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MULTIPLE SEMICLASSICAL STANDING WAVES
FOR A CLASS OF NONLINEAR SCHRÖDINGER EQUATIONS

Silvia Cingolani — Monica Lazzo

1. Introduction and statement of the results

In recent years, much interest has been paid to the nonlinear Schrödinger
equation in RN ,

(1.1) i~
∂ψ

∂t
= −~2∆ψ + U(x)ψ − |ψ|p−2ψ, x ∈ RN ;

i is the imaginary unit, ~ is the Planck constant, ∆ denotes the Laplace operator,
p > 2 if N = 1, 2 and 2 < p < 2N/(N − 2) if N ≥ 3.

When looking for standing waves of (1.1), namely solutions of the form
ψ(t, x) = exp

(
−iλ~−1t

)
u(x), with λ ∈ R and u real valued function, one has to

deal with an elliptic equation in RN . Precisely, replacing ~ by ε leads to look for
solutions of the problem

(Pε)


−ε2∆u+ V (x)u = |u|p−2u, x ∈ RN ,

u > 0,

lim
|x|→∞

u(x) = 0,

where V (x) = U(x) + λ.
Solutions of (Pε) corresponding to small values of the parameter ε are usually

referred to as semiclassical solutions of the Schrödinger equation. The existence
of semiclassical solutions for (Pε) has been proved for the first time by Floer and
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Weinstein in [8] when N = 1 and p = 4. They consider a bounded potential V
with a nondegenerate critical point x0, and their method is based on a Lyapunov-
Schmidt finite dimensional reduction. We also refer to [16] for some extensions
to higher dimensions and to a wider class of potentials.

Some years later, by means of a mountain-pass type argument, Rabinowitz
proved in [17] the existence of “least-energy” solutions to (Pε) for ε sufficiently
small, under the assumption

(1.2) lim inf
|x|→+∞

V (x) > inf
x∈RN

V (x).

Afterwards, several authors studied the concentration behaviour of solutions
to (Pε). For example, in [18] it is shown that the mountain-pass solution found
in [17] concentrates near the global minima of V as ε tends to 0. In [7] a local
version of the results in [17] and [18] is obtained, via variational methods. In [1]
problem (Pε) is studied by perturbation arguments, for a bounded potential V
having at x0 a possibly degenerate local minimum (or maximum).

Finally, in [11] some previous results are extended and existence results of
multi-bump solutions to (Pε) are presented. Incidentally, we note that multi-
bump solutions have been widely studied; for an extensive bibliography on this
subject we refer again to [11].

Let us point out that in many results mentioned above the existence of solu-
tions for (Pε) is related to the existence of a minimum point of the potential V .
As a consequence, it seems rather natural to ask whether it is possible to relate
the multiplicity of solutions for (Pε) to the “richness” (intended in a suitable
sense) of the set of minimum points of V . The aim of the present paper is to
give an affirmative answer to such a question.

Before stating our main result, we need some notations. Let

V0 = inf
x∈RN

V (x), M = {x ∈ RN : V (x) = V0}.

For any δ > 0, let Mδ = {x ∈ RN : d(x,M) ≤ δ}.

Theorem 1.1. Assume that V is a continuous map in RN and that

(V) lim inf
|x|→∞

V (x) > V0 > 0.

Then, for any δ > 0, there exists εδ > 0 such that (Pε) has at least catMδ
(M)

solutions, for any ε < εδ.

Remark 1.2. We recall that, if Y is a closed subset of a topological space X,
the Ljusternik–Schnirelman category catX(Y ) is the least number of closed and
contractible sets in X which cover Y . In some situations this results in catMδ

(M)
= catM (M), for δ small. That is the case, for instance, if M is the closure of a
bounded open set with smooth boundary, or a smooth and compact submanifold
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of RN . If M is a finite set, then catMδ
(M) = catM (M) = cardinality of M , for

δ small.

Remark 1.3. As an example, let us show a case in which Theorem 1.1
permits to find an arbitrarily large number of solutions to (Pε). Suppose that
V fulfills (V) and, in addition, M = {xn : n ≥ 1} ∪ {x}, where xn converges to
x and xn 6= x for infinitely many indices. Fix any integer m. It is easy to check
that there exists δ = δ(m) > 0 such that catMδ

(M) ≥ m. By Theorem 1.1, (Pε)
has at least m solutions for any ε < εδ. Such a result holds, for example, for any
continuous extension in RN of the map

V (x) =

{
1 if x = 0,

1 + |x| sin(1/|x|) if 0 < |x| < 1,

which satisfies (V).

Remark 1.4. Let us point out that in Theorem 1.1 we do not require V to
be smooth; the assumptions on V in our result are the same as in [17], where
one solution to (Pε) is found. Let us remark that (V) is fulfilled by a large class
of potentials, including unbounded and oscillating ones.

Remark 1.5. As we have already mentioned, in [18] the concentration be-
haviour of mountain-pass type solutions to (Pε) is investigated. By similar ar-
guments, it is possible to prove that also the solutions found in Theorem 1.1
concentrate as ε tends to zero. Roughly speaking, if ε is small, such solutions
look like ground state solutions of the equation −∆u + V0u = |u|p−2u in RN ,
highly concentrated around some point of M . We refer to Remark 5.1 below for
further details.

In proving Theorem 1.1 we will apply some variational arguments due to
Benci and Cerami (see [2], [3], [4]) and used by many authors to deal with
boundary value problems for semilinear elliptic equations. For example, see [14],
[19] and, in particular, [15] where the influence of a coefficient in the nonlinear
part of the equation is studied.

2. Preliminaries

Let H1(RN ) be the standard Sobolev space endowed with the usual norm.
The set

H =
{
u ∈ H1(RN ) :

∫
RN

V (x)|u|2 <∞
}
,

endowed with the inner product

(u, v) =
∫

RN

∇u · ∇v + V (x)uv,
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is a Hilbert space, continuously embedded in H1(RN ). We will denote by ‖ · ‖
the norm associated with the scalar product defined above.

Let us consider the manifold

Σ =
{
u ∈ H :

∫
RN

|u|p = 1
}

and the functional

Jε(u) =
∫

RN

(ε2|∇u|2 + V (x)|u|2), u ∈ Σ.

It is easy to see that Jε is well defined and smooth on Σ. Furthermore, if u is
a critical point of Jε on Σ and u > 0, then (Jε(u))1/(p−2)u is a weak solution
for (Pε).

Let us recall some facts about ground states of the equation

(2.1) −ε2∆u+ µu = |u|p−2u, x ∈ RN ,

with ε, µ > 0. It is well known that (2.1) has (up to translations) a unique
positive solution ω̃(ε;µ) ∈ H1(RN )∩C2(RN ), which is radially symmetric around
the origin and which decays exponentially at infinity (see [5], [6], [9]). The
infimum

m(ε;µ) ≡ inf

{
ε2

∫
RN |∇u|2 + µ

∫
RN |u|2( ∫

RN |u|p
)2/p

: u ∈ H1(RN ), u 6= 0

}
is achieved in ω(ε;µ) = ω̃(ε;µ)/‖ω̃(ε;µ)‖Lp(RN ). It is easy to see that the map
m(ε; · ) is strictly increasing. For convenience, we will denote ω = ω(1;V0). We
explicitly note that ω(x) ≤ C1e

−|x| for any x ∈ RN , for some C1 > 0.
In the next two sections we will introduce two maps Φε and β which permit

to compare the topology of M and the topology of a suitable sublevel of the
functional Jε.

3. The map Φε

Let δ > 0 be fixed. Let η be a smooth non increasing cut-off function, defined
in [0,∞), such that η(t) = 1 if 0 ≤ t ≤ δ/2, η(t) = 0 if t ≥ δ, 0 ≤ η ≤ 1 and
|η′(t)| ≤ c for some c > 0.

For any y ∈M , let us define

ψε,y(x) = η(|x− y|)ε−N/pω

(
x− y

ε

)
and

(3.1) ϕε,y(x) =
ψε,y

|ψε,y|p
.

Finally, let us define the map Φε : M → H1(RN ) by Φε(y) = ϕε,y.
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Remark 3.1. By construction, Φε(y) has compact support for any y ∈ M .
As a consequence, Φε(y) is in H and, by (3.1), in Σ.

Lemma 3.2. We have

(3.2) lim
ε→0

εN
(
2/p−1

)
Jε

(
Φε(y)

)
= m(1;V0),

uniformly in y ∈M .

Proof. Let y ∈ M . By taking into account the exponential decay of ω, it
is easy to check that

Jε(Φε(y)) = εN(1−2/p)

∫
RN (|∇ω|2 + V0|ω|2) + o(1)∫

RN |ω|p + o(1)
= εN(1−2/p)m(1;V0) + o(1)

1 + o(1)
.

Letting ε → 0 implies (3.2). Moreover, the limit is uniform in y since M is a
compact set. �

4. The map β

Let ρ > 0 be such that Mδ ⊂ Bρ = {x ∈ RN : |x| ≤ ρ}. Let χ : RN → RN

be such that χ(x) = x for |x| ≤ ρ and χ(x) = ρx/|x| for |x| ≥ ρ. Finally, let us
define β : Σ → RN by

β(u) =
∫

RN

χ(x)|u(x)|p.

Let us remark that

(4.1) β(Φε(y)) = y +
∫

RN

(χ(εx+ y)− y)|ω(x)|p = y + o(1),

as ε→ 0, uniformly for y ∈M .
Let h(ε) be any positive function tending to 0 as ε→ 0 and let

(4.2) Σε = {u ∈ Σ : Jε(u) ≤ m(ε;V0) + εN(1−2/p)h(ε)}.

Next result is based on the Concentration–Compacteness Lemma by Lions (see
[12], [13]).

Lemma 4.1. We have

(4.3) lim
ε→0

sup
u∈Σε

inf
y∈Mδ

[β(u)− β(ϕε,y)] = 0.

Proof. Let {εn} be such that εn → 0 as n → ∞. For any n there exists
un ∈ Σεn

such that

inf
y∈Mδ

[β(un)− β(ϕεn,y)] = sup
u∈Σεn

inf
y∈Mδ

[β(u)− β(ϕεn,y)] + o(1).

In order to prove (4.3) it suffices to find points yn ∈Mδ such that

(4.4) lim
n→∞

[β(un)− β(ϕεn,yn
)] = 0,
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possibly up to a subsequence. For any n, let us consider vn(x) = ε
N/p
n un(εnx).

Claim 4.2. There exists {zn} ⊂ RN such that εnzn → ŷ ∈M and vn( ·+zn)
converges to ω strongly in H1(RN ), as n→∞.

For the proof of the Claim, we refer to the Appendix. As εnzn → ŷ ∈M , we
can assume yn = εnzn ∈Mδ. This results in

|β(un)− β(ϕεn,yn | =
∣∣∣∣ ∫

RN

χ(x)|un(x)|p −
∫

RN

χ(x)|ϕεn,yn(x)|p
∣∣∣∣

≤ ρ

∫
RN

| |un(x)|p − |ϕεn,yn
(x)|p|

= ρ

∫
RN

||vn(x+ zn)|p − |ω(x)|p|.

Since vn( · + zn) → ω strongly in Lp(RN ), Lebesgue Theorem now implies (4.4).

5. Palais–Smale condition

For convenience, we discuss Palais–Smale condition for the unconstrained
functional associated with (Pε), namely

Iε(u) =
1
2

∫
RN

(ε2|∇u|2 + V (x)|u|2)− 1
p

∫
RN

|u|p, u ∈ H.

As the Sobolev embedding H1(RN ) ⊂ Lp(RN ) is continuous but not compact, it
is well known that, in general, Iε does not satisfy Palais–Smale condition in H.
For example, if V (x) → V as |x| → ∞, then Iε does not satisfy Palais–Smale
condition at the level [(p− 2)/2p]m(ε;V )p/(p−2).

Let V∞ be such that

(5.1) V0 < V∞ ≤ lim inf
|x|→∞

V (x).

Lemma 5.1. For any ε > 0, the functional Iε satisfies Palais–Smale condi-
tion in the sublevel{

u ∈ H : Iε(u) <
p− 2
2p

m(ε;V∞)p/(p−2)

}
.

Proof. Let {un} ⊂ H be a Palais–Smale sequence for Iε at the level C,
namely

(5.2) Iε(un) = C + o(1), I ′ε(un) = o(1) in H−1

as n → ∞, and assume C < [(p − 2)/2p]m(ε;V∞)p/(p−2). It is easy to see that
{un} is bounded in H. Up to a subsequence, {un} has a weak limit u ∈ H. We
have to prove that {un} converges to u strongly in H. As the Sobolev embedding
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is compact on bounded sets, it suffices to show that for any δ > 0 there exists
R > 0 such that

(5.3)
∫
|x|≥R

(|∇un|2 + V (x)|un|2) < δ for any n ≥ R.

By contradiction, assume that (5.3) does not hold, namely there exists δ0 such
that for any R > 0 we have

(5.4)
∫
|x|≥R

(|∇un|2 + V (x)|un|2) ≥ δ0

for some n = n(R) ≥ R. As a consequence, there exists a subsequence {unk
}

such that

(5.5)
∫
|x|≥k

(|∇unk
|2 + V (x)|unk

|2) ≥ δ0

for any k ∈ N. For any r > 0, let us introduce the annulus

Ar = {x ∈ RN : r ≤ |x| ≤ r + 1
}
.

Claim 5.2. For any ξ > 0 and for any R > 0 there exists r > R such that

(5.6)
∫

Ar

(|∇unk
|2 + V (x)|unk

|2) < ξ

for infinitely many k ∈ N.

By contradiction, assume that for some ξ0, R0 > 0 and for any integer m ≥ [R0]
there exists ν(m) ∈ N such that∫

Am

(|∇unk
|2 + V (x)|unk

|2) ≥ ξ0

for any k ≥ ν(m). Plainly, we can assume that the sequence ν(m) is non de-
creasing. Therefore, for any integer m ≥ [R0] there exists an integer ν(m) such
that∫

RN

(|∇unk
|2 +V (x)|unk

|2) ≥
∫

[R0]≤|x|≤m

(|∇unk
|2 +V (x)|unk

|2) ≥ (m− [R0])ξ0

for any k ≥ ν(m), which contradicts the boundedness of ‖unk
‖ and proves

Claim 5.2.
Now, let ξ > 0 be fixed. By (5.1) there exists R(ξ) > 0 such that

(5.7) V (x) ≥ V∞ − ξ for any |x| ≥ R(ξ).

Let r = r(ξ) > R(ξ) be as in (5.6) and let A = Ar; up to a subsequence, we have

(5.8)
∫

A

(|∇unk
|2 + V (x)|unk

|2) < ξ
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for any k ∈ N. Now let us choose any function ρ ∈ C∞(RN , [0, 1]) such that
ρ(x) = 1 for |x| ≤ r, ρ(x) = 0 for |x| ≥ r + 1 and |∇ρ(x)| ≤ 2 for any x ∈ RN .
For any k ∈ N, let vk = ρunk

and wk = (1− ρ)unk
. It is not difficult to see that

|〈I ′ε(unk
), vk〉 − 〈I ′ε(vk), vk〉| ≤ C1

∫
A

(|∇unk
|2 + V (x)|unk

|2),

|〈I ′ε(unk
), wk〉 − 〈I ′ε(wk), wk〉| ≤ C2

∫
A

(|∇unk
|2 + V (x)|unk

|2),

where C1 and C2 are positive constants which do not depend on r. By (5.2) and
(5.8), we deduce

o(1) = 〈I ′ε(vk), vk〉+O(ξ), o(1) = 〈I ′ε(wk), wk〉+O(ξ),

whence

(5.9) ‖vk‖2 = |vk|pp +O(ξ), ‖wk‖2 = |wk|pp +O(ξ).

By (5.2), (5.7), (5.9) we have

C + o(1) = Iε(unk
) = Iε(vk) + Iε(wk) +O(ξ)(5.10)

≥ p− 2
2p

‖wk‖2 +O(ξ)

≥ p− 2
2p

∫
RN

(|∇wk|2 + V∞|wk|2) +O(ξ).

By (5.5) we have∫
RN

|wk|p ≥
∫
|x|≥r+1

(|∇unk
|2 + V (x)|unk

|2) +O(ξ) ≥ δ0/2

for ξ small, whence, by (5.10)

C + o(1) ≥ p− 2
2p

m(ε;V∞)p/(p−2) +O(ξ).

Letting k →∞ and ξ → 0 yields a contradiction and concludes the proof. �

We remark that similar arguments are developed in [10] to discuss Palais–
Smale condition in a different setting. At this point it is easy to prove the
following lemma.

Lemma 5.3. For any ε > 0 sufficiently small, the functional Jε satisfies
Palais–Smale condition on {u ∈ Σ : Jε(u) < m(ε;V∞)}.

Proof. It follows from Lemma 5.1 and standard computations. Here we
only remark that, for ε > 0 sufficiently small, the sublevel {u ∈ Σ : Jε(u) <
m(ε;V∞)} is not empty, since

(5.11) inf
u∈Σ

Jε(u) < m(ε;V∞).
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Indeed, if there exists a sequence εn → 0 as n→∞ such that

m(εn;V∞) ≤ inf
u∈Σ

Jεn
(u)

for any n ∈ N, then Lemma 3.2 implies

m(εn;V∞) ≤ m(εn;V0) + o(εN(p−2)/p
n )

for any n. If we divide by εn and let n→∞ we get

(5.12) m(1;V∞) ≤ m(1;V0).

On the other hand, m(1;V0) < m(1;V∞), which contradicts (5.12). �

Remark 5.4. By Lemma 5.3 and the choice of V∞ it follows that if V is
coercive, namely V (x) →∞ as |x| → ∞, then the functional Jε satisfies Palais–
Smale condition on Σ, at any level.

6. Proof of Theorem 1.1

In order to compare the topology of M and the topology of a suitable energy
sublevel we will use the maps Φε and β introduced in Sections 3 and 4. Let
us choose a function h(ε) > 0 such that h(ε) → 0 as ε → 0 and m(ε;V0) +
h(ε)εN(p−2)/p is not a critical level for Jε. For such h(ε), let us consider the
set Σε, introduced in (4.2).

By Lemma 4.1 and 5.3, we can find ε > 0 such that Jε satisfies Palais–Smale
condition on Σε and

(6.1) sup
u∈Σε

inf
y∈Mδ

[β(u)− β(ϕε,y)] ≤ δ/2

for any ε < ε. By Lemma 3.2, we can assume that for such ε we have

Jε(Φε(y)) ≤ m(ε;V0) + h(ε)εN(p−2)/p,

thus Φε(M) ⊂ Σε. By (6.1) and (4.1) we can assume that dist(β(u),Mδ) < δ/2
for every ε < ε and for every u ∈ Σε. Thus β(Σε) ⊂Mδ.

In conclusion, the map β ◦ Φε is homotopic to the inclusion j : M → Mδ

in Mδ, for any ε ∈ (0, ε). Now set Σ+
ε = Σε ∩ {u ∈ Σ : u ≥ 0 in RN}. Standard

arguments (for example, see [4]) show that catΣε(Σ
+
ε ) ≥ catMδ

(M). By the
opposite map −Φε and the same arguments we get catΣε

(Σ−ε ) ≥ catMδ
(M),

where Σ−ε = Σε ∩ {u ∈ Σ : u ≤ 0 in RN}. Since Σ+
ε and Σ−ε are disjoint in Σε,

it follows that

catΣε
(Σε) = catΣε

(Σ+
ε ) + catΣε

(Σ−ε ) ≥ 2catMδ
(M).

Ljusternik–Schnirelman theory implies that Jε has at least 2catMδ
(M) critical

points on Σ. By construction, for any such point, say u, we have

(6.2) Jε(u) ≤ m(ε;V0) + h(ε)εN(p−2)/p.
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We aim at proving that (6.2) implies that u cannot change sign. Indeed, if
u = u+ + u− with u+ 6≡ 0 and u− 6≡ 0, then

(6.3)
∫

RN

(ε2|∇u±|2+V (x)|u±|2) ≥
∫

RN

(ε2|∇u±|2+V0|u±|2) ≥ m(ε;V0)‖u±‖2
p.

Since u is a critical point of Jε on Σ, it satisfies

−ε2∆u+ V (x)u = Jε(u)|u|p−2u, x ∈ RN ,

whence

(6.4)
∫

RN

(ε2|∇u±|2 + V (x)|u±|2) = Jε(u)
∫

RN

|u±|p.

By (6.3) and (6.4) we get ‖u±‖p−2
p ≥ m(ε;V0)/Jε(u) which implies

1 = ‖u‖p
p = ‖u+‖p

p + ‖u−‖p
p ≥ 2

(
m(ε;V0)
Jε(u)

)p/(p−2)

.

As a consequence,
m(ε;V0) ≤ 2(2−p)/pJε(u),

which contradicts (6.2). Thus we can assume that there exist at least catMδ
(M)

critical points that are positive on RN ; by standard maximum principle in RN

they are strictly positive. The proof of Theorem 1.1 is now complete.

Remark 6.1. For any ε ∈ (0, ε) let uε be a solution to (Pε) found in The-
orem 1.1. By slight changes in the proof of Theorem 2.1 and 2.3 in [18], taking
into account the energy estimate

ε−N

∫
RN

(ε2|∇uε|2 + V (x)|uε|2) → m(1;V0)p/(p−2) as ε→ 0,

it is possible to prove that {uε} has a concentration behaviour. Indeed, for ε
small, uε has a unique maximum point xε. As ε→ 0, the points xε converge to
a suitable x0 ∈M and the functions vε(x) = uε(εx+xε) approach in H1(R) the
ground state of the equation

−∆u+ V0u = |u|p−2u, x ∈ RN .

Appendix

In this section we will prove Claim 4.2. For any n ∈ N, ρn = |vn|p satisfies
the following properties:

(A.1) ρn ∈ L1(RN ), ρn ≥ 0,
∫

RN

ρn = 1,

thus the Concentration–Compactness Lemma applies. Since∫
RN

(|∇vn|2 + V (εnx)|vn|2) ≤ m(1;V0) + h(εn),
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vn and ∇vn are bounded in L2(RN ); by Lemma I.1 in [13] we can exclude that
vanishing occurs. If dichotomy occurs, there exists α ∈ (0, 1) such that for any
ξ > 0 the function ρn splits into ρ1

n = χBR(zn)ρn and ρ2
n = χRN\BRn (zn)ρn for

some R > 0, Rn →∞ and zn ∈ RN , with the following properties:

(A.2)
∫

RN

ρ1
n ≥ α− ξ,

∫
RN

ρ2
n ≥ 1− α− ξ.

If we denote v1
n = χBR(zn)vn and v2

n = χRN\BRn (zn)vn, (A2) becomes∫
RN

|v1
n|p ≥ α− ξ,

∫
RN

|v2
n|p ≥ 1− α− ξ.

After smoothing v1
n and v2

n we can assume that they belong to H1(RN ) and the
inequalities above still hold. This results in

m(1;V0) + h(εn) ≥
∫

RN

(|∇vn|2 + V0|vn|2)

≥
∫

RN

(|∇v1
n|2 + V0|v1

n|2) +
∫

RN

(|∇v2
n|2 + V0|v2

n|2)− ξ

≥ m(1;V0)
[(∫

RN

|v1
n|p

)2/p

+
( ∫

RN

|v2
n|p

)2/p]
− ξ

≥ m(1;V0)[(α− ξ)2/p + (1− α− ξ)2/p]− ξ.

For ξ → 0 and n → ∞ we get 1 ≥ α2/p + (1 − α)2/p > 1, a contradiction. As
a consequence, the sequence {ρn} is tight, namely there exists {zn} ⊂ RN such
that for any ξ > 0 we have ∫

BR(zn)

|vn(x)|p ≥ 1− ξ

for a suitable R > 0. Let us define v̂n = vn( · + zn). As v̂n is bounded in
H1(RN ), it weakly converges to some v̂ in H1(RN ). Since∫

BR(0)

|v̂n|p ≥ 1− η and
∫

RN

|v̂n|p = 1,

Rellich Theorem implies

(A.3)
∫

RN

|v̂n − v̂|p = o(1) and
∫

RN

|v̂|p = 1.

for n large. Let us prove that the sequence εnzn is bounded. Arguing by con-
tradiction, assume that |εnzn| → ∞ as n→∞. This results in

m(1;V0) + h(εn) ≥
∫

RN

(|∇v̂n|2 + V (εn(x+ zn))|v̂n|2)

≥
∫

RN

|∇v̂|2 +
∫

RN

V (εn(x+ zn))|v̂n|2 + o(1).
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As v̂n(x) → v̂(x) a.e. in RN , letting n→∞ and (A.3) give

m(1;V0) ≥
∫

RN

|∇v̂|2 + lim inf
n→∞

∫
RN

V (εn(x+ zn))|v̂n|2(A.4)

≥
∫

RN

|∇v̂|2 +
∫

RN

lim inf
n→∞

V (εn(x+ zn))|v̂|2.

By assumption (V), we can choose some V∞ such that

lim inf
|x|→∞

V (x) ≥ V∞ > V0;

plainly, m(1;V∞) > m(1;V0) (cf. Section 2). By (A.3) and (A.4) it follows

m(1;V0) ≥
∫

RN

|∇v̂|2 +
∫

RN

V∞|v̂|2 ≥ m(1;V∞),

a contradiction. Thus we can assume that εnzn → ẑ; we aim to prove that
ẑ ∈M and v̂ = ω (cf. Section 2). Arguing as before yields

(A.5) m(1;V0) ≥
∫

RN

(|∇v̂|2 + V (ẑ)|v̂|2) ≥ m(1;V (ẑ)) ≥ m(1;V0),

whence V0 = V (ẑ), that is ẑ ∈M . Moreover, (A.5) also gives∫
RN

(|∇v̂|2 + V0|v̂|2) = m(1;V0),

and the uniqueness of ground state solutions of equation (2.1) implies v̂ = ω.
Finally, let us note that

m(1;V0) ≤
∫

RN

(|∇v̂n|2+V0|v̂n|2) ≤
∫

RN

(|∇vn|2+V (εnx)|vn|2) ≤ m(1;V0)+h(εn)

yields ∫
RN

(|∇v̂n|2 + V0|v̂n|2) →
∫

RN

(|∇ω|2 + V0|ω|2)

as n→∞, whence v̂n converges to ω strongly in H1(RN ).
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