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INFINITELY MANY ENTIRE SOLUTIONS OF
AN ELLIPTIC SYSTEM WITH SYMMETRY

Yanheng Ding

1. Introduction

In [6], we have considered the existence of at least one nontrivial solution for
the following elliptic system on RN :

(ES) −∆u =
∂H

∂v
(x, u, v), −∆v =

∂H

∂u
(x, u, v)

such that u, v ∈W 1,2(RN ), where H ∈ C1(RN × R2) has the form of

(1.1) H(x, u, v) = −q(x)uv +H(x, u, v)

and satisfies, with (u, v) ∈ R2 denoted by z and (u2 +v2)1/2 by |z|, the following
conditions:

(Q) q ∈ C(RN ) and q(x) →∞ as |x| → ∞;
(H1) there is an µ > 2 such that

0 < µH(x, z) ≤ Hz(x, z)z

for all x ∈ RN and z ∈ R2 \ {0}, where Hz(x, z) = ∇zH(x, z);
(H2) 0 < b ≡ infx∈RN ,|z|=1H(x, z);
(H3) |Hz(x, z)| = o(|z|) as |z| → 0 uniformly in x ∈ RN ;
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(H4) there are 0 ≤ a1 ∈ L1(RN ) ∩ C(RN ) and a2 > 0 such that

|Hz(x, z)|γ ≤ a1(x) + a2Hz(x, z)z, ∀(x, z) ∈ RN × R2,

where γ > 1, µ ≤ γ
γ−1 ≡ γ < N ≡ 2N

N−2 if N > 2 and γ <∞ if N = 1, 2.

In [6] we also proved that (ES) has at least one nontrivial solution if H has the
form of (1.1) and satisfies, roughly, the following:

(Qα) q ∈ C(RN ) and there is an α < 2 such that q(x)|x|α−2 →∞ as |x| → ∞;
(H5) H(x, 0) ≡ 0, and there is 1 < β ∈

(
2N

2−α+N , 2
)

such that

0 < Hz(x, z)z ≤ βH(x, z), ∀x ∈ RN and z ∈ R2 \ {0};

(H6) there is a3 > 0 such that

a3|z|β ≤ H(x, z), ∀x ∈ RN and |z| ≥ 1;

(H7) there are a4 > 0 and ν > max
{
0, α−2+N

2−α+N

}
such that

|Hz(x, z)| ≤ a4|z|ν , ∀x ∈ RN and |z| ≤ 1;

(H8) |Hz| ∈ L∞(RN × BR) for any R > 0, where BR = {z ∈ R2 : |z| ≤ R},
and

|z|−1|Hz(x, z)| → 0 as |z| → ∞ uniformly in x ∈ RN .

We remark that, under the above assumptions, (ES) is a nonlinear Schrödin-
ger equation group with the Schrödinger operator A = −∆ + q(x). Conditions
like (Q) arise in mathematical physics, e.g., when one deals with the systems
associated with the generalized harmonic oscillator A = −∆ + (q+(x) − q−(x))
where 0 ≤ q+(x) → ∞ as |x| → ∞ and q−(x) is bounded, or particularly, the
anharmonic oscillator A = −∆ + q(x) in which q(x) is a polynomial of degree
2m with the property that the coefficient of the leading term is positive (see [9],
[10]).

The purpose of this paper is to show that (ES) has infinitely many solutions
if H(x, z) is even in z and satisfies the above assumptions. Precisely, we have

Theorem 1.1. Let H be of the form (1.1) with q satisfying (Q) and H

satisfying (H1)–(H4). Suppose, in addition, that H(x, z) is even with respect to
z ∈ R2. Then (ES) has infinitely many solutions.

Theorem 1.2. Let H be of the form (1.1) with q satisfying (Qα) and H

satisfying (H5)–(H8). Suppose, in addition, that H(x, z) is even with respect to
z ∈ R2. Then (ES) has infinitely many solutions.

Remark 1.3. The existence of at least one solution (u, v) to the elliptic
systems like (ES) on a smooth bounded domain Ω ⊂ RN such that u|∂Ω = 0 =
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v|∂Ω has been studied by Benci–Rabinowitz [3], Clément–de Figueiredo–Mitidieri
[4], de Figueiredo–Felmer [7] and Szulkin [11] using a variational approach.

2. Two theoretical propositions

The following two abstract propositions will be used for proving the previous
results.

Let E be a real Hilbert space with norm ‖ · ‖. Suppose that E has an
orthogonal decomposition E = E1 ⊕ E2 with both E1 and E2 being infinite-
dimensional. Let {vn} (resp. {wn}) be an orthogonal basis for E1 (resp. E2),
and set

Xn = span{v1, . . . , vn} ⊕ E2, Xm = E1 ⊕ span{w1, . . . , wm}.

For a functional I ∈ C1(E,R) we set In = I|Xn . Recall that we say that
I satisfies the (PS)∗ condition if any sequence {un} with un ∈ Xn for which
0 ≤ I(un) ≤ const and I ′n(un) ≡ ∇In(un) → 0 as n → ∞ has a convergent
subsequence. We also say that I satisfies the (PS)∗∗ condition if for each n ∈ N,
In satisfies the Palais–Smale condition, i.e., any sequence {uk} ⊂ Xn for which
I(uk) is bounded and I ′n(uk) → 0 as k →∞ has a convergent subsequence.

Proposition 2.1. Let E be as above and let I ∈ C1(E,R) be even, satisfy
(PS)∗ and (PS)∗∗, and I(0) = 0. Suppose, moreover, that I satisfies, for each
m ∈ N,

(I1) there is Rm > 0 such that

I(u) ≤ 0, ∀u ∈ Xm with ‖u‖ ≥ Rm;

(I2) there are rm > 0 and am > 0 with am →∞ as m→∞ such that

I(u) ≥ am, ∀u ∈ (Xm−1)⊥ with ‖u‖ = rm;

(I3) I is bounded from above on bounded sets of Xm.

Then I has a sequence {ck} of critical values with ck →∞ as k →∞.

This proposition is a version of the symmetric Mountain Pass Theorem of
Ambrosetti–Rabinowitz. The main difference between them is that in the former
case E1 is infinite-dimensional, while in the latter case E1 is finite-dimensional
(see [1] or [8, Theorem 9.12]). Such a result is also a special case of Bartsch–
Willem [2, Theorem 3.1], and so its proof is omitted.

Now we turn to another result which seems to us to be new even though its
proof is simpler.
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Proposition 2.2. Let E be as above and let I ∈ C1(E,R) be even, satisfy
(PS)∗ and (PS)∗∗, and I(0) = 0. Suppose, moreover, that I satisfies, for each
m ∈ N,

(I4) there are rm > 0 and am > 0 such that

am ≤ I(u), ∀u ∈ Xm with ‖u‖ = rm;

(I5) there is bm > 0 with bm → 0 as m→∞ such that

I(u) ≤ bm, ∀u ∈ (Xm−1)⊥.

Then I has a sequence {ck} of critical values with 0 < ck → 0 as k →∞.

Proof. Let Σ denote the family of closed (in E) subsets of E\{0} symmetric
with respect to the origin, and γ : Σ → N ∪ {0,∞} be the genus map [8]. Set

Σm
n = {A ∈ Σ : A ⊂ Xn and γ(A) ≥ n+m}, cmn = sup

A∈Σm
n

inf
u∈A

I(u).

Since for each A ∈ Σm
n , A ⊂ Xn and γ(A) ≥ n + m, it is known that A ∩

(Xm−1)⊥ 6= ∅ . Thus by (I5) we have

(2.1) inf
u∈A

I(u) ≤ sup
u∈(Xm−1)⊥

I(u) ≤ bm.

Since γ(∂Brm
∩ Xm

n ) = n + m where Brm
= {u ∈ E : ‖u‖ ≤ rm} and Xm

n =
Xn ∩Xm = span{v1, . . . , vn, w1, . . . , wm}, one sees that ∂Brm

∩Xm
n ∈ Σm

n and
so by (I4),

(2.2) inf
∂Brm∩Xm

n

I(u) ≥ am.

Combining (2.1) and (2.2) shows

(2.3) am ≤ cmn ≤ bm.

Since I satisfies (PS)∗∗, using the genus theory and a positive rather than a
negative gradient flow (see [8, Appendix A, Remark A.17–(iii)]), a standard
argument [1, 8] shows that cmn is a critical value of In. By (2.3), noting that am

and bm are independent of n, we see that cmn → cm as n→∞ and

(2.4) am ≤ cm ≤ bm.

Finally, taking into account that I satisfies the (PS)∗ condition, we conclude
that cm is a critical value of I, and so by (I5) and (2.4), 0 < cm ≤ bm → 0 as
m→∞. The proof is complete.
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3. Spaces associated with the Schrödinger operator

In this section we recall some embedding properties of the Hilbert space on
which we will work. We refer to [6, Section 2] or [5].

Suppose q satisfies (Q) and let A denote the selfadjoint extension of −∆+q(x)
acting in L2 ≡ L2(RN ), defined as a sum of quadratic forms. Let |A| be the
absolute value of A, |A|1/2 the square root of |A|, {E(ν) : −∞ < ν < ∞} the
resolution of A, and U = I − E(0) − E(−0). Set W = D(|A|1/2). Then W is a
Hilbert space equipped with the inner product

〈u, v〉0 = (|A|1/2u, |A|1/2v)L2 + (u, v)L2

and norm ‖u‖2
0 = 〈u, u〉0, where (·, ·)L2 denotes the inner product of L2. Clearly

W is continuously embedded in W 1,2(RN ) (see [6]). Moreover, we have

Lemma 3.1. If q satisfies (Q) then W is compactly embedded in Lp for
p ∈ [2, N) where N = 2N

N−2 if N ≥ 3, N = ∞ if N = 2, and p ∈ [2,∞] if N = 1.

Proof. See [6, Lemma 2.1].

Lemma 3.2. If q satisfies (Qα) then W is compactly embedded in Lp for all
1 ≤ p ∈

(
2N

2−α+N , N
)
.

Proof. See [6, Lemma 2.2]. We only mention that (Qα) implies (Q), and
since α < 2, one has 2N

2−α+N < 2, and if further α < 2−N then 2N
2−α+N < 1.

Now by Lemma 3.1, A has a compact resolution, and so σ(A), the spectrum
of A, consists of eigenvalues (counted with multiplicities)

λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . .→∞

with a corresponding system of eigenfunctions {hn}, Ahn = λnhn, which forms
an orthogonal basis in L2. Let n− (resp. n0) denote the number of negative
(resp. null) eigenvalues, and n = n− + n0. Set

W− = span{h1, . . . , hn−}, W 0 = span{hn−+1, . . . , hn}, W+ = (W−⊕W 0)⊥.

Then W = W− ⊕W 0 ⊕W+ is a natural orthogonal decomposition. Based on
this decomposition we introduce the following inner product in W :

〈u, v〉1 = (|A|1/2u, |A|1/2v)L2 + (u0, v0)L2

and norm ‖u‖1 = 〈u, u〉1/2
1 for all u = u−+u0 +u+ and v = v−+v0 +v+ ∈W =

W− ⊕W 0 ⊕W+. It is easy to see that ‖ · ‖0 and ‖ · ‖1 are equivalent norms on
W . We note that W−,W 0 and W+ are orthogonal to each other with respect
to both 〈·, ·〉1 and (·, ·)L2 .

Let
a(u, v) = (|A|1/2Uu, |A|1/2v)L2
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be the quadratic form associated with A. Then for u ∈ D(A) and v ∈W ,

(3.1) a(u, v) =
∫

RN

(∇u∇v + q(x)uv)

and so by continuity, (3.1) holds for all u, v ∈W . Clearly, W−,W 0 and W+ are
orthogonal to each other with respect to a(·, ·), and moreover

a(u, v) = 〈(p+ − p−)u, v〉1,(3.2)

a(u, u) = ‖u+‖2
1 − ‖u−‖2

1,(3.3)

where p± : W →W± are the orthogonal projectors.
Now we turn to the product space E = W ×W with the inner product 〈·, ·〉

defined by
〈(u, v), (ϕ,ψ)〉 = 〈u, ϕ〉1 + 〈v, ψ〉1

and norm ‖(u, v)‖2 = ‖u‖2
1 + ‖v‖2

1. Define

E0 = W 0 ×W 0,

E− = {(u− + u+, u− − u+) : u− + u+ ∈W− ⊕W+},
E+ = {(u− + u+,−u− + u+) : u− + u+ ∈W− ⊕W+}.

Then E = E− ⊕ E0 ⊕ E+ is an orthogonal decomposition of E. For any z =
(u, v) ∈ E we have the unique representation z = z− + z0 + z+, where

z− = 1
2 (u− + v− + u+ − v−, u− + v− − u+ + v+) ∈ E−,

z0 = (u0, v0) ∈ E0,

z+ = 1
2 (u− − v− + u+ + v+,−u− + v− + u+ + v+) ∈ E+.

Consider the quadratic form defined on E by

Q((u, v), (ϕ,ψ)) = a(u, ψ) + a(v, ϕ).

Then by (3.1),

(3.4) Q((u, v), (ϕ,ψ)) =
∫

RN

[∇u∇ψ + q(x)uψ +∇v∇ϕ+ q(x)vϕ],

and by (3.2) and (3.3),

(3.5) Q(z) ≡ Q((u, v), (u, v)) = ‖z+‖2 − ‖z−‖2

for all z = (u, v) ∈ E.

Finally, in virtue of Lemmas 3.1 and 3.2, we have

Lemma 3.3. E is compactly embedded in (Lp(RN ))2 for all p ∈ [2, N) if q
satisfies (Q), and for all 1 ≤ p ∈

(
2N

2−α+N , N
)

if q satisfies (Qα).
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4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Let the assumptions of Theorem 1.1
be satisfied and let E be the product space defined in the previous section. By
(H4), we have

(4.1) |Hz(x, z)| ≤ C1 + C2|z|γ−1, ∀(x, z);

here (and in the sequel) Ci (or C) stands for generic positive constants. This,
together with (H3), shows that, for any ε > 0, there is Cε > 0 such that

(4.2) |Hz(x, z)| ≤ ε|z|+ Cε|z|γ−1, ∀(x, z),

and

(4.3) H(x, z) ≤ C3|z|2 + C4|z|γ , ∀(x, z).

Let

J(z) =
∫

RN

H(x, z) dx, ∀z ∈ E.

By (4.1)–(4.3) and Lemma 3.3, a standard argument shows that J ∈ C1(E,R)
with

J ′(z)y =
∫

Rn

Hz(x, z)y dx, ∀z, y ∈ E,

where J ′ ≡ ∇J represents the gradient of J , and J ′ is a compact operator (see
[6]). Define

I(z) = 1
2Q(z)− J(z) = 1

2 (‖z+‖2 − ‖z−‖2)−
∫

RN H(x, z) dx

for all z = (u, v) ∈ E. Then I ∈ C1(E,R) and for z = (u, v) and y = (ϕ,ψ) ∈ E,
by (3.4),

I ′(z)y =
∫

RN

(∇u∇ψ + q(x)uψ +∇v∇ϕ+ q(x)vϕ)

−
∫

RN

(
∂H

∂u
(x, u, v)ϕ+

∂H

∂v
(x, u, v)ψ

)
.

Hence, any critical point of I corresponds to a W 1,2(RN ,R2) solution of (ES).
We will use Proposition 2.1 to look for critical points of I.

Let e1, e2, . . . be an orthonormal basis for E+, and g1, g2, . . . be an orthonor-
mal basis for E− ⊕ E0. Set E1 = E− ⊕ E0, E2 = E+, Xn = span{g1, . . . , gn} ⊕
E+, Xm = E− ⊕ E0 ⊕ span{e1, . . . , em}, and In = I|Xn .

Lemma 4.1. I satisfies (PS)∗ and (PS)∗∗.

Proof. See [6, Lemma 3.2] where (PS)∗ was verified. However, the verifi-
cation of (PS)∗∗ can be checked along the same lines and so it is omitted here.
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Lemma 4.2. I satisfies (I1).

Proof. By (H1) and (H2) one has

H(x, z) ≥ b|z|µ, ∀x ∈ RN and |z| ≥ 1,

which, together with the fact that |z|µ ≤ |z|2 for |z| ≤ 1, yields, for any 0 < ε ≤ b,

(4.4) H(x, z) ≥ ε(|z|µ − |z|2), ∀(x, z).

In virtue of Lemma 3.3, there is d > 0 such that ‖z‖2
L2 ≤ d‖z‖2 for all z ∈ E.

Taking ε = min
{

1
4d , b

}
, we have by (4.4), for z = z− + z0 + z+ ∈ Xm,

I(z) = 1
2‖z

+‖2 − 1
2‖z

−‖2 −
∫

RN

H(x, z) dx(4.5)

≤ 1
2‖z

+‖2 − 1
2‖z

−‖2 + ε‖z‖2
L2 − ε‖z‖µ

Lµ

≤ ‖z+‖2 − 1
4‖z

−‖2 + 1
4‖z

0‖2 − ε‖z‖µ
Lµ .

Using L2 orthogonality, the Hölder inequality (1/µ + 1/µ′ = 1) and dim(E0 ⊕
span{e1, . . . , em}) <∞, we have

‖z0 + z+‖2
L2 = (z0 + z+, z)L2 ≤ ‖z0 + z+‖Lµ′‖z‖Lµ ≤ C(m)‖z0 + z+‖L2‖z‖Lµ ,

and so

(4.6) C ′(m)‖z0 + z+‖µ ≤ ‖z‖µ
Lµ

where C ′(m) > 0 depends on m but not on z ∈ Xm. (4.5) and (4.6) imply

(4.7) I(z) ≤ ‖z0 + z+‖2 − 1
4‖z

−‖2 − εC ′(m)‖z0 + z+‖µ

for all z ∈ Xm. Since µ > 2, (4.7) implies that there is Rm > 0 such that
I(z) ≤ 0 for all z ∈ Xm with ‖z‖ ≥ Rm, proving (I1).

Lemma 4.3. I satisfies (I2).

Proof. Set

ηm = sup
z∈(Xm)⊥\{0}

‖z‖Lγ/‖z‖.

Clearly, ηm ≥ ηm+1 > 0. Moreover, one has

(4.8) ηm → 0 as m→∞.

Indeed, if not, then ηm → η > 0. Consequently, there is a sequence zm ∈ (Xm)⊥

with ‖zm‖ = 1 and ‖zm‖Lγ ≥ η/2. Since 〈zm, ek〉 → 0 as m → ∞ for each k,
one sees zm → 0 weakly in E, and so by Lemma 3.3, ‖zm‖Lγ → 0, yielding a
contradiction. Therefore (4.8) must be true.

By (4.2) with ε = 1/(4d) and C = Cε, one has for z ∈ (Xm−1)⊥,

I(z) = 1
2‖z‖

2 −
∫

RN

H(x, z) ≥ 1
4‖z‖

2 − C‖z‖γ

Lγ ≥ 1
4‖z‖

2 − Cηγ
m−1‖z‖γ .
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Consequently, taking rm = (2γCηγ
m−1)

−1/(γ−1) and am =
(

1
4 −

1
2γ

)
r2m, one

obtains I(z) ≥ am for all z ∈ (Xm−1)⊥ with ‖z‖ = rm. Since γ > 2, (4.8) shows
that am →∞ as m→∞. (I2) follows.

Lemma 4.4. I satisfies (I3).

Proof. (I3) follows directly from (4.7).

Now we give the following

Proof of Theorem 1.1. Clearly I(0) = 0 and I is even since H(x, z)
is even in z ∈ R2. Lemmas 4.1–4.4 show that I satisfies all the assumptions
of Proposition 2.1. Hence I has a positive critical value sequence ck → ∞ as
k →∞. Let zk = (uk, vk) be the critical point of I such that I(zk) = ck. Then
(uk, vk) are entire solutions of (ES). The proof is complete.

5. Proof of Theorem 1.2

The proof of Theorem 1.2 will rely on an application of Proposition 2.2. Let
the assumptions of Theorem 1.2 be satisfied. Below, all the symbols E, E1, E2,
Xn, Xm and so on still have the same meaning as in Section 4.

By (H5) and (H7) one sees that

H(x, z)

{
≥ (minx∈RN ,|ξ|=1H(x, ξ))|z|β if |z| ≤ 1,

≤ (maxx∈RN ,|ξ|=1H(x, ξ))|z|β if |z| ≥ 1,

H(x, z) ≤ a4|z|1+ν , ∀x ∈ RN and |z| ≤ 1.

These, jointly with (H6), show that 1 + ν ≤ β and

(5.1) a3|z|β ≤ H(x, z) ≤ a4|z|β , ∀(x, z).

Note also that by (H7),

1 + ν >
2N

2− α+N
,

and by (H7) and (H8),

|Hz(x, z)| ≤ a5(|z|ν + |z|), ∀(x, z).

Consider again the functional J defined on E by

J(z) =
∫

RN

H(x, z) dx.

The above argument, together with Lemma 3.3, shows that J is well defined,
J ∈ C1(E,R) with

(5.2) J ′(z)y =
∫

RN

Hz(x, z)y dx, ∀z, y ∈ E,

and J ′ is compact (see [6]).
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Now define the functional I on E by

I(z) = J(z)− 1
2Q(z) = J(z)− 1

2‖z
+‖2 + 1

2‖z
−‖2.

Then I ∈ C1(E,R), and by (3.4) and (5.2), critical points of I give rise to solu-
tions of (ES)1. We will verify that I satisfies the assumptions of Proposition 2.2.

Lemma 5.1. I satisfies (PS)∗ and (PS)∗∗.

Proof. See [6, Section 4, Step 3].

Lemma 5.2. I satisfies (I4).

Proof. For any z ∈ Xm, we have by (5.1),

(5.3) I(z) ≥ a3‖z‖β
Lβ − 1

2‖z
+‖2 + 1

2‖z
−‖2.

Since dim(E0 ⊕ span{e1, . . . , em}) <∞, one has (β′ = β/(β − 1) > 2)

‖z0 + z+‖2
L2 = (z0 + z+, z)L2 ≤ ‖z0 + z+‖Lβ′‖z‖Lβ ≤ C(m)‖z0 + z+‖L2‖z‖Lβ

and so by Lemma 3.3,

C ′(m)‖z0 + z+‖β ≤ a3‖z‖β
Lβ ,

which, together with (5.3), yields

I(z) ≥ C ′(m)‖z0 + z+‖β − 1
2‖z

0 + z+‖2 + 1
2‖z

−‖2

for all z = z− + z0 + z+ ∈ Xm, where C ′(m) is a constant depending only on m.
Therefore, since β < 2, there are rm > 0 and am > 0 such that I(z) ≥ am for all
z ∈ Xm with ‖z‖ = rm, i.e., I satisfies (I4).

Lemma 5.3. I satisfies (I5).

Proof. Let z ∈ (Xm−1)⊥. By (5.1) we have

(5.4) I(z) =
∫

RN

H(x, z)− 1
2‖z‖

2 ≤ a4‖z‖β
Lβ − 1

2‖z‖
2.

Let ξm be defined by

ξm = sup
z∈(Xm)⊥\{0}

‖z‖Lβ/‖z‖.

Similarly to the proof of Lemma 4.3, one obtains

(5.5) 0 < ξm → 0 as m→∞.

Now by (5.4), for z ∈ (Xm−1)⊥, we have

(5.6) I(z) ≤ a4ξ
β
m−1‖z‖β − 1

2‖z‖
2.

Let

bm = (1− β/2)a4ξ
β
m−1(a4βξ

β
m−1)

β/(2−β).
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Then by (5.5) and since β < 2, bm → 0 as m→∞, and by (5.6),

I(z) ≤ bm, ∀z ∈ (Xm−1)⊥,

i.e., I satisfies (I5).

Now we turn to

Proof of Theorem 1.2. Clearly by (H5), I(0) = 0, and since H(x, z) is
even with respect to z ∈ R2, I is even. Lemmas 5.1–5.3 show that I satisfies
all the assumptions of Proposition 2.2. Therefore I has a sequence of positive
critical values, {ck}, satisfying ck → 0 as k → ∞. Let zk = (uk, vk) be the
critical points of I corresponding to ck, i.e., I ′(zk) = 0 and I(zk) = ck. Then
(uk, vk) are entire solutions of (ES). The proof is thereby complete.
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