® is a positive nondecreasing continuous function of the indicated argu-
ments. It is assumed that OQ satisfies condition (A) (see §1, Ch. I of [17]). ®
and B, depend on the constants ag and © appearing in the condition (A).

Recall that C-surfaces satisfy condition (A).

Theorem 2 generalizes the results of N. V. Krylov [16] to the case of non-
totally parabolic equations. Theorem 2 is proved in [14]. So the following propo-
sition is true.

PROPOSITION 3. Under the assumptions of Proposition 2, the Hélder norms
(ut)gar) and (u.,-,-)g? with some B8 > 0 can be estimated by constants determined
by the quantities indicated in Proposition 2.

As was explained in the Introduction, Proposition 3 permits us to use the

results on linear parabolic equations to prove Theorem 1.
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