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1. Introduction

Let X be a complex n-dimensional manifold. Recall that the “Riemann-
Hilbert correspondence” consists of the following diagram, together with the
assertion that the arrows are equivalences of categories quasi-inverse to each
other:

RI
(n Perv(X)° :::“SJ'—_ 7.2 Reghol(Dy ).
We make use of the following notations:
e D¢__(X) is the derived category of bounded complexes of sheaves of
C-vector spaces on X with C-constructible cohomology,
e Reghol (Dx) is the abelian category of regular holonomic (left) Dx-
modules,
e Hol(D%¥) is the category of modules of the form D§ 1()8;‘ M where M

is a holonomic D-module,

e DP_,(Dx) is the derived category of bounded complexes of D x-modules
with regular holonomic cohomology,

e D! (D$) is the derived category of bounded complexes of admissible
D% -modules (in the sense of [11]) with cohomology in Hol(D}),

e Perv(X) is the full abelian subcategory of DE__(X) whose objects are
“perverse sheaves”, where we adopt for our purpose a definition shifted
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by n = dim¢ X from the usual one, i.e. given F € Ob(DE_ (X)), we
say F is an object of Perv(X) if and only if F[n] is perverse in the usual
sense of [2] (e.g. il Y C X is a purely d-codimensional complex set then
we say that Cy[—d] is perverse; see §4.

Recall that one sets Sol(M) = RHomp(M, O) or RHompe (M, O) accord-
ingly, and that the arrow bearing that name in (1) was constructed in [4]. The
construction of the temperate RHom/(:, O)-functor RH and proof that RH is an
equivalence was performed in [4], [5]. Also recall that the equivalence between
Reghol(Dx) and Hol(D¥') under DY glé (+) was proven in [7].

An independent proof that Sol is anxequivalence is performed in [10], but it
could not be used for microlocalization.

The point of interest here is to give a microlocal version of (1). Namely, if
m: T*X — X is the cotangent bundle of X, and p € Zg*X (sz*X\T;{ X, one has
the abelian category Reghol(£x ;) of germs of regular holonomic modules over
the ring of microdifferential operators £x p of [11] which should be equivalent
to a category defined by a suitable microlocalization of Perv(X). The precise

statement goes as follows.
We set C* := C\{0} and v: T*X — T*X/C*.

THEOREM 1.1. One has the following commutative diagram (2) and all the

horizontal arrows are equivalences of categories.

uRH

Perv(X;C*p)° »  Reghol(£xp)
R, f .
(2) Xreld,
T-phom(-,Ox)
Perv(X;p)® 3 > Reghol(£%7).
Sol,

We make use of the following notations:

e £ is the sheaf of infinite order microdifferential operators of [11],
e ER is the sheaf of holomorphic microlocal operators of [11],
® Eﬁ‘f is the temperate analogue of £§ introduced in [1],

e an object of Reghol(EXY) is by definition of the form £%f ® M with
X.p Xyp Ex

M € Ob(Reghol(€x,p)), with a similar definition for Hol(£%,) and
Hol(€3 ),

o the categories Perv(X; C*p) and Perv(X;p) are defined below,

e phom(-,-) is Kashiwara and Schapira’s functor of [9],

e T-phom(-,Oy) is the temperate version of phom(:,Ox) of [1], while
pRH := vy 'Ry, T-phom(:, Ox).
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Asguming the definition of Perv(X;p), the construction of Sol,, is implicit in
[8], and explicit in [12].

The various microlocalizations of Perv(X) are performed by essential use of
the microlocal theory of sheaves of Kaslhiwara and Schapira [9] and by using the
microlocal characterization of perverse sheaves of loc.cit.

We stress the point that these microlocalizations rely on necessary real (sub-
analytic) geometry.

The main tool in the proof is the invariance by canonical transformations
which allows one to make use of the generic position theorem of [7] which reduces
the sitnation to that of (regular holonomic) D-modules.

The prool of the main theorem goes here as follows. In Sections 2-4 we
explain the first vertical arrow in (2). In Section 5 we prove that the morphism
pRH : Perv(X;C*p)° — Reghol(£x ) is an equivalence of categories. Finally,
the fact that the arrows T-phom(-, Oy) and Sol, appearing in (2) are quasi-
inverse to each other, is easily deduced from [12].

2. The category Di__(X;0)

Let X be a real analytic manifold, D"(X) the derived category of the cate-
gory of bounded complexes of sheaves on X and Df__(X) its full triangulated
subcategory of complexes with R-constructible cohomology. The following is
detailed in [1, Aﬁ])endix].

If @ C T*X is any subset of the cotangent bundle of X the fundamental

category occurring in [9] is
Dh(X; ) = D"(X)/Na,

where M is the null-system of objects F whose micro-support SS(F) does not
meet Q (cf. loc.cit.).
We set here

D]%—C(X;Q) = DI%!—C(X)/NQ N Ob(Dla—c(X))

Note that if ' C © there is a canonical functor D§__(X;Q) — D§__(X; V).
If @ = {p} is a point we write D®(X;p) instead of D°(X;{p}) and so forth.
By the results of [9] it is easy to see that

LeEMMA 2.1. D§_ (X;p) is a full triangulated subcategory of D*(X;p).

An adaptation of the microlocal kernel operations of [9] yields also the in-
variance under “extended canonical transformations” of loc.cit.
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More precisely, let ¥ be another copy of X and denote by g¢; the j-th pro-
jection of X x Y and by (-)* the antipodal map of T*Y.

Let py € T*X, py € T*Y and K € Ob(D§_.(X x Y)) satisfy the following
condition:

(3) SS(K)n({px}xT*Y) C {(px,py)} in the neighborhood of that point.
For F € Ob(D%_.(Y)) one defines a pro-object of Db_.(X;px) by setting

(4) ®% (F) = “lim” Rqy(Kxxv ® g; 'F)

where V runs over the set of relatively compact open subanalytic neighborhoods

of y = m(py ). Actually one has

LEMMA 2.2. For K € Ob(Dg_.(X x Y)) satisfying (3), this pro-object is
an object of D§_(X;px) and the functor ® : Dy _ (Y;py) — Dp_(X;px) is
well defined.

Note that the functor ®x(-) = Rqu(K ® g5 *(-)) would not be defined here

in general.

PROPOSITION 2.3. Let ¢ : (T*Y)p, — (I*X)py be a germ of canonical
transformation and A its associated germ of Lagrangian manifold in T*(X xY).
One may find K € Ob(Dh_ (X x Y)) with SS(K) C A in the neighborhood
of (px,p%), such that & : D%_ (YV;py) — D _.(X;px) is an eguivalence of
categories. :

3. The category Dg&_.(X;)

Let now X be a complex n-dimensional manifold, and Xg the underlying
real manifold. Recall that for F € Ob(D%_.(X)) one has the following charac-
terization (cf. [9]):

(5) (F € Ob(DE_.(X))) & (SS(F) is C*-conical)

& (SS(F) is C-Lagrangian),
thus we may define for any subset 2 C T*X a full triangulated subcategory of
D _.(X;9) by setting
(6) Di_.(X;9) = the full subcategory of D§_.(X; Q) of the objects

[}

F € Ob(D}_.(X)) such that
SS(F) is C*-conical in a neighborhood of 2.
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PROPOSITION 3.1 (See [I, Appendix]). Let ¥ be another copy of X, ¢ :
(T*Y)py — (T*X),x be a germ of complexr canonical transformation and A C
T*(X x Y) its associated compler Lagrangian submanifold. Then

(i) there crists K € Ob(DE (X x Yi(px.py))) with SS(K) C A in a
neighborhood of (px, p§-) such thal the functor of Proposition 2.3 induces
an equivalence of ralegories

O s DE_(Yipy) = D (X;px),

(1) if morcover @ is globally defined on the orbit C*py then there is K €
Ob(DE (X x ¥V C* (pa, p8))). with SS(K) C A = CXA in a neighbor-

hood of C” (px, p§-) sueh thal & induces an equivalence of calegories

Ol : DE_o(Y;C¥py) = DE_(X,Cpx).

Point (i) follows easily from Proposition 2.3 by (5), because ®#. preserves
local C*-conicity; then (ii) stems from (i) and formula (4) that shows that i
is defined at any point in the fiber of # over n(p).

For example one has DE_ (X;T*X) = DE_(X) and if 2 € X = Ty X
one has the equivalence (F € Ob(D}. (X:wx))) & (F € Ob(D}_.(X)) and
Fly € Ob(D}._ (V) for soine open neighborhood V of ).

Note that, in general, the objects of D,{’.__ ~(Xsp) do not have C-constructible
cohomologies and the natural functor D (X)/N, N DE_ (X) — DL_.(X;p)
is not. an equivalence.

On the other hand, one has the following geometrical version of the generic

position theorem. Reeall (ef. [7]) that a complex Lagrangian subset A < T*X is

saitl Lo have a generie posilion at p < 1T X il and only if
(7) Ana 'a(p) = C*p ina neighborhood of p.

PROPOSITION 3.2. Let F € Ob(D¢._ (X;p)) such that SS(F) is in a generic
position at p. Then there exists F' € Ob(DY._,(X;n(p))) such that F' ~ F in
DH(X; p).

The proof goes by showing that one may “cut off” the non-C-Lagrangian part
of $S(F) in m~'n(p), i.e. one finds kernels &', K* in D&__(X x X; (p,p*)) and an
open subanalytic neighborhood U of  in X such that K, K™* satisfy the condi-
tions of Proposition 3.1(i), ®%. is a quasi-inverse of ®% and F' := &/, (¥4 F)y)
is such that §S(F') is C*-invariant in 7~ 1(U/). Thus F' € Ob(DE_ (X;7(p)))
by (5) and F’ =~ F in D*(X;p) by Proposition 3.1.

Alternatively, the proof is obtained by using the refined version of [3] of a
microlocal cut-off lemma of [9] where non-convex sets are allowed.
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4. Microloealization of perverse sheaves
In [9] one finds the following microlocal characterization of perverse sheaves:
An object F' € Ob(D2__(X)) is a perverse sheaf if and only if it satisfies the
following condition (cf. [9, (10.3.7)])
(8)  For any non-singular point p € SS(F) such that m : S§(F) — X has con-
stant rank in a neighborhood of p, there exists a complex d-codimensional
submanifold Y C X such that F ~ CJ}[~d] in D% X;p) for some m.

Thus for any subset 2 C T*X we may define a full subcategory Perv(X; Q)
of D&__(X;) in the following manner.
DEFINITION 4.1. Ob(Perv(X;)) c;——f{F € Ob(DE_.(X;Q)); F satisfies con-
[
dition (8) at any p in a neighborhood of 2}.

Then the following results from §3 and the characterization (8).

PROPOSITION 4.2. Let Q = {p} (resp. @ =C*p).
(i) Perv(X;) is invariant by extended canonical transformation in the
sense of Proposition 3.1 (i) (resp. Proposition 3.1 (ii)).
(i) Let F € Perv(X;p) (resp. Perv(X;C*p)) such that SS(F) is in a
generic posilion at p. Then there is F' € Perv(X;n(p)) such that F
F' in D*(X;p).
(iii) Perv(X;) is a full abelian subcategory of Di_.(X;Q).

5. The equivalence uRH : Perv(X;C*p)° — Reghol(€x,p)

Recall that Kashiwara’s functor RH of cohomology with bounds of [5], [6] is

defined on R-constructible complexes, more precisely
RH : D}_.(X)° — D*Dx)

(where D®(Dx) stands for D®*(Mod Dx)), and it is microlocalized in [1] as a
functor

T-phom(-,Ox) : D,I,’Q_C(X)" — D&”(W—l Dx),
where the latter category is the full subcategory subcategory of the complexes
of D?(n~1Dy) := D¥(Mod(n~!Dx)) with Ry¢-homogeneous cohomology. Since
one has

supp(T-phom(F, Ox)) C SS(F),

it follows that for any subset @ C T* X, the functor of triangulated categories

T-phom(-,Ox) : D]'?R_C(X;Q)° — Dﬁ)o(wﬁl'l)x)
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is well-defined, where mg = w|g : @ — X. 1f moreover 2 = C*N is a C*-
invariant subset we set for F € Ob(D}_ (X)),

)] HWRH(F) (Er7—1 Ry, T-phom(F,Ox) € O()(Dﬁ)o(w(zl Dx)).

Recall also the following facts:
o For any F' € Ob(Dy_.(X)) and any j € Z, H'T-phom(F,Ox) is an
£ gt}’f -module,
° S)mé’f is faithfully flat on £x and v~ Ry, £§'f >~ Ex,
and we have invariance by canonical transformations, that is, with the hypotheses
of Proposition 3.1(i), one may find a section

s € H°(T-phom(K, Qxxv/ X)) px.p%)

(where §2x xy,x means the sheaf of maximum degree forms relative to X x Y —
X) such that the correspondence P € S;R}',’;x — Qe 85,’7{‘, such that Ps = sQisa
ring isomorphism compatible with a natural isomorphism T-phom(F, Oy )py =5

T—p,hom(fl”,:,[n] F,Ox)px-
Finally, we have a basic formula:

T-phom(F,0x) = EXT @« 'RH(F)  for F e ObDL_ (X)),
s Dx
from which we get
(10)  uRH(F)=Ex ® = 'RH(F) for F e Ob(DE_.(X)).
P ..|-Dx

The key point is then

LEMMA 5.1. Formula (9) actually defines a functor
pRH : Perv(X;C”p)° — Reghol(€Ex p).

PRrROOF. Let F' € Ob(Perv(X;C*p)). By the invariance by extended (resp.
quantized) canonical transformations, we may assume that SS(F) has a generic
position at p, thus, by Proposition 4.2(iii) we may find F’ € Perv(X;n(p)) such
that F >~ F' in D"(X;p), thus

RRH(F), ~ uRH(F'), ~ (£x 8 7" RH(F")),,

X

by (10), and the latter is an object concentrated in degree zero, which coincides

with the germ at p of a regular holonomic € y-module. O

That pRH : Perv(X;C*p)° — Reghol(€x ;) is an equivalence is then readily
deduced, by using again invariance by canonical transformations, from Kashi-

wara and Kawai’s generic position theorem of [7].
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6. Final remarks

As is well known one has the diagram

Rhom(-.Ox)

DE ® (1)
RH
Perv(X)® =———= Reglol(Dyx) —— Hol(D¥)
Sol
The corresponding microlocal diagram is given by
) "Ry cpham (. Oyx)
ET, ® ()
. o nRH Ex.p oo
Perv(X; C*p) Reghol(Ex p) Hol(EF,,
. f . 8]" .
(1.3) lg“"’s?p( ) 2,0
T-pthom(-.Ox) Fof
— Perv(X;p)° =— > Reghol(€4) = Hol(ER ) —
olp P Exp -'®f(-) ”
£
X,»

thom(-.Ox),

Sol,

where the horizontal arrows are equivalenees ol categories.

Notice also that, up to now, we were not able to get the microlocal version

l

ol the diagram

IHhom({-.Ox)

’ DY O ()

N 1O R oy Tx b (e
D (X} === D!, (Dx) ——> D}(DF)
Sol
concerning derived calegories.
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