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COVERING MANIFOLDS FOR ANALYTIC FAMILIES
OF LEAVES OF FOLIATIONS BY ANALYTIC CURVES

Yulij S. Ilyashenko

To Jürgen Moser for his seventieth birthday

Introduction

This paper deals with the foliations of Stein manifolds by analytic curves.
A single fiber of such a foliation is a Riemann surface which may be parabolic
or hyperbolic. The universal covering over this fiber is either a complex line, or
a disk. Now let us take an analytic family of fibers, that is, the saturation of an
analytic cross-section by fibers. The main problem in the context, still unsolved,
is to find a uniformization of the fibers analytic with respect to the parameter.
Precise definitions look like follows.

Definition 1. A skew cylinder is a tuple (M,B, π), where M is a complex
manifold, B is a complex hypersurface in M , π : M → B is an analytic retraction
with the constant rank equal to dim M − 1 and with simply connected fibers.
The manifold M is called a total space of the skew cylinder.

Definition 2. A skew cylinder is standard, if M ⊂ B × Ĉ, and π is the
retraction to B × {0} along the second factor.

Remark. Different standard skew cylinders may be conformally nonequiva-
lent. The simplest example is provided by a ball and a bidisk foliated by parallel
lines.
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Definition 3. Two skew cylinders (M,B, π), (M̃, B̃, π̃) are equivalent, if
there exist two biholomorphic maps ρ : B → B̃ and H : M → M̃ , such that the
following diagram commutes

M
H−−−−→ M̃

π

y yeπ

B −−−−→
ρ

B̃

.

The simultaneous uniformization problem for skew cylinders looks like fol-
lows:

Problem. Is it true that a skew cylinder with the Stein total space is equiv-
alent to a standard one?

Remark. It is not difficult to find skew cylinders with nonStein total space,
which are nonuniformizable, that is, nonequivalent to any standard skew cylin-
der.

Fortunately, the skew cylinders that occur as covering manifolds mentioned
in the title are always Stein. This is the main result of the present paper; the
accurate statement is Theorem 1.2 below.

The other main result of the paper is the Fibers Connection Lemma. We
will prove it in Section 4 below. Here we state the following

Corollary. Let K in CN be a polynomially convex domain with a smooth
boundary and a foliation by parallel complex lines, p be an arbitrary point of
tangency of the foliation with ∂K. We take a ball B centered at p; denote ϕa

the leaf of the foliation through a, and

ψa = B ∩K ∩ ϕa.

Let Q ⊂ K be a ball that intersects ψp. For any b ∈ Q, we denote by ξb the
connected component of ψb that contains b. Then the union

Ktr =
⋃
b∈Q

ξb,

is polynomially convex (tr of truncated).

The sketch of the proof of the main theorem was given in [I]. Here we give a
complete proof.

1. Definition and existence of covering manifolds

Consider a Stein manifold X and a foliation with singularities of X by analy-
tic curves. By definition, this means that there exists an analytic subset Σ ⊂ X

of codimension greater than one and a foliation of X−Σ by analytic curves that



Covering Manifolds 363

cannot be extended to a neighbourhood of any point of Σ. We denote by ϕp a
fiber of this foliation through p ∈ X − Σ.

Definition 1.1. Let F be a foliation by analytic curves with singularities,
and B a transversal cross-section. A covering manifold M̃ over the leaves of the
union

M =
⋃

p∈B

ϕp,

is the total space M̃ of the skew cylinder (M̃, π,B) with the following properties:

• there exists a locally biholomorphic projection π̃ : M̃ →M ,
• for any fiber ϕ̃p = π−1p, p ∈ B, the restriction of π̃ to ϕ̃p is the universal

covering map over ϕp, with the base point p,
• π̃ restricted to B is identity.

Theorem 1.1 ([I]). A covering manifold exists for any analytic foliation
with singularities of a Stein manifold and any cross-section.

The sketch of the proof is given at the end of this section. The main result
of the paper is

Theorem 1.2. A covering manifold corresponding to a codimension one
Stein cross-section for an analytic foliation by curves with singularities of Cn, is
a Stein manifold itself.

This theorem is proved in the next three sections. It may be considered as a
partial solution to the following

Serr Problem. Give sufficient conditions for the total space of a fibration
with the Stein base and Stein leaves to be a Stein manifold itself.

The sufficient condition for the case of one-dimensional connected and sim-
ply connected leaves provided by Theorem 1.2 is: there exists n such that the
regarded space is a covering manifold for a foliation of Cn by analytic curves
corresponding to a Stein cross-section.

Sketch of the proof of Theorem 1.1. The manifold M̃ may be con-
structed as follows. For any point p ∈ B and q ∈ ϕp the class of curves on ϕp

starting at p and ending at q homotopic on ϕp represents a point q̃ ∈ ϕ̃p. Thus
the set of points of M̃ is well defined.

The projection π̃ : M̃ → M is defined by: π̃(q̃) = q. The topology on M̃

is defined in the following way. For any point q̃ ∈ ϕ̃p represented by a class
of homotopic curves [γpq ⊂ ϕp] we consider a small neighbourhood U of q in
Cn such that the following holds. Any point q′ ∈ U may be connected with
some point p′ ∈ B by a curve γp′q′ ⊂ ϕp′ in such a way that the curves γp′q′

depend continuously on q′ ∈ U . The set of points represented by the homotopy
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classes of the curves γp′q′ on the corresponding fibers ϕp′ forms, by definition,
the neighbourhood Ũ of q̃.

The manifold M̃ thus constructed is a Hausdorff one. Indeed, if two curves
on the same fiber of F are nonhomotopic than the nearby curves on nearby
fibers are nonhomotopic on this fibers as well. This is the consequence of the
analyticity of the foliation. Namely, if the sequence of loops γn homotopically
trivial on the fibers ϕn tends to the loop γ on the fiber ϕ, than γ is homotopically
trivial of ϕ as well. Really, the films that span γn on ϕn are one-dimensional
complex analytic sets. They have minimal area amidst all the films spanning
ϕn in Cn with the induced metrics. The areas of these films form a bounded
sequence, hence a limit of this sequence of films exists. The limit film spans the
loop γ on ϕ.

Thus M̃ is a Hausdorff manifold. The complex structure on M̃ is inherited
from Cn as a pullback under the projection π̃ : M̃ →M ⊂ Cn.

2. Structure of the Riemann domain on the covering manifold

We consider a covering manifold from Theorem 1.2. That is, let F be a
foliation with singularities of Cn by analytic curves. Let B ⊂ Cn be a Stein hy-
persurface transversal to the leaves of the foliation. Let M̃ be the corresponding
covering manifold, M and π̃ : M̃ →M be the same as in Definition 1.1.

Lemma 2.1. The manifold M̃ is a Riemann domain over M .

Proof. The manifold M is a domain in Cn because B is a hypersurface
in Cn. By Definition 1.1, π̃ : M̃ → M is a local holomorphism. The only
property in the definition of Riemann domains to be checked is that holomor-
phic functions separate points on M̃ . To do that, we use the main idea of this
paper: holomorphic functions on M̃ produce holomorphic 1-forms; these forms
integrated along the leaves produce new holomorphic functions. Let us pass to
the detailed proof.

Let’s suppose the converse: there exist points on M̃ that cannot be separated
by the functions from O(M̃). These points have the same image under the
projection π̃; otherwise the coordinate functions lifted to M̃ would separate
them.

Now, let b1, b2 be nonseparable points on M̃ , a = π̃b1 = π̃b2. We consider a
fiber ϕa ⊂M and the fundamental group π1(ϕa, a). The points bj belong to the
fibers π−1(πbj) = ϕ̃j of the skew cylinder M̃ . Let pj = πbj . Then the points bj
are represented by the curves γj ⊂ ϕa beginning at pj and landing at a. These
curves may be chosen in such a way that their lifts to ϕ̃j will be simple and
smooth; but the curves themselves may have selfintersections. Let

(2.1) µ = γ−1
1 γ2,
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be the curve on ϕa beginning at p1 and ending at p2.
The construction leading to the contradiction will be the same in different

cases; we begin with the simplest ones.
Let ω be a polynomial 1-form on M . The form ω∗ = π̃∗ω, a pullback of the

form ω, is a holomorphic 1-form on M̃ . For any point q ∈ M̃ let p = π(q) and
γq be a curve on the fiber ϕ̃p = π−1p that joins p with q. The function

(2.2) I : q 7→
∫

γq

ω∗,

is well defined on M̃ because the fibers of π are simply connected; it is holomor-
phic on M̃ .

This construction, after slight modifications, will prove Lemma 2.1. We
consider several particular cases.

Case 1. The curve (2.1) is simple nonclosed. Then, by the theorem of Bishop,
any continuous function in µ may be uniformly approximated by a polynomial.
This theorem follows from the Stolzenberg theorem quoted below in Section 4.

By a homotopic deformation on a leaf, µ may be chosen to be smooth. Let
s be the arc length parameter on µ. Choosing appropriate coordinates, we
may assume that dζ/ds 6= 0, where ζ is the restriction of z1 onto µ. We take
g = 1/(dζ/ds) on µ. Let P be a polynomial that approximates g uniformly on
µ and take

ω = P dz1.

Obviously, the integral of ω over µ is close to the length of µ denoted by |µ|.
Let the pullback ω∗ be the same as above: ω∗ = π̃∗ω. Then the function

(2.2) is holomorphic on M̃ and separates the points b1 and b2, a contradiction.
Indeed,

(2.3) I(b2)− I(b1) =
∫

µ

ω 6= 0.

Case 2. The curve µ is simple and closed; hence, p1 = p2. Moreover, [µ] 6= 0
in H1(ϕa). By theorem of Bishop, the following dichotomy holds:

• either any continuous function on µ may be uniformly approximated by
a polynomial,

• or µ is a boundary of a compact one-dimensional analytic set.

We will prove that the second option never takes place in our case. Then the
first possibility holds, and the proof follows the same lines as before: we find a
function I ∈ O(M) for which (2.3) holds.

We shall prove that for µ defined above, the first case holds. Let’s suppose, on
the contrary, that the second case takes place. Then the curve µ is a boundary of
a one-dimensional analytic set A. But µ ⊂ ϕa. By the local boundary uniqueness
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property of analytic sets, A ⊂ ϕa. Hence, µ is a boundary of a compact set
A ⊂ ϕa. Therefore, µ is homologically trivial on ϕa, a contradiction.

Case 3. The curve µ is closed but not necessary simple. Let us call a
closed curve λ ∈ π1(ϕa, a) nonseparable if the points of the covering manifold
M̃ represented by the curves γ1 and γ1λ cannot be separated by holomorphic
functions from O(M̃). Our goal is to prove that there is no such curves; but we
supposed that they exist, and µ is one of them. We will bring this assumption
to the contradiction.

Homotopy classes of nonseparable curves form a subgroup Γ ⊂ π1(ϕa, a).
The difference π1(ϕa, a) \Γ contains a countable number of elements; we denote
the loops that represent them by λ1, . . . , λn, . . . . Let fn ∈ O(M̃) be the function
that separates points b1 ∈ M̃ and an ∈ M̃ represented by γ1 and γ1λn. The
function

f = Σ∞1 cnfn,

with suitable rapidly decreasing coefficients separates the couples b1, an for all n,
we recall that b1 is represented by γ1.

Let’s consider a map

(2.4) Π : M̃ → Cn+1, p 7→ (π̃(p), f(p)),

and denote by ψ the image Πϕp1 . We recall that p1 = πb1. A projection
π0 : Π(p) → π̃(p), ψ → ϕa is well defined. The fundamental group π1(ψ,Π(b1))
is isomorphic to Γ. It contains a class represented by a loop, say µ1, which
is simple, smooth and nonhomological to 0 on ψ, that is, µ1 is nontrivial in
the group H1(ψ,Z) with compact supports. The curve π0µ1 = µ0 ⊂ ϕa is
nonseparable. On the other hand, repeating the construction of Case 2 with
the polynomial p defined on Cn+1 instead of Cn, we prove that the curve µ1 is
separable. Hence µ0 is separable too, a contradiction.

Case 4. The curve µ ⊂ ϕa is nonclosed and selfintersecting. We can replace
this curve by another one, having all the selfintersection points in a. Let λ1 and
λ2 be simple curves on ϕa that connect p1 and p2 respectively with a such that
λ−1

1 λ2 is simple. Then µ = λ−1
1 γλ2 where γ ∈ π1(ϕa, a).

Let γ̃1, γ̃2 be the covering on M̃ of γ1, γ2 respectively, γ̃j begins at pj ; the
curve γ̃j represents the point bj ∈ M̃ .

Regarding Case 3 we proved that all the loops in π1(ϕa, a) are separable.
Hence, for a suitable function f ∈ O(M̃) and the corresponding map Π, see
(2.4), the curve

µ1 = (Πγ̃1)
−1(Πγ̃2),

is simple. Using the same arguments as in case 1, we find a function g ∈ O(M̃)
that separates the points b1, b2 ∈ M̃ , a contradiction. �
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Lemma 2.1 is proved. Together with the Remmert theorem [GR], [H], it
implies that M̃ is either a Stein manifold, or admits a holomorphic extension S
which is a Stein manifold and a Riemann domain once more.

To prove Theorem 1, we need to prove that S = M̃ ; in other words, we have
to bring to the contradiction the hypothesis;

(2.5) S \ M̃ 6= ∅.

This is done in the next three sections. Section 3 contains the Closure Lemma
which becomes trivial as soon as we know that S = M̃ . But, on the contrary,
we need the Closure Lemma to prove this equality.

Section 4 contains the Connection Lemma. This lemma is used in the proof
of Theorem 1; in the same time, it has an independent interest.

3. Closure Lemma

Let F be a foliation with singularities of Cn by analytic curves, and B ⊂ Cn

be a hypersurface transversal to the leaves. Let B be a Stein manifold, let ϕp

be a leaf of F passing through p.
Let M̃ be a covering manifold over a family M =

⋃
p∈B ϕp.

Lemma 2.1 asserts that M̃ is a Riemann domain. Let S be a Riemann domain
which is a holomorphic envelope of M̃ and a Stein manifold at the same time.
Such an S exists by the Remmert Theorem.

We want to bring to a contradiction the hypothesis (2.5). Let’s suppose that
(2.5) holds.

Lemma 3.1 (Closure Lemma). For any p ∈ B, the fiber ϕ̃p is closed in S.

Proof. First of all, let us describe the structures inherited by S from M̃ .
The manifold S is a Riemann domain with the projection that extends π̃; let
us denote it by the same symbol. The projection π̃M̃ did not contain singular
points of F ; the projection π̃S may contain some (this possibility is not excluded
until the equality M̃ = S is proved).

On the other hand, projection π : M̃ → B may be extended to S. Indeed,
B is a Stein manifold by assumption. Hence, it may be holomorphically embed-
ded into some Ck as a closed submanifold; let h1, . . . , hk be the corresponding
functions, determined after the choice of coordinates in Ck, h = (h1, . . . , hk).
The vector function h ◦ π ∈ O(M̃) may be extended up to h̃ ∈ O(S). This
vector-function maps S onto h(B).

Indeed, h(B) ⊂ Ck may be given as a zero set of some ideal I of functions
F ∈ O(Ck). That is, for any F ∈ I, F ◦h = 0. On the other hand, the statement
F (z) = 0, for all F ∈ I, implies z ∈ h(B). For the S-extension h̃ of h we have:
F ◦ h̃ = 0 for any F ∈ I. Hence, h̃(S) = h(B). The map π is now extended to S
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in the following way: for any q ∈ S, let p = h−1(h̃(q)), π(q) = p. The fibers of
the map π on S are closed analytic sets, not necessarily one-dimensional.

Now we pass to the proof of Lemma 3.1. Let’s suppose, the lemma is wrong.
Let ϕ̃ be a fiber of the skew cylinder in M̃ , which is nonclosed in S. Let p = πϕ̃,
and Φ = π−1p ⊂ S. The set Φ is closed analytic. We decompose it to irreducible
components and denote by ψ the component that contains ϕ̃. As the intersection
of ψ with the set M̃ (which is open in S ) is one-dimensional, the set ψ is one-
dimensional itself. We shall prove that inequality ϕ̃ 6= ψ contradicts the fact
that the map π̃ : ϕ̃→ ϕp is the universal covering.

Proposition 3.1. The image of (Closure ϕ̃) ∩ ∂M̃ under π̃ belongs to the
singular set Σ of the foliation F .

Proof. We suppose that the contrary holds. Let b ∈ (Closure ϕ̃)∩ ∂M̃ and
a = π̃b /∈ Σ. Then there exist neighborhoods U of b and V of a in S and Cn

such that π̃ : U → V is biholomorphic. Let s : V → U be the inverse map.
Moreover, V may be chosen in such a way that the connected component of the
intersection of any leaf with V is a disk. We denote by ∆ that one of these disks
that contains a.

On the other hand, the neighborhood U may be chosen in such a way that
the intersection ψ∩U is a topological disk, because ψ is a closed one-dimensional
analytic set. The projection π̃(ϕ∩U) contains the point a and a domain on some
of the leafs of F . Hence, π̃(ψ ∩U) = ∆. The union of the disk s∆ and the fiber
ϕ̃ forms a covering over the leaf ϕp. This contradicts the fact that π̃ : ϕ̃→ ϕp is
the universal covering. �

Let us now return to the proof of Lemma 3.1. Proposition 3.1 implies that

(3.1) π̃(ψ ∩ ∂M̃) ⊂ Σ.

The set π̃−1Σ is an analytic subset of S. Hence, the intersection ψ ∩ π̃−1Σ
consists of isolated points. Let b ∈ ∂M̃ be one of them. Some neighbourhood U0

of b on any irreducible component of ψ ∩ U may be uniformized. In particular,
there exists a disk K and a biholomorphic map t : K \ 0 → U0 \ b. By (3.1),

U0 \ b ⊂ ϕ̃.

The image under t of a small circle γ centered at 0 is a loop on ϕ̃. It may
be contracted on ϕ̃, but not across b, because b /∈ ϕ̃. Let K ′ be the image of
the contraction of t(γ). Then the union K ′ ∪U0 is homeomorphic to a Riemann
sphere holomorphically embedded in the Stein manifold S. But any holomorphic
map of a sphere into a Stein manifold is constant.

The contradiction proves Lemma 3.1. �
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4. Fibers Connection Lemma

Lemma 4.1 (Fibers Connection Lemma). Let the total space M of the skew
cylinder C = (M,π,B) be embedded in Cn. Let the holomorphic hull of M be a
closed submanifold S ⊂ Cn. Let the skew cylinder C ′ = (K,π′, B′) belong to C
in a sense that K ⊂M, B′ ⊂ B, π|K = π′. Let the closure K of K be compact,
and K̂ be the polynomial hull of K. Let ϕ be an arbitrary fiber of the skew
cylinder C such that the intersection ϕ ∩K is nonempty. Then the intersection
ϕ ∩ K̂ is connected.

Remark. The intersection of K with any fiber of C is either empty, or
coincides with the fiber of the skew cylinder C ′ and thus is connected and simply
connected.

Proof. We suppose that the lemma is wrong. Let ϕ be a fiber of the skew
cylinder C whose intersection with K is nonempty and the intersection with K̂ is
disconnected. Let γ be a real analytic curve on ϕ that connects a point a ∈ K∩ϕ
with a point b that belongs to the component of the intersection ϕ ∩K disjoint
from K.

We shall construct a function F holomorphic on M , hence on S, and such
that

(4.1) |F (b)| > max
K

|F |.

This function may be holomorphically extended to Cn from the Stein manifold
S, and uniformly approximated by a polynomial on any ball. Hence, there exists
a polynomial Q on Cn such that

|Q(b)| > max
K

|Q|.

This contradicts the statement that K is a polynomially convex hull of K, and
proves the lemma, modulo the existence of the function F with the property
(4.1). The function itself will be constructed by the methods of Section 2.

Proposition 4.1. Let K̂ be a polynomially convex compact set in Cn, ϕ
be an analytic curve having a disconnected intersection with K. Let γ be a
real analytic curve on ϕ that connects two points on two different connected
components of the intersection K ∩ ϕ. Then any continuous function on K ∪ ϕ
that may be uniformly approximated by a polynomial on K may be in the same
time uniformly approximated by a polynomial on K ∪ ϕ.

This proposition will be proved below. Now we deduce from it Lemma 4.1.
By assumption, the set K is open, and K is compact. Hence there exists c > 0
such that any two points on any fiber of the skew cylinder C ′ may be connected
by a curve of the length no greater than c.
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Let ζ be the restriction of the coordinate function z1 to γ. Let s be the arc
length along γ. Without loss of generality, we may assume that ∂ζ/∂s 6= 0. Let
ψ be a smooth function γ → [0, 1] equal to 0 on K̂ ∩ γ and equal to 1 on some
arc γ0. Let us define a continuous function f on K̂ ∪ γ as follows:

f |γ =
ψ

∂ζ/∂s
, f |K = 0.

By Proposition 4.1, this function may be uniformly approximated by a polyno-
mial P on K̂ ∪ γ. Let P approximate f with the accuracy sufficient for what
follows. Let

ω = P dz1, F (q) =
∫

γq

P dz1,

where γq is a curve on the fiber ϕp, p = πq that starts at p and ends at q. The
function F ∈ O(M) is well defined because the fibers ϕp are simply connected.
For a polynomial P approximating f with good precision we have

F (b) =
∫

γ

P dz1 ≥ |γ0|/2,

where |γ0| is the length of the curve γ0. On the other hand,

|F ||K ≤ cmax
K

|P | < |γ0|/2.

These inequalities prove (4.1). Hence, they prove Lemma 4.1, modulo Proposi-
tion 4.1. �

Proof of Proposition 4.1. The proof is based on the following theorem.
As before, the hat denotes the polynomially convex hull.

Theorem (Stolzenberg Theorem ([S])). Let K be a polynomially convex set
in Cn, γ a compact subset of Cn, which is a finite union of smooth curves. Then

(A) The difference ̂(K ∪ γ) \ (K ∪ γ) is the one-dimensional analytic subset
of Cn \ (K ∪ γ) (it can be empty).

(B) Every continuous function on K ∪ γ that is uniformly approximable by
polynomials on K can be uniformly approximated by rational functions
on K∪γ. If the set K∪γ is polynomially convex, then rational functions
may be replaced by polynomials.

We shall prove polynomial convexity of the set K̂∪γ. After that assertion (B)
of Stolzenberg Theorem yields Proposition 4.1.

Let’s suppose that the union K̂ ∪ γ isn’t polynomially convex. Then, by
assertion (A) of Stolzenberg Theorem, there exists a nonempty one-dimensional
analytic subset A ⊂ Cn \ (K̂ ∪ γ). Its closure is compact. We say that the
difference ∂A := Cl A \ A is the boundary of A. Obviously, ∂A ⊂ K̂ ∪ γ.
We note that ∂A cannot be contained in K̂ because in that case the relatively
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compact set A would be analytic in the complement Cn \ K̂. But the distance to
the polynomially convex set K̂ is a plurysubharmonic function (see, for example
[H]), and its restriction to the analytic set A cannot have a maximum at any
inner point of A. So the one-dimensional analytic set A contains in its boundary
the real analytic curve γ lying on the complex analytic curve ϕ. Hence the
curve ϕ contains the irreducible component A′ of the set A such that γ ⊂ ClA′.
It is the result of Aleksander Theorem about analytic continuation of a one-
dimensional analytic set across a real analytic manifold [Ch] and uniqueness
of the one-dimensional analytic set containing the real analytic curve. So we
have the connected complex analytic curve ϕ, and the compact domain A′ on
it such that ∂A′ contains the unclosed curve γ. Hence the difference ∂A′ \ γ is
connected. This contradicts to inclusion ∂A′ ⊂ γ ∪ (K̂ ∩ ϕ): by our assumption
the intersection K̂ ∩ ϕ isn’t connected. This proves Proposition 4.1. �

This completes the proof of the Fibers Connection Lemma.

5. Proof of the main theorem

Here we reduce the main theorem to the Closure and Fibers Connection
Lemmas. Any skew cylinder may be exhausted by compact skew cylinders.
Therefore, it is sufficient to prove the following

Proposition 5.1. Let C = (M̃, π,B) be a skew cylinder from Theorem 1.1,
B being a Stein manifold. Let (K,π,B′) be a compact skew cylinder that belongs
to C = (M̃, π,B). Then the O(M̃)-holomorphic hull of K belongs to M̃ .

Proof. We assume the converse and consider, as before, the holomorphic
hull S of M̃ as a closed analytic submanifold of Cm. Then theO(M̃)-holomorphic
hull of K coincides with the polynomial convex hull of K in Cm.

We supposed that K̂ 6⊂ M̃ . Then there exists a sequence bn ∈ K̂ ∩ M̃ such
that

b := lim bn ∈ S \ M̃.

No subsequence of this sequence belongs to a single fiber, by the Closure lemma.
Then, passing to a subsequence, we may assume that the points bn belong to
different fibers of the skew cylinder C. Let

pn = πbn, p = lim pn ∈ B.

The projection πK̂ of a compact set is a compact set itself. Hence, the above
limit exists. Let

kn = K̂ ∩ ϕ̃pn
.

By the Fibers Connection Lemma, kn is connected. We consider an “upper
topological limit” of the sequence kn :

k = {c | there exist cn ∈ kn such that c = lim cn}.
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By the well known set theoretical fact, the upper topological limit of connected
sets kn is connected itself, provided that there exists a convergent sequence
bn ∈ kn.

By definition of k, k 3 b and k 3 p. We shall prove that this contradicts the
Closure Lemma. Indeed, by this lemma, the fiber ϕ̃p is closed in S. Hence, it
is a connected component of the inverse image π−1p because ϕp = π−1p ∩ M̃ ,
and M̃ is open in S. Hence, k ⊂ ϕp, because k ⊂ π−1p, and k is connected.
Therefore, b ∈ ϕp ⊂ M̃ , a contradiction. �

This contradiction proves Proposition 5.1, and the main theorem.

Conclusion

The algebraic version of the problems discussed here is solved in [B] and [G].
This version deals with the case when the foliation is given by the polynomial
map P : Cn → Cn−1, and the projective compactifications of the leaves are
nonsingular Riemann surfaces. In this case the simultaneous uniformization
problem is positively solved.

Let’s note that for the case of leaves with singularities the same problem
for the algebraic foliation is not yet solved. Its positive solution, together with
the main theorem of the present paper, would imply the positive solution of the
general simultaneous uniformization problem.

Recently Shcherbakov [Sh] proved that any skew cylinder with a Stein total
space may be exhausted by a nested sequences of embedded compact skew cylin-
ders which are strictly pseudoconvex and have a smooth boundary. The proof
uses the corollary from the introduction to this paper.

On the other hand, a small perturbation of a complex structure on the stan-
dard compact strictly pseudoconvex skew cylinder with the smooth boundary
transforms the cylinder to a new one, which is still uniformizable, that is, equi-
valent to a standard one. This theorem is proved in [IS].

Simultaneous uniformization for the generic foliations in Cn remains a chal-
lenging problem. We finally note that in Theorems 1.1, 1.2, Cn may be replaced
by an arbitrary Stein manifold.

Acknowledgements. The author is greatful to J. Hubbard for fruitful dis-
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