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Abstract. It is shown that an autonomous delay differential system for

a damped spring with a delayed restoring force has a periodic solution
whose orbit is exponentially stable with asymptotic phase.

1. Introduction

The system

(1) ẋ(t) = v(t), v̇(t) = −µv(t) + f(x(t− 1))

stands for a spring where the action of the position-dependent force f : R → R is
delayed by one time unit. The friction coefficient µ is assumed positive, and f

is taken from one of the sets F = Fβε, β > 0 and 0 < ε < a, formed by all odd,
bounded, continuous real functions f on R which satisfy

|f(ξ)| < a+ ε for all ξ ∈ R and |f(ξ) + a| < ε for all ξ ≥ β.

The parameter a > 0 is fixed.
Notice that the condition for the force to be restoring with respect to the

position ξ = 0, namely
ξf(ξ) < 0,

is required only for |ξ| ≥ β; it will not be needed for 0 < |ξ| < β in the sequel.

2000 Mathematics Subject Classification. Primary 34K15; Secondary 58F22.

Key words and phrases. Autonomous delay differential equations, stable periodic orbit,
asymptotic phase, damped spring, delayed restoring force.

c©2003 Juliusz Schauder Center for Nonlinear Studies

1



2 H.-O. Walther

The main result is that for µ sufficiently large, β and ε sufficiently small,
f Lipschitz continuous, not too steep in the interval (−β, β) and sufficiently flat
outside there exists a periodic solution with strong attraction properties. In
case f is continuously differentiable the periodic orbit is stable and hyperbolic.

The proof extends a method introduced in [8] for first order equations

ẋ(t) = −µx(t) + f(x(t− 1)).

The first step is to find closed sets of initial data to which solutions return. This
is achieved in the next section (Corollary 2.1). In addition a sharp lower bound
for the return time is derived (Proposition 2.9). Section 3 deals with Lipschitz
estimates of the return time and return map. Under the conditions described
above the return map becomes a contraction (Theorem 3.1). Its fixed point
defines the desired periodic solution. In Section 4 it is shown how to obtain
hyperbolic stability of the periodic orbit.

A major difference to the result in [8] is that here a large friction coefficient
is essential. In [8] smallness of β and ε together with conditions on f were
sufficient to guarantee attracting periodic orbits. The role of friction is not
surprising since the analogue of (1) without friction and delay is conservative.
A delay should destabilize the conservative system, at least for certain monotone
nonlinearities f , and exclude attracting periodic orbits.

Another aspect is that here the method comes considerably closer to its lim-
its. The need for the sharp lower estimate of the return time in Proposition 2.9,
which has no counterpart in [8], indicates this, as well as the need to introduce
the weight 1/2 in the norm on the state space below.

Other results based on the approach from [8] concern first order equations
with analytic and monotone nonlinearities which arise in applications [9], the in-
teraction of instantaneous growth and delayed feedback ([6]), and a system which
models automatic position control and involves a state-dependent delay ([10]).

Second order delay differential equations related to (1) were studied by other
methods in [1]–[3], [5], [7]. A difference to (1) is that in addition to the de-
layed feedback instantaneous position-dependent feedback is included and used.
In [1], [5], existence of periodic solutions is obtained for a rather large class of
nonlinearities. [2], [3], [7] study equations with discontinuous nonlinearities and
find, among others, stable periodic orbits. These papers also contain references
to a variety of applications.

An open problem is whether the approach developed here can be extended
to models for automatic position control similar to the system studied in [10],
but based on Newton’s law instead of a first order differential equation.

Preliminaries. A solution of (1) on [0,∞) is defined to be a pair (x, v) of
a continuous function x: [−1,∞) → R and a differentiable function v: [0,∞) → R
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so that x is differentiable on (0,∞) and (1) holds for all t > 0. Analogously one
has solutions on [t0,∞) for each t0 ∈ R. Solutions on R are pairs (x, v) of
differentiable real functions defined on R which satisfy (1) for all t ∈ R.

Set C = C([−1, 0],R). X = C × R serves as state space. The norms are
given by ‖φ‖ = maxt∈[−1,0] |φ(t)| for all φ ∈ C and

‖(φ, u)‖ =
1
2
‖φ‖+ |u|

for all (φ, u) ∈ X.
Each (φ, u) ∈ X uniquely determines a solution (x, v) = (x, v)(φ,u) of (1) on

[0,∞) with x(t) = φ(t) on [−1, 0] and v(0) = u. This is most easily shown by
the method of steps: For (φ, u) ∈ X given and t ∈ [0, 1], insert φ into the right
hand side of the second equation of (1) and solve the initial value problem given
by x(0) = φ(0), v(0) = u for the resulting ordinary differential system. Repeat
on [1, 2], [2, 3], . . . Frequently the variation-of-constants formula

v(t) = e−µtv(t0) +
∫ t

t0

e−µ(t−s)f(x(s− 1)) ds

for the second component of a solution will be used.
The relations Sµf (t, (φ, u)) = (xt, v(t)), (x, v) = (x, v)(φ,u), xt(s) = x(t + s)

define a continuous semiflow Sµf : [0,∞) × X → X. In case f is continuously
differentiable the restriction of the semiflow to (1,∞)×X is continuously differ-
entiable, too. To derive this from the analogous smoothness result in [4, Chap-
ter VII], for the semiflow Ŝµf generated by (1) on the space Ĉ = C([−1, 0],R2),
use the equation

Sµf = (id C × (ev0 ◦ pr2)) ◦ Ŝµf ◦ (id [0,∞) × (id C × j)),

with the embedding j: R 3 u 7→ uc ∈ C, uc(t) = u for all t ∈ [−1, 0], the
projection pr2: Ĉ 3 (φ, ψ) 7→ ψ ∈ C, and the evaluation ev0:C 3 ψ 7→ ψ(0) ∈ R.

Lipschitz constants of maps g:A→ F , A ⊂ E, E and F Banach spaces, are
defined by

Lip (g) = sup
x6=y

‖g(x)− g(y)‖
‖x− y‖

≤ ∞.

2. Recurrence

In this section sets of initial values are found to which solutions return after
an excursion into the ambient space.

Proposition 2.1. For all (φ, u) ∈ X with |u| ≤ (a + ε)/µ the solution
(x, v) = (x, v)(φ,u) satisfies

|v(t)| < a+ ε

µ
for all t > 0.
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Proof. The variation-of-constants formula

v(t) = e−µtu+
∫ t

0

e−µ(t−s)f(x(s− 1)) ds

for all t > 0 yields

eµtv(t) ∈ u+ (−a− ε, a+ ε)
1
µ

(eµt − 1),

hence

−a+ ε

µ
= −a+ ε

µ
e−µt − a+ ε

µ
+
a+ ε

µ
e−µt < v(t)

<
a+ ε

µ
e−µt +

a+ ε

µ
− a+ ε

µ
e−µt =

a+ ε

µ
. �

For β > 0, ε ∈ (0, a), µ > 0 and for the additional parameter r ∈ (0, 1) let
A = Aβεµr denote the set of initial data (φ, u) ∈ X which satisfy

φ(t) ≤ −β on [−1, 0], φ(0) = −β, u ∈
[
r
a− ε

µ
,
a+ ε

µ

]
.

The aim is to find parameters β, ε, µ, r with β, ε small so that for ev-
ery f ∈ Fβε and every (φ, u) ∈ Aβεµr = A the solution (x, v) = (x, v)(φ,u)

of (1) reaches the set −A at some B = B(φ, u, f, β, ε, µ, r) > 0 in the sense
of S(B, (φ, u)) ∈ −A, S = Sµf . Fixed points of the return map

A 3 (φ, u) 7→ −S(B, (φ, u)) ∈ A

will then define periodic solutions of (1). This follows easily from f being odd
which implies that for every solution (x, v) also (−x,−v) is a solution.

It is convenient to introduce the function

∆: R× (−∞, a)× R× (0, 1) 3 (β, ε, µ, r) 7→ 2µ
r(a− ε)

β ∈ R.

Proposition 2.2. Let f ∈ Fβε, (φ, u) ∈ Aβεµr, (x, v) = (x, v)(φ,u), ∆ =
∆(β, ε, µ, r).

(a) For 0 < t ≤ 1,

ue−µt +
1
µ

(a− ε)(1− e−µt) < v(t) < ue−µt +
1
µ

(a+ ε)(1− e−µt)

and

− β +
a− ε

µ
t+

(
u− a− ε

µ

)
1
µ

(1− e−µt) < x(t)

< −β +
a+ ε

µ
t+

(
u− a+ ε

µ

)
1
µ

(1− e−µt).

In particular, ẋ(t) > 0.
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(b) If

(2) 2β <
a− ε

µ

(
1 + (r − 1)

1− e−µ

µ

)
then β < x(1), and there exists a unique b = b(φ, u, f, β, ε, µ, r) ∈ (0, 1)
so that x(b) = β. Moreover,

b < ∆ and x(1 + ∆) < −β + (1 + ∆)
a+ ε

µ
.

Proof. (a) The estimate of v(t) follows as in the proof of Proposition 2.1.
Integration and x(0) = −β yield the estimate of x(t).

(b) Condition (2) is equivalent to

β < −β +
a− ε

µ
+

(
r
a− ε

µ
− a− ε

µ

)
1
µ

(1− e−µ).

The last term is not larger than x(1), by part (a). Existence and uniqueness of b
follow by means of x(0) = −β and 0 < v(t) = ẋ(t) for 0 < t ≤ 1. Moreover, by
part (a),

β = x(b) > −β +
a− ε

µ
b+

(
u− a− ε

µ

)
1
µ

(1− e−µb)

≥ −β +
a− ε

µ
b+ (r − 1)

a− ε

µ

1− e−µb

µ
,

hence

a− ε

µ
b < 2β + (1− r)

a− ε

µ
b
1− e−µb

µb
≤ 2β + (1− r)

a− ε

µ
b,

and thereby

r
a− ε

µ
b < 2β

which gives b < ∆. Finally, by Proposition 2.1,

x(1 + ∆) = x(0) +
∫ 1+∆

0

v(t) dt < −β + (1 + ∆)
a+ ε

µ
. �

Observe that in case (2) holds, x(t) > β for all t ∈ (b, 1].

Proposition 2.3. Suppose

(3) −β
(

1 +
2(a+ ε)
r(a− ε)

)
+
a− ε

µ

(
1− (1− r)

1− e−µ

µ

)
> β
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holds. Let f ∈ Fβε, (φ, u) ∈ Aβεµr, (x, v) = (x, v)(φ,u), ∆ = ∆(β, ε, µ, r). Then
x(t) > β for all t ∈ (b, 1+∆], and there exists a smallest B = B(φ, u, f, β, ε, µ, r)
in (1 + ∆,∞) with x(B) = β.

Proof. Step 1. Observe that (3) implies (2), the hypothesis in part (b) of
Proposition 2.2. The estimate of x(1) from below in part (a) of Proposition 2.2
yields

x(1) > −β +
a− ε

µ
+

(
u− a− ε

µ

)
1
µ

(1− e−µ)

≥ −β +
a− ε

µ
+
a− ε

µ
(r − 1)

1− e−µ

µ

= −β +
a− ε

µ

(
1− (1− r)

1− e−µ

µ

)
.

For 1 ≤ t ≤ 1 + ∆, by (3),

x(t) = x(1) +
∫ t

1

v(s)ds > x(1)−∆
a+ ε

µ
(see Proposition 2.1)

= x(1)− 2(a+ ε)
r(a− ε)

β

> −β
(

1 +
2(a+ ε)
r(a− ε)

)
+
a− ε

µ

(
1− (1− r)

1− e−µ

µ

)
> β.

Step 2. For every te > 1 + ∆ so that β ≤ x(t) for all t ∈ [1 + ∆, te] it follows
that x(t− 1) ≥ β for all t in the larger interval [1 + ∆, te + 1], and thereby

eµt(v̇(t) + µv(t)) = eµtf(x(t− 1)) ∈ eµt(−a− ε,−a+ ε).

Integration yields

eµtv(t)− eµ(1+∆)v(1 + ∆) ∈ eµt − eµ(1+∆)

µ
(−a− ε,−a+ ε),

or(
v(1 + ∆) +

a+ ε

µ

)
e−µ(t−(1+∆)) − a+ ε

µ
< v(t)

<

(
v(1 + ∆) +

a− ε

µ

)
e−µ(t−(1+∆)) − a− ε

µ
for t ∈ (1 + ∆, te].

Step 3. Recall x(1) > β. Suppose x(t) > β for all t > 1. Then the previous
part of the proof yields ẋ(t) = v(t) ≤ −(a− ε)/2µ < 0 for all t sufficiently large,
which gives a contradiction to the assumption. �

It is convenient to state separately the result of part 2 of the previous proof,
and the integrated version of this inequality.
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Proposition 2.4. Suppose (3) holds. Let f ∈ Fβε, (φ, u) ∈ Aβεµr, (x, v) =
(x, v)(φ,u), ∆ = ∆(β, ε, µ, r). Let te > 1 + ∆ be given with β ≤ x(t) for all
t ∈ [1 + ∆, te]. Then(

v(1 + ∆) +
a+ ε

µ

)
e−µ(t−(1+∆)) − a+ ε

µ
< v(t)

<

(
v(1 + ∆) +

a− ε

µ

)
e−µ(t−(1+∆)) − a− ε

µ

and

− a+ ε

µ
(t−(1+∆))+

(
v(1+∆)+

a+ ε

µ

)
1
µ

(1−e−µ(t−(1+∆))) < x(t)−x(1+∆)

< −a− ε

µ
(t− (1 + ∆)) +

(
v(1 + ∆) +

a− ε

µ

)
1
µ

(1− e−µ(t−(1+∆)))

for all t ∈ (1 + ∆, te + 1].

Proposition 2.3 implies that the component xB ∈ C of S(B, (φ, u)) satisfies
two of the conditions for S(B, (φ, u)) to be in −A. We also need

−a+ ε

µ
≤ v(B) ≤ −r a− ε

µ
.

Before discussing for which β, ε, µ, r the last inequality holds conditions which
imply the inequality 2 + ∆ < B are studied. Consider the function

p: R× (−∞, a)× (0,∞)× (0, 1)× R → R

given by

p(β, ε, µ, r, s) = − β − 3(a+ ε)
µ

∆ +
a− ε

µ

(
1− (1− r)

1− e−µ

µ

)
− a+ ε

µ
s+

(
(r − 1)

a− ε

µ
e−µ +

2a
µ

)
1
µ

(1− e−µs)

with ∆ = ∆(β, ε, µ, r).

Proposition 2.5. If β > 0, 0 < ε < a, µ > 0, 0 < r < 1 and if (3),

(4) β < p(β, ε, µ, r, 0)

and

(5) β < p(β, ε, µ, r, 1)

hold then
2 + ∆(β, ε, µ, r) < B(φ, u, f, β, ε, µ, r)

for all f ∈ Fβε and all (φ, u) ∈ Aβεµr.

Proof. Step 1. Let ∆ = ∆(β, ε, µ, r) in the sequel.
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Claim. For every solution (x, v) = (x, v)(φ,u) with (φ, u) ∈ Aβεµr and for
every te ≥ 1 + ∆ with x(t) ≥ β for all t ∈ [1 + ∆, te],

x(t) > p(β, ε, µ, r, t− (1 + ∆)) for all t ∈ [1 + ∆, te].

Proof. For 1 + ∆ ≤ t ≤ te, the last inequality in Proposition 2.4 gives

x(t) ≥ x(1 + ∆)− a+ ε

µ
(t− (1 + ∆)) +

(
v(1 + ∆) +

a+ ε

µ

)
1
µ

(1− e−µ(t−(1+∆))).

As in Step 1 of the proof of Proposition 2.3,

x(1 + ∆) > x(1)− a+ ε

µ
∆.

By Proposition 2.1,

v̇(t) = −µv(t) + f(x(t− 1)) > −µa+ ε

µ
− a− ε for all t > 0,

hence
v(1 + ∆) > v(1)− 2(a+ ε)∆.

These lower estimates of x(1 + ∆) and v(1 + ∆) yield

x(t) >x(1)− a+ ε

µ
∆− a+ ε

µ
(t− (1 + ∆))

+
(
v(1)− 2(a+ ε)∆ +

a+ ε

µ

)
1
µ

(1− e−µ(t−(1+∆))).

By means of the lower estimates for x(1) and v(1) from Proposition 2.2,

x(t) > − β +
a− ε

µ
+

(
u− a− ε

µ

)
1
µ

(1− e−µ)− a+ ε

µ
∆− a+ ε

µ
(t− (1 + ∆))

+
(
ue−µ +

1
µ

(a− ε)(1− e−µ)− 2(a+ ε)∆ +
a+ ε

µ

)
· 1
µ

(1− e−µ(t−(1+∆))).

By means of u ≥ r(a− ε)/µ,

x(t) > − β +
a− ε

µ
+ (r − 1)

a− ε

µ

1− e−µ

µ
− a+ ε

µ
∆− a+ ε

µ
(t− (1 + ∆))

+
(
r
a− ε

µ
e−µ +

1
µ

(a− ε)(1− e−µ)− 2(a+ ε)∆ +
a+ ε

µ

)
· 1
µ

(1− e−µ(t−(1+∆)))

> − β − a+ ε

µ
∆− 2(a+ ε)

µ
∆ +

a− ε

µ
+ (r − 1)

a− ε

µ

1− e−µ

µ

− a+ ε

µ
(t− (1 + ∆))
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+
(

(r − 1)
a− ε

µ
e−µ +

1
µ

(a− ε) +
1
µ

(a+ ε)
)

1
µ

(1− e−µ(t−(1+∆)))

= − β − 3(a+ ε)
µ

∆ +
a− ε

µ

(
1− (1− r)

1− e−µ

µ

)
− a+ ε

µ
(t− (1 + ∆))

+
(

(r − 1)
a− ε

µ
e−µ +

2a
µ

)
1
µ

(1− e−µ(t−(1+∆)))

= p(β, ε, µ, r, t− (1 + ∆)).

Step 2. The function

s 7→ ∂5p(β, ε, µ, r, s) = −a− ε

µ
+

(
(r − 1)

a− ε

µ
e−µ +

2a
µ

)
e−µs

is strictly decreasing since

0 < (r − 1)
a− ε

µ
e−µ +

2a
µ
.

Recall (4) and (5). It follows that for all t ∈ [1+∆, 2+∆], β < p(β, ε, µ, r, t−
(1 + ∆)). Using Step 1 of the proof, one gets β < x(t) for these t, which implies
2 + ∆ < B. �

The subsequent upper estimate for B is a digression which is not necessary
for solutions to reach −A but will be employed in Section 3 below.

Proposition 2.6. If (3) holds then for every f ∈ Fβε and for every (φ, u) ∈
Aβεµr the quantities B = B(φ, u, f, β, ε, µ, r) and ∆ = ∆(β, ε, µ, r) satisfy

B < 1 + ∆ +
a+ ε

a− ε

(
1 + ∆ +

2
µ

)
.

Proof. Let (x, v) = (x, v)(φ,u). For every te ≥ 1 + ∆ with x(t− 1) ≥ β for
all t ∈ [1 + ∆, te] the inequality f(x(t− 1)) < −a+ ε yields

v(t) = e−µ(t−(1+∆))v(1 + ∆) +
∫ t

1+∆

e−µ(t−s)f(x(s− 1)) ds

< e−µ(t−(1+∆)) a+ ε

µ
+
ε− a

µ
(1− e−µ(t−(1+∆))) = e−µ(t−(1+∆)) 2a

µ
− a− ε

µ
.

Recall that (3) implies (2). Integration and the last estimate of Proposition 2.2
yield

x(t) = x(1 + ∆) +
∫ t

1+∆

v(s) ds

< −β +
a+ ε

µ
(1 + ∆) +

∫ t

1+∆

(
e−µ(s−(1+∆)) 2a

µ
− a− ε

µ

)
ds
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≤ −β +
a+ ε

µ
(1 + ∆)− a− ε

µ
(t− (1 + ∆)) +

2a
µ2

(1− e−µ(t−(1+∆)))

≤ −β +
1
µ

((a+ ε)
(

1 + ∆ +
2
µ

)
− (a− ε)(t− (1 + ∆))).

For t = B,

β = x(B) < −β +
1
µ

((a+ ε)
(

1 + ∆ +
2
µ

)
− (a− ε)(B − (1 + ∆))),

hence

(a− ε)(B − (1 + ∆)) < −2µβ + (a+ ε)
(

1 + ∆ +
2
µ

)
,

which implies the desired estimate. �

Next, conditions are given which guarantee v(B) < −r(a− ε)/µ.

Proposition 2.7. If β > 0, 0 < ε < a, µ > 0, 0 < r < 1 and if (3)–(5) and

(6) r ≤ 1−
(

2a
a− ε

+ 2(a+ ε)∆
µ

a− ε

)
e−µ

with ∆ = ∆(β, ε, µ, r) hold then for every f ∈ Fβε and each (φ, u) ∈ Aβεµr the
solution (x, v) = (x, v)(φ,u) and B = B(φ, u, f, β, ε, µ, r) satisfy

−a+ ε

µ
< v(B) < −r a− ε

µ
.

Proof. For the lower estimate of v(B), see Proposition 2.1. In order to de-
rive the upper estimate of v(B), note first that as in the proof of Proposition 2.5,

v(1 + ∆) < v(1) + 2(a+ ε)∆.

Proposition 2.4, the preceding estimate, and the upper estimate of v(1) from
Proposition 2.2 combined yield

v(B) ≤
(
v(1 + ∆) +

a− ε

µ

)
e−µ(B−(1+∆)) − a− ε

µ

<

(
v(1) + 2(a+ ε)∆ +

a− ε

µ

)
e−µ(B−(1+∆)) − a− ε

µ

≤
(
ue−µ +

1
µ

(a+ ε)(1− e−µ) + 2(a+ ε)∆ +
a− ε

µ

)
e−µ(B−(1+∆))

− a− ε

µ

≤
(
a+ ε

µ
e−µ +

1
µ

(a+ ε)(1− e−µ) + 2(a+ ε)∆ +
a− ε

µ

)
e−µ(B−(1+∆))

− a− ε

µ

=
(

2a
µ

+ 2(a+ ε)∆
)
e−µ(B−(1+∆)) − a− ε

µ
.
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By Proposition 2.5, 1 < B − (1 + ∆). Hence

v(B) <
(

2a
µ

+ 2(a+ ε)∆
)
e−µ − a− ε

µ
.

Multiplication of (6) by (a − ε)/µ and rearrangement of terms yield the upper
estimate of the assertion. �

It has not yet been shown that (3)–(6) are compatible.

Proposition 2.8. Let µ > log 2. Then there exist βµ > 0, εµ ∈ (0, a),
and an analytic function rµ: (−βµ, βµ) × (−εµ, εµ) → (0, 1) so that for every
β ∈ (0, βµ) and ε ∈ (0, εµ) the parameters β, ε, µ and r = rµ(β, ε) satisfy
(3)–(6).

Proof. Let µ > log 2. Fix Rµ = 1 − 2e−µ ∈ (0, 1). Recall the definition
of ∆ and observe that (6) is equivalent to

0 ≤ a− ε

µ
(1− r)−

(
2a
µ

+
4(a+ ε)µ
r(a− ε)

β

)
e−µ.

The function

qµ: (0, 1)× R× (−∞, a) 3 (r, β, ε)

7→ a− ε

µ
(1− r)−

(
2a
µ

+
4(a+ ε)µ
r(a− ε)

β

)
e−µ ∈ R

satisfies

qµ(Rµ, 0, 0) =
a

µ
(1−Rµ)− 2a

µ
e−µ =

a

µ
(1−Rµ − 2e−µ) = 0.

Solve the equation qµ(r, β, ε) = 0 for r. There exist βµ0 > 0, εµ0 ∈ (0, a), and
an analytic real function rµ0: (−βµ0, βµ0)× (−εµ0, εµ0) → (0, 1) so that

rµ0(0, 0) = Rµ ∈ (0, 1)

and

qµ(rµ0(β, ε), β, ε) = 0 for all (β, ε) ∈ (−βµ0, βµ0)× (−εµ0, εµ0).

In particular, (6) holds as an equation for r = rµ0(β, ε) and (β, ε) ∈ (0, βµ0) ×
(0, εµ0).

It is obvious that (3) and (4) hold for β = 0 = ε, µ, and r = Rµ. (5) holds
as well since

p(0, 0, µ,Rµ, 1) =
a

µ

(
1 + (Rµ − 1)

1− e−µ

µ

)
− a

µ

+
(

(Rµ − 1)
a

µ
e−µ +

2a
µ

)
1
µ

(1− e−µ)

=
a

µ

1− e−µ

µ
(Rµ − 1 + 2 + (Rµ − 1)e−µ) > 0.
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It follows that there exist βµ ∈ (0, βµ0), εµ ∈ (0, εµ0) so that the restriction rµ
of rµ0 to (−βµ, βµ)× (−εµ, εµ) has the asserted properties. �

The following result summarizes what has been achieved.

Corollary 2.1. Let µ > log 2, 0 < β < βµ, 0 < ε < εµ, r = rµ(β, ε) ∈
(0, 1), f ∈ Fβε. For every (φ, u) ∈ A = Aβεµr there exist positive reals b =
b(φ, u, f, β, ε, µ, r) and B = B(φ, u, f, β, ε, µ, r) > b so that for ∆ = ∆(β, ε, µ, r),

b < ∆, ∆ + 2 < B,

and the solution (x, v) = (x, v)(φ,u) of (1) satisfies

x(b) = β, β < x(t) for all t ∈ (b, B), x(B) = β

and
−a+ ε

µ
< v(B) < −r a− ε

µ
.

In particular, (xB , v(B)) ∈ −A.
For every fixed point (φ, u) of the map

R = Rβεµrf :A 3 (φ, u) 7→ −(xB , v(B)) ∈ A

there exists a periodic solution (x, v) on R of (1) with (x0, v(0)) = (φ, u). For
B = B(φ, u, f, β, ε, µ, r),

x(t+B) = −x(t), v(t+B) = −v(t) for all t ∈ R,

and (x, v) has minimal period 2B.

Remark. It is easy to show that the return map R of the preceding corollary
is continuous and maps bounded sets into sets with compact closure. Therefore
Schauder’s theorem guarantees the existence of fixed points. This is not pursued
here as the objective are attracting fixed points and periodic orbits.

The following lower estimate of B which improves Proposition 2.5 will be
important in the sequel.

Proposition 2.9. Let η ∈ (0, 1). Then there exists µη > log 2 so that
for each µ > µη there are βµη ∈ (0, βµ) and εµη ∈ (0, εµ) with the following
property: For all β ∈ (0, βµη), ε ∈ (0, εµη), for r = rµ(β, ε), for all f ∈ Fβε and
(φ, u) ∈ Aβεµr, B = B(φ, u, f, β, ε, µ, r) and ∆ = ∆(β, ε, µ, r) satisfy

B − 2−∆ >
2− η

µ
.

Proof. Step 1. Let η ∈ (0, 1) be given. Choose η0 ∈ (0, η). Recall from the
proof of Proposition 2.8 the equation

p(0, 0, µ, rµ(0, 0), 1) =
1− e−µ

µ2
a(−2e−µ(1 + e−µ) + 2)
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for µ > log 2. It follows that there exists µη > log 2 so that for all µ ≥ µη,

p(0, 0, µ, rµ(0, 0), 1) >
(2− η0)a

µ2
.

Consider µ ≥ µη. Choose βµ ∈ (0, βµ) and εµ ∈ (0, εµ) so small that for all
β ∈ (0, βµ) and all ε ∈ (0, εµ),

p(β, ε, µ, rµ(β, ε), 1) >
(2− η0)a

µ2
.

Step 2. Let β ∈ (0, βµ), ε ∈ (0, εµ), r = rµ(β, ε), f ∈ Fβε, (φ, u) ∈ Aβεµr,
∆ = ∆(β, ε, µ, r), B = B(φ, u, f, β, ε, µ, r). The second component of the so-
lution (x, v) = (x, v)(φ,u) of (1) is bounded by (a + ε)/µ. This bound and the
inequality B > 2 + ∆ (Proposition 2.5) combined give

β = x(B) = x(2 + ∆) +
∫ B

2+∆

v(t) dt ≥ x(2 + ∆)− a+ ε

µ
(B − (2 + ∆)).

Estimates as in the beginning of the proof of Proposition 2.5 yield

x(2 + ∆) > p(β, ε, µ, rµ(β, ε), 1).

The preceding inequalities combined with the choice of βµ and εµ imply

β >
(2− η0)a

µ2
− a+ ε

µ
(B − (2 + ∆))

which is equivalent to

B − 2−∆ > − µβ

a+ ε
+

(2− η0)a
(a+ ε)µ

.

Now it becomes obvious that there exist βµη ∈ (0, βµ) and εµη ∈ (0, εµ) such
that for all β ∈ (0, βµη), ε ∈ (0, εµη), r = rµ(β, ε), f ∈ Fβε, and (φ, u) ∈ Aβεµr,

B − 2−∆ >
2− η

µ

for B = B(φ, u, f, β, ε, µ, r) and ∆ = ∆(β, ε, µ, r). �

Remark. The estimate

B − 1− a+ ε

a− ε
−∆ ≤ a+ ε

a− ε

(
∆ +

2
µ

)
of Proposition 2.6 implies that for certain sequences βn → 0, εn → 0, µn →∞,
with rn = rµn

(βn, εn), An = Aβnεnµnrn
, Fn = Fβnεn

,

lim sup
n→∞

sup
(φ,u)∈An,f∈Fn

B(φ, u, f, βn, εn, µn, rn) ≤ 2.

This shows in which sense the lower estimate of the preceding proposition is
optimal.
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3. Contracting return maps

For µ > log 2, 0 < β < βµ, 0 < ε < εµ, r = rµ(β, ε), f ∈ Fβε, A = Aβεµr

consider the return map R : A→ A from Corollary 2.1. The first objective is to
find an upper estimate of Lip (R) in terms of β, ε, µ, L = Lip (f) and

Lβ = Lip (f | [β,∞)) = Lip (f | (−∞,−β]).

Notice already here that necessarily L ≥ (a− ε)/β becomes large for β small,
while on the other hand each set Fβε contains functions f with Lβ arbitrarily
small and zero.

Let ∆ = ∆(β, ε, µ, r). It is convenient to write R = Q ◦ P as composition of
the map P = Pβεµrf = Sµf (1 + ∆, · )|A with the map Q = Qβεµrf from P (A)
to −A given by Q(ψ,w) = Sµf (T (ψ,w), (ψ,w)) where the map T = Tβεµrf from
P (A) to (1,∞) is defined by

T (ψ,w) = B(φ, u, f, β, ε, µ, r)−(1+∆) for all (φ, u) ∈ A with (ψ,w) = P (φ, u).

(Observe that indeed all such B(φ, u, f, β, ε, µ, r) coincide – the first argument
in [1+∆,∞) where x reaches the level β depends on x | [∆, 1+∆] and v(1+∆)
but not on values at smaller arguments.)

The following estimates control the deviation of solutions from each other.

Proposition 3.1. Let (x, v), (x, v) be solutions of (1) on [0,∞). For every
t ∈ [0, 1], the following estimates hold.

|v(t)− v(t)| ≤ |v(0)− v(0)|e−µt + L
1− e−µt

µ
‖x0 − x0‖,

|x(t)− x(t)| ≤ |v(0)− v(0)|1− e−µt

µ
+

(
1 + L

t

µ

)
‖x0 − x0‖.

In case β ≤ x(s), β ≤ x(s) for all s ∈ [−1, 0] the analogues of the previous
estimates with Lβ instead of L hold.

In case x(s) ≤ −β, x(s) ≤ −β for all s ∈ [−1, 0] and x(0) = −β = x(0),

|v(t)− v(t)| ≤ |v(0)− v(0)|e−µt + Lβ
1− e−µt

µ
‖x0 − x0‖,

|x(t)− x(t)| ≤ |v(0)− v(0)|1− e−µt

µ
+ Lβ

t

µ
‖x0 − x0‖.

Proof. The first estimate follows by means of the variation-of-constants
formula and using the Lipschitz constant L ≤ ∞ of f in the integrand. The
second estimate follows from the first one using

|x(t)−x(t)| =
∣∣∣∣x(0)−x(0)+

∫ t

0

(v(s)−v(s)) ds
∣∣∣∣ ≤ ‖x0−x0‖+

∫ t

0

|v(s)−v(s)| ds.

The remaining assertions are obtained similarly. �
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It is convenient to restrict the range of parameters from here on as follows.
Choose µ0 > log 2 so that for all µ > µ0,

e−µ +
1− e−µ

2µ
≤ 1.

For each µ > µ0 choose βµ0 ∈ (0, βµ), εµ0 ∈ (0, εµ) so that

∆(β, ε, µ, rµ(β, ε)) =
2µβ

rµ(β, ε)(a− ε)
< 1

for all β ∈ (0, βµ0), ε ∈ (0, εµ0).

The next result contains an estimate of Lip (P ).

Proposition 3.2. Let µ > µ0, β ∈ (0, βµ0), ε ∈ (0, εµ0), f ∈ Fβε, r =
rµ(β, ε), A = Aβεµr, ∆ = ∆(β, ε, µ, r), P = Pβεµrf . Let (φ, u), (φ, u) in A be
given. Then (x, v) = (x, v)(φ,u) and (x, v) = (x, v)(φ,u) satisfy

‖x1+∆ − x1+∆‖ ≤
(

2
µ

+
L∆
µ2

)
|u− u|+ Lβ

µ

(
1 + ∆

(
1 + L

∆2

2

))
‖φ− φ‖,

|v(1 + ∆)− v(1 + ∆)| ≤
(
e−µ +

L∆
µ

)
|u− u|+

(
Lβ

µ
+
LLβ

µ

∆2

2

)
‖φ− φ‖.

In particular,

Lip (P ) ≤ e−µ +
L∆
µ

+
1
µ

+
L∆
2µ2

+
Lβ

µ

(
1 + ∆

(
1 +

L∆2

2

))
+

2Lβ

µ
+

2LLβ

µ

∆2

2
.

Proof. Step 1. For 0 ≤ t ≤ 1,

|v(t)− v(t)| ≤ e−µt|u− u|+ Lβ
1− e−µt

µ
‖φ− φ‖ ≤ e−µt|u− u|+ Lβ

µ
‖φ− φ‖,

hence

|x(t)− x(t)| =
∣∣∣∣− β − (−β) +

∫ t

0

v(s) ds−
∫ t

0

v(s) ds
∣∣∣∣ ≤ ∫ t

0

|v(s)− v(s)| ds

≤ 1
µ

(1− e−µt)|u− u|+ Lβ

µ
‖φ− φ‖t ≤ 1

µ
|u− u|+ Lβ

µ
‖φ− φ‖.
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Step 2. For 1 ≤ t ≤ 1 + ∆ < 2 it follows that

|v(t)− v(t)| ≤ e−µ(t−1)|v(1)− v(1)|+
∫ t

1

e−µ(t−s)|f(x(s− 1))− f(x(s− 1)| ds

≤ e−µt|u− u|+ e−µ(t−1)Lβ

µ
‖φ− φ‖

+
∫ t

1

e−µ(t−s)L

(
1
µ

(1− e−µ(s−1))|u− u|+ Lβ

µ
‖φ− φ‖(s− 1)

)
ds

≤ e−µt|u− u|+ Lβ

µ
‖φ− φ‖+

∫ t

1

L|u− u| 1
µ

(e−µ(t−s) − e−µ(t−1)) ds

+ L
Lβ

µ

(t− 1)2

2
‖φ− φ‖

≤ e−µt|u− u|+ L

µ
|u− u|

(
1
µ

(1− e−µ(t−1))− (t− 1)e−µ(t−1)

)
+
Lβ

µ

(
1 + L

∆2

2

)
‖φ− φ‖.

By
1
µ

(1− e−µ(t−1))− (t− 1)e−µ(t−1) ≤ 1
µ

(1− e−µ(t−1)) ≤ t− 1,

for t = 1 + ∆ > 1,

|v(1 + ∆)− v(1 + ∆)| ≤
(
e−µ +

L∆
µ

)
|u− u|+ Lβ

µ

(
1 + L

∆2

2

)
‖φ− φ‖.

Step 3. Recall ‖x1+∆ − x1+∆‖ = maxt∈[−1,0] |x(1 + ∆ + t) − x(1 + ∆ + t)|.
For t ∈ [−1, 0] with 0 ≤ 1 + ∆ + t ≤ 1, Step 1 yields

|x(1 + ∆ + t)− x(t+ ∆ + t)| ≤ 1
µ
|u− u|+ Lβ

µ
‖φ− φ‖.

In case 1 < 1 + ∆ + t ≤ 1 + ∆,

|x(1 + ∆ + t)− x(1 + ∆ + t)| ≤ |x(1)− x(1)|+
∫ 1+∆+t

1

|v(s)− v(s)| ds.

The last estimate in Step 1 at t = 1, the estimate of v(s)−v(s) for 1 ≤ s ≤ 1+∆
in Step 2, and the inequality −e−µ(s−1)/µ− (s− 1)e−µ(s−1) ≤ 0 combined imply

|x(1 + ∆ + t)− x(1 + ∆ + t)| ≤ 1
µ
|u− u|+ Lβ

µ
‖φ− φ‖

+
∫ 1+∆+t

1

(
e−µs|u− u|+ L

µ2
|u− u|+ Lβ

µ

(
1 + L

∆2

2

)
‖φ− φ‖

)
ds

≤ 1
µ
|u− u|+ Lβ

µ
‖φ− φ‖+

1
µ

(e−µ − e−µ(1+∆+t))|u− u|

+ (∆ + t)
L

µ2
|u− u|+ (∆ + t)

Lβ

µ

(
1 + L

∆2

2

)
‖φ− φ‖.
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By means of e−µ − e−µ(1+∆+t) ≤ e−µ ≤ 1,

|x(1 + ∆ + t)− x(1 + ∆ + t)| ≤
(

2
µ

+
L∆
µ2

)
|u− u|

+
Lβ

µ

(
1 + ∆

(
1 + L

∆2

2

))
‖φ− φ‖,

and the asserted estimate of ‖x1+∆ − x1+∆‖ follows. Consequently,

‖P (φ, u) − P (φ, u)‖

=
1
2
‖x1+∆ − x1+∆‖+ |v(1 + ∆)− v(1 + ∆)|

≤
(

1
µ

+
L∆
2µ2

+ e−µ +
L∆
µ

)
|u− u|+ Lβ

µ

(
1 + ∆

(
1 + L

∆2

2

))
1
2
‖φ− φ‖

+
(

2Lβ

µ
+

2LLβ

µ

∆2

2

)
1
2
‖φ− φ‖,

which shows the asserted estimate of Lip (P ). �

Remark. It is the term L∆/µ in the estimate of Lip (P ) which presents
most of the difficulties on the way to contracting return maps.

The next result prepares the proof of an estimate of Lip (T ), which will be
needed for the derivation of an estimate of Lip (Q).

Proposition 3.3. Let µ > µ0, β ∈ (0, βµ0), ε ∈ (0, εµ0), f ∈ Fβε, r =
rµ(β, ε), A = Aβεµr, ∆ = ∆(β, ε, µ, r). Let (φ, u) and (φ, u) in X be given. Set
(x, v) = (x, v)(φ,u) and (x, v) = (x, v)(φ,u).

(a) If β ≤ φ(t) and β ≤ φ(t) for all t ∈ [−1, 0] then

‖Sµf (1, (φ, u))− Sµf (1, (φ, u))‖ ≤
(

1 +
3Lβ

µ

)
‖(φ, u)− (φ, u)‖

and, for every t ∈ [0, 1],

|v(t)− v(t)| ≤
(

1 +
2Lβ

µ

)
‖(φ, u)− (φ, u)‖.

(b) Suppose (φ, u) ∈ A, (φ, u) ∈ A. Let (ψ,w) = (x1+∆, v(1+∆)), (ψ,w) =
(x1+∆, v(1 + ∆)), B = B(φ, u, f, β, ε, µ, r) ≤ B = B(φ, u, f, β, ε, µ, r).

Then, for t ∈ [1 + ∆, B],

|v(t)− v(t)| ≤
(

1 +
3Lβ

µ

)1+[(a+ε)/(a−ε)](1+∆+2/µ)

‖(ψ,w)− (ψ,w)‖

and

|x(t)− x(t)| ≤
(

2 +
a+ ε

a− ε

(
1 + ∆ +

2
µ

)
×

(
1 +

3Lβ

µ

)1+[(a+ε)/(a−ε)](1+∆+2/µ))
× ‖(ψ,w)− (ψ,w)‖.
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Proof. (a) By Proposition 3.1,

‖(x1, v(1))− (x1, v(1))‖ =
1
2
‖x1 − x1‖+ |v(1)− v(1)|

≤
(

1− e−µ

2µ
+ e−µ

)
|u− u|+

(
2Lβ

µ
+ 1 +

Lβ

µ

)
1
2
‖φ− φ‖.

By the choice of µ,
1− e−µ

2µ
+ e−µ < 1 < 1 +

3Lβ

µ
.

The asserted Lipschitz estimate of Sµf (1, · ) follows. Similarly one obtains the
estimate of |v(t)− v(t)|.

(b) Recall Proposition 2.5 and consider the integer j ≥ 1 given by 1+∆+j ≤
B < 1 + ∆ + j + 1. By Proposition 2.6,

j <
a+ ε

a− ε

(
1 + ∆ +

2
µ

)
.

If t ∈ [1 + ∆, B] ⊂ [1 + ∆, B] then β ≤ x(t− 1), β ≤ x(t− 1). Therefore the first
estimate in part (a) of the proposition and induction yield

Lip (Sµf (k, · ) | Sµf (1 + ∆, A)) ≤
(

1 +
3Lβ

µ

)k

for k = 0, . . . , j.

The second estimate in part (a) of the proposition shows that for every k ∈
{0, . . . , j} and t ∈ [1 + ∆ + k, 1 + ∆ + k + 1],

|v(t)− v(t)| ≤
(

1 +
2Lβ

µ

)
‖Sµf (k, (ψ,w))− Sµf (k, (ψ,w))‖

≤
(

1 +
3Lβ

µ

)1+k

‖(ψ,w)− (ψ,w)‖

≤
(

1 +
3Lβ

µ

)1+j

‖(ψ,w)− (ψ,w)‖

≤
(

1 +
3Lβ

µ

)1+[(a+ε)/(a−ε)](1+∆+2/µ)

‖(ψ,w)− (ψ,w)‖.

The estimate of

|x(t)− x(t)| ≤ |x(1 + ∆)− x(1 + ∆)|+
∫ t

1+∆

|v(s)− v(s)| ds

= |ψ(0)− ψ(0)|+
∫ t

1+∆

|v(s)− v(s)| ds

follows from the estimate of the integrand combined with

t− (1 + ∆) ≤ B − (1 + ∆) ≤ a+ ε

a− ε

(
1 + ∆ +

2
µ

)
and

|ψ(0)− ψ(0)| ≤ 2‖(ψ,w)− (ψ,w)‖. �
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It is convenient to introduce

c = c(β, ε, µ, λ) = 2 +
a+ ε

a− ε

(
1 + ∆ +

2
µ

)(
1 +

3λ
µ

)1+[(a+ε)/(a−ε)](1+∆+2/µ)

for µ > µ0, |β| < βµ0, |ε| < εµ0, r = rµ(β, ε), ∆ = ∆(β, ε, µ, r) and λ ∈ [0,∞).
Clearly, c > 3 and

(7) lim
µ→∞

c(0, 0, µ, 0) = 3.

Proposition 3.4. Let µ > µ0, β ∈ (0, βµ0), ε ∈ (0, εµ0), f ∈ Fβε, r =
rµ(β, ε). If

(8)
2a
a− ε

< eµ

holds then
Lip (Tβεµrf ) ≤ µ

|e−µ2a− a+ ε|
c(β, ε, µ, Lβ).

Proof. Step 1. Let ∆ = ∆(β, ε, µ, r), (ψ,w) = Sµf (1 + ∆, (φ, u)) and
(ψ,w) = Sµf (1+∆, (φ, u)), with (φ, u) and (φ, u) inAβεµr. Set (x, v) = (x, v)(φ,u)

and (x, v) = (x, v)(φ,u), B = B(φ, u, f, β, ε, µ, r), B = B(φ, u, f, β, ε, µ, r). Then

Tβεµrf (ψ,w)− Tβεµrf (ψ,w) = B −B.

Step 2. Recall

ψ(0) +
∫ B

1+∆

v(t) dt = x(B) = β = x(B) = ψ(0) +
∫ B

1+∆

v(t) dt.

In case B ≥ B it follows that

‖ψ − ψ‖ ≥ |ψ(0)− ψ(0)| =
∣∣∣∣ ∫ B

1+∆

(v − v)(t) dt+
∫ B

B

v(t) dt
∣∣∣∣

≥
∣∣∣∣ ∫ B

B

v(t) dt
∣∣∣∣− ∫ B

1+∆

|v(t)− v(t)| dt.

An application of Proposition 3.3 to the last integrand yields

‖ψ − ψ‖+ (B − (1 + ∆))

·
(

1 +
3Lβ

µ

)1+[(a+ε)/(a−ε)](1+∆+2/µ)

‖(ψ,w)− (ψ,w)‖ ≥
∣∣∣∣ ∫ B

B

v(t) dt
∣∣∣∣.

Proposition 2.6 gives

‖ψ − ψ‖+
a+ ε

a− ε

(
1 + ∆ +

2
µ

)
·
(

1 +
3Lβ

µ

)1+[(a+ε)/(a−ε)](1+∆+2/µ)

‖(ψ,w)− (ψ,w)‖ ≥
∣∣∣∣ ∫ B

B

v(t) dt
∣∣∣∣.
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Step 3. Estimate of the last integrand: By Proposition 2.5, 2 + ∆ ≤ t ≤ B

for B ≤ t ≤ B, hence x(s − 1)) ≥ β for all s ∈ [1 + ∆, t], and therefore
f(x(s− 1)) ≤ −a+ ε. By Proposition 2.1,

w ≤ a+ ε

µ
.

It follows that

v(t) = e−µ(t−(1+∆))w +
∫ t

1+∆

e−µ(t−s)f(x(s− 1)) ds

≤ e−µ(t−(1+∆)) a+ ε

µ
− (a− ε)

1
µ

(1− e−µ(t−(1+∆))).

As 2 + ∆ ≤ t,

v(t) ≤ e−µ a+ ε

µ
− (a− ε)

1
µ

(1− e−µ) =
1
µ

(e−µ2a− a+ ε).

By hypothesis, the last term is negative.
Step 4. It follows that∣∣∣∣ ∫ B

B

v(t) dt
∣∣∣∣ =

∫ B

B

|v(t)| dt ≥ (B −B)
1
µ
|e−µ2a− a+ ε|.

Finally, the estimate of Lip (Tβεµrf ) becomes obvious from the preceding esti-
mate in combination with the results of Steps 1 and 2 and

‖ψ − ψ‖ ≤ 2‖(ψ,w)− (ψ,w)‖. �

The proof of an estimate of Lip (Q) begins with upper estimates of |v(B +
s)− v(B + s)|, s ∈ [−1, 0], in terms of |v(1 + ∆)− v(1 + ∆)|, ‖(ψ,w)− (ψ,w)‖,
and |B −B| = |T (ψ,w)− T (ψ,w)|.

Proposition 3.5. Let µ > µ0, β ∈ (0, βµ0), ε ∈ (0, εµ0), f ∈ Fβε, r =
rµ(β, ε), A = Aβεµr, ∆ = ∆(β, ε, µ, r). Let (φ, u) ∈ A, (φ, u) ∈ A, (x, v) =
(x, v)(φ,u), (x, v) = (x, v)(φ,u). Set (ψ,w) = (x1+∆, v(1 + ∆)), (ψ,w) = (x1+∆,

v(1 + ∆)). Suppose

B = B(φ, u, f, β, ε, µ, r) ≤ B = B(φ, u, f, β, ε, µ, r).

Then, for every s ∈ [−1, 0],

|v(B + s)− v(B + s)| ≤ e−µ(B+s−(1+∆))|v(1 + ∆)− v(1 + ∆)|

+
Lβ

µ
c(β, ε, µ, Lβ)‖(ψ,w)− (ψ,w)‖

+ 2ε|B −B|+ 2a
µ

(e−µ(B+s−(1+∆)) − e−µ(B+s−(1+∆))).
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Proof. Step 1. Recall B + s > 1 + ∆ (Proposition 2.5). Observe

|v(B + s)− v(B + s)| ≤ e−µ(B+s−(1+∆))|v(1 + ∆)− v(1 + ∆)|

+
∣∣∣∣v(1 + ∆)(e−µ(B+s−(1+∆)) − e−µ(B+s−(1+∆)))

+
∫ B+s

1+∆

e−µ(B+s−t)f(x(t− 1)) dt

−
∫ B+s

1+∆

e−µ(B+s−t)f(x(t− 1)) dt
∣∣∣∣.

Step 2. The last term is majorized by

∣∣∣∣− ∫ B+s

1+∆

e−µ(B+s−t)(f(x(t− 1))− f(x(t− 1))) dt
∣∣∣∣

+
∣∣∣∣v(1+∆)(e−µ(B+s−(1+∆))−e−µ(B+s−(1+∆)))+

∫ B+s

B+s

e−µ(B+s−t)f(x(t−1)) dt

−
∫ B+s

1+∆

(e−µ(B+s−t) − e−µ(B+s−t))f(x(t− 1)) dt
∣∣∣∣.

All arguments of f in the last integrands belong to [β,∞).

Step 3. It follows that

∣∣∣∣− ∫ B+s

1+∆

e−µ(B+s−t)(f(x(t− 1))− f(x(t− 1))) dt
∣∣∣∣

≤ Lβ

∫ B+s

1+∆

e−µ(B+s−t)|x(t− 1))− x(t− 1)| dt

≤ Lβ

µ
(1− e−µ(B+s−(1+∆))) max

t∈[∆,B−1]
|x(t)− x(t)|.

The estimate |x(t)− x(t)| ≤ ‖ψ − ψ‖ ≤ 2‖(ψ,w)− (ψ,w)‖ for all t ∈ [∆, 1 + ∆],
the last estimate in Proposition 3.3, and the inequality 2 ≤ c(β, ε, µ, Lβ) = c

combined imply

∣∣∣∣− ∫ B+s

1+∆

e−µ(B+s−t)(f(x(t− 1))− f(x(t− 1))) dt
∣∣∣∣ ≤ Lβ

µ
c‖(ψ,w)− (ψ,w)‖.

Step 4. Consider the second term of the sum in Step 2. Due to Proposi-
tion 2.1,

|v(1 + ∆)| ≤ a+ ε

µ
,
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and −a − ε ≤ f(x(t − 1)) ≤ −a + ε for 1 + ∆ ≤ t ≤ B + s. Therefore a lower
bound for

I = v(1 + ∆)(e−µ(B+s−(1+∆)) − e−µ(B+s−(1+∆)))

+
∫ B+s

B+s

e−µ(B+s−t)f(x(t− 1)) dt

−
∫ B+s

1+∆

(e−µ(B+s−t) − e−µ(B+s−t))f(x(t− 1)) dt

is
a+ ε

µ
(e−µ(B+s−(1+∆)) − e−µ(B+s−(1+∆)))− a+ ε

µ
(1− e−µ(B−B))

+
a− ε

µ
(eµ(B+s) − eµ(1+∆))(e−µ(B+s) − e−µ(B+s))

=
a+ ε

µ
(e−µ(B+s−(1+∆)) − e−µ(B+s−(1+∆)))− a+ ε

µ
(1− e−µ(B−B))

+
a− ε

µ
(1− e−µ(B+s−(1+∆)) − e−µ(B−B) + e−µ(B+s−(1+∆)))

=
2a
µ

(e−µ(B+s−(1+∆)) − e−µ(B+s−(1+∆)))− 2ε
µ

(1− e−µ(B−B))

≥ 2a
µ

(e−µ(B+s−(1+∆)) − e−µ(B+s−(1+∆)))− 2ε(B −B).

Similarly one finds the upper bound

I ≤ − a+ ε

µ
(e−µ(B+s−(1+∆)) − e−µ(B+s−(1+∆)))− a− ε

µ
(1− e−µ(B−B))

+
a+ ε

µ
(eµ(B+s) − eµ(1+∆))(e−µ(B+s) − e−µ(B+s))

= − a+ ε

µ
(e−µ(B+s−(1+∆)) − e−µ(B+s−(1+∆)))− a− ε

µ
(1− e−µ(B−B))

+
a+ ε

µ
(1− e−µ(B+s−(1+∆)) − e−µ(B−B) + e−µ(B+s−(1+∆)))

=
2ε
µ

(1− e−µ(B−B)).

It follows that

|I| ≤ 2ε|B −B|+ 2a
µ

(e−µ(B+s−(1+∆)) − e−µ(B+s−(1+∆))).

Step 5. Steps 1–4 combined imply the desired estimate. �

Corollary 3.1. Suppose the hypotheses of Proposition 3.5 are satisfied
and (8) holds. Then v, v, B, B, ψ, ψ, w, w from Proposition 3.5 satisfy

|v(B)− v(B)| ≤
(
e−µ + c(β, ε, µ, Lβ)

(
Lβ

µ
+ (2ε+ 2ae−µ)

µ

|e−µ2a− a+ ε|

))
· ‖(ψ,w)− (ψ,w)‖.
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Proof. Apply Proposition 3.5 for s = 0 and use the estimate B − B ≤
Lip (Tβεµrf )‖(ψ,w)− (ψ,w)‖, Proposition 3.4, the inequality

e−µ(B−(1+∆)) − e−µ(B−(1+∆)) = µ(B −B)
e−µ(B−(1+∆)) − e−µ(B−(1+∆))

µ(B −B)

≤ µ(B −B)e−µ(B−(1+∆)) (since B ≥ B)

≤ µ(B −B)e−µ (since B − (1 + ∆) > 1),

and

|v(1 + ∆)− v(1 + ∆)| ≤ ‖(ψ,w)− (ψ,w)‖. �

Next ‖xB−xB‖ is estimated in terms of |v(1+∆)−v(1+∆)|, ‖x1+∆−x1+∆‖,
and B − 2−∆ > 0.

Proposition 3.6. Suppose the hypotheses of Proposition 3.5 are satisfied
and (8) holds. Then x, x, B, B, ψ, ψ, w, w from Proposition 3.5 satisfy

‖xB − xB‖ ≤
(

1
µ

(1 + Lβc(β, ε, µ, Lβ))

+ c(β, ε, µ, Lβ)
(

2εµ
|e−µ2a− a+ ε|

+
2ae−µ(B−2−∆)

|e−µ2a− a+ ε|

))
· ‖(ψ,w)− (ψ,w)‖.

Proof. For every t ∈ [−1, 0],

|xB(t)− xB(t)| = |x(B + t)− x(B + t)| =
∣∣∣∣β − β −

∫ B

B+t

v(s) ds+
∫ B

B+t

v(s) ds
∣∣∣∣

=
∣∣∣∣ ∫ 0

t

(v(B + s)− v(B + s)) ds
∣∣∣∣ ≤ ∫ 0

t

|v(B + s)− v(B + s)| ds.

Proposition 3.5 is applied to the last integrand. Then integration gives

|xB(t)− xB(t)| ≤ 1
µ

(e−µ(B+t−(1+∆)) − e−µ(B−(1+∆)))|v(1 + ∆)− v(1 + ∆)|

+
Lβ

µ
c(β, ε, µ, Lβ)‖(ψ,w)− (ψ,w)‖+ 2ε|B −B|

+
2a
µ2

(e−µ(B+t−(1+∆)) − e−µ(B+t−(1+∆))

− (e−µ(B−(1+∆)) − e−µ(B−(1+∆)))).

The inequalities (see Proposition 2.5) e−µ(B+t−(1+∆)) − e−µ(B−(1+∆)) < 1 and
(since B ≥ B) e−µ(B−(1+∆)) − e−µ(B−(1+∆)) ≥ 0 show that the last term is
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majorized by

1
µ
|v(1 + ∆)− v(1 + ∆)|+ Lβ

µ
c(β, ε, µ, Lβ)‖(ψ,w)− (ψ,w)‖

+ 2ε|B −B|+ 2a
µ

1
µ
µ|B −B|e

−µ(B+t−(1+∆)) − e−µ(B+t−(1+∆))

µ|B −B|
.

The last quotient is bounded from above by e−µ(B+t−(1+∆)) ≤ e−µ(B−2−∆).
It follows that

|xB(t)− xB(t)| ≤ 1
µ
|v(1 + ∆)− v(1 + ∆)|+ Lβ

µ
c(β, ε, µ, Lβ)‖(ψ,w)− (ψ,w)‖

+
(

2ε+
2a
µ
e−µ(B−2−∆)

)
|B −B|.

The equation
|B −B| = |Tβεµrf (ψ,w)− Tβεµrf (ψ,w)|,

Proposition 3.4 and the inequality

|v(1 + ∆)− v(1 + ∆)| ≤ ‖(ψ,w)− (ψ,w)‖

combined yield the desired estimate. �

For Lipschitz constants of R which become small for µ large and β, ε small
it is necessary to control the term B − 2−∆ in the estimate of Proposition 3.6.

Corollary 3.2. Let η ∈ (0, 1) be given. Then there exists µη > µ0 such
that for every µ > µη there are βµη ∈ (0, βµ0), εµη ∈ (0, εµ0) with the following
property. For 0 < β < βµη, 0 < ε < εµη, f ∈ Fβε,

Lip (Qβεµrf ) ≤ e−µ + c(β, ε, µ, Lβ)
(
Lβ

µ
+ (2ε+ 2ae−µ)

µ

|e−µ2a− a+ ε|

)
+

1
2

(
1
µ

(1 + Lβc(β, ε, µ, Lβ))

+ c(β, ε, µ, Lβ)
(

2εµ
|e−µ2a− a+ ε|

+
2ae−2+η

|e−µ2a− a+ ε|

))
.

Proof. Proposition 2.9 guarantees the existence of µη > µ0 such that for
every µ > µη there are βµη ∈ (0, βµ0), εµη ∈ (0, εµ0) with

B(φ, u, f, β, ε, µ, rµ(β, ε))− 2−∆(β, ε, µ, rµ(β, ε)) ≥ 2− η

µ

for all β ∈ (0, βµη), ε ∈ (0, εµη), (φ, u) ∈ Aβεµrµ(β,ε), f ∈ Fβε. Clearly εµη can
be chosen so small that (8) holds for ε ∈ (0, εµη), too.

Use Corollary 3.1, the estimate from Proposition 3.6 multiplied by the weight
1/2, and the last inequality to deduce the asserted Lipschitz estimate. �
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Notice that for every ρ > 1 and λ > 0 each set Fβε contains functions f
satisfying

L < ρ
a− ε

β
and Lβ < λ.

Theorem 3.1. Let ρ ∈ (1, e2/6) be given. Then there exists µρ > µ0 so that,
for every µ > µρ, there are λµ > 0, βµρ ∈ (0, βµ0), and εµρ ∈ (0, εµ0) with the
following property. For every β ∈ (0, βµρ), ε ∈ (0, εµρ), f ∈ Fβε with

Lip (f) ≤ ρ
a− ε

β
and Lip (f | [β,∞)) ≤ λµ

and for r = rµ(β, ε), Lip (Rβεµrf ) < 1.

Proof. Choose η ∈ (0, 1) so that ρeη < e2/6, or equivalently,

(9) 6e−2+ηρ < 1.

Choose µη > µ0 according to Corollary 3.2. For µ > µη choose βµη > 0
and εµη > 0 according to Corollary 3.2. For µ > µη, 0 ≤ β < βµη, 0 ≤ ε < εµη

and λ ≥ 0 set

cQ(β, ε, µ, λ) = e−µ + c(β, ε, µ, λ)
(
λ

µ
+ (2ε+ 2ae−µ)

µ

|e−µ2a− a+ ε|

)
+

1
2

(
1
µ

(1 + λc(β, ε, µ, λ))

+ c(β, ε, µ, λ)
(

2εµ
|e−µ2a− a+ ε|

+
2ae−2+η

|e−µ2a− a+ ε|

))
.

An application of Corollary 3.2 shows that for µ > µη, λ > 0, β ∈ (0, βµη),
ε ∈ (0, εµη), r = rµ(β, ε) and, for all f ∈ Fβε, with Lip (f | [β,∞)) ≤ λ the
estimate Lip (Qβεµrf ) ≤ cQ(β, ε, µ, λ) holds.

Recall Proposition 3.2. For µ > µη, 0 < β < βµη, 0 ≤ ε < εµη, and λ ≥ 0,
set

cP (β, ε, µ, λ) = e−µ +
2ρ

rµ(β, ε)
+

1
µ

+
ρ

µrµ(β, ε)

+
λ

µ

(
1 +

2µ
rµ(β, ε)(a− ε)

β

(
1 + ρ

a− ε

β

1
2

(
2µ

rµ(β, ε)(a− ε)
β

)2))
+

2λ
µ

+
2λ
µ
ρ
a− ε

β

1
2

(
2µ

rµ(β, ε)(a− ε)
β

)2

.

An application of Proposition 3.2 and the definition of ∆ show that for µ > µη,
λ > 0, β ∈ (0, βµη), ε ∈ (0, εµη), r = rµ(β, ε) and for all f ∈ Fβε with

Lip (f) ≤ ρ
a− ε

β
and Lip (f | [β,∞)) ≤ λ
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the estimate Lip (Pβεµrf ) ≤ cP (β, ε, µ, λ) holds. Consequently,

Lip (Rβεµrf ) ≤ cQ(β, ε, µ, λ)cP (β, ε, µ, λ).

Dividing by β the function cP is extended to arguments (0, 0, µ, 0) with µ > µη.
Clearly limµ→∞ cP (0, 0, µ, 0) = 2ρ.

Recall (7). It follows that limµ→∞ cQ(0, 0, µ, 0) = 3e−2+η. (9) permits to
find µρ ≥ µη so that, for each µ ≥ µρ,

cQ(0, 0, µ, 0)cP (0, 0, µ, 0) < 1.

For each µ ≥ µρ there are λµ > 0, βµρ ∈ (0, βµη), εµρ ∈ (0, εµη) so that,
for all β ∈ (0, βµρ) and ε ∈ (0, εµρ), cQ(β, ε, µ, λµ)cP (β, ε, µ, λµ) < 1, which
completes the proof. �

Corollary 3.3. For µ, β, ε, f and r = rµ(β, ε) as in Theorem 3.1 there
exists a periodic solution (x, v): R → R of (1) with (x0, v(0)) equal to the fixed
point (φ, u) of the contraction Rβεµrf . For B = B(φ, u, f, β, ε, µ, r),

(x, v)(t+B) = −(x, v)(t) for all t ∈ R,

and 2B is the minimal period of (x, v).

4. Differentiable nonlinearities

Consider µ, β, ε, f and r = rµ(β, ε) as in Theorem 3.1 and assume in addition
that f is continuously differentiable. (The existence of such f in Fβε is obvious.)
The present section shows that for such f the orbit

{(xt, v(t)) ∈ X : t ∈ R}

of the periodic solution (x, v) from Corollary 3.3 is stable and hyperbolic. This
means that for some associated Poincaré return map Π with fixed point (φ, u)
the spectrum of DΠ(φ, u) is contained in the open unit circle of the complex
plane, compare e.g. Chapter XIV in [4].

Consider the closed hyperplane Y = {(φ, u) ∈ X : φ(0) = 0} and the affine
subspace Yβ = {(φ, u) ∈ X : φ(0) = −β} of X. All tangent spaces of the
C1-submanifolds Yβ and −Yβ coincide with Y , and A = Aβεµr is a subset of Yβ .
Let S = Sµf , ∆ = ∆(β, ε, µ, r), and write B(φ, u) = B(φ, u, f, β, ε, µ, r) for all
(φ, u) ∈ A.

Proposition 4.1. There are a bounded open neighbourhood U of (φ, u) in X
and a continuously differentiable map τ :U → (1,∞) so that for all (φ, u) ∈ U ,
S(τ(φ, u), (φ, u)) ∈ −A, and, for all (φ, u) ∈ U ∩A, τ(φ, u) = B(φ, u).

Proof. Let pr1 denote the projection from X onto the first factor C, and
recall the evaluation ev0:C → R from Section 1. Set B = B(φ, u). The inequality
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v(B) < 0 (Corollary 2.1) implies

D1S(B, (φ, u))1 /∈ T−(φ,u)(−Yβ) = Y

since D1S(B, (φ, u))1 = ẋB (see [4]) and ẋB(0) = ẋ(B) = v(B) 6= 0. An ap-
plication of the Implicit Function Theorem as e.g. in Chapter XIV of [4] yields
an open neighbourhood V of (φ, u) in X and a continuously differentiable map
τ0:V → (1,∞) with τ0(φ, u) = B and S(τ0(φ, u), (φ, u)) ∈ −Yβ for all (φ, u) ∈ V ,
i.e., x(τ0(φ, u)) = β for (x, v) = (x, v)(φ,u). Corollary 2.1 permits to find
δ ∈ (0, 1) so that

x(t) > β for ∆ ≤ t ≤ B − δ, β > x(B + δ),

and

v(t) ∈
(
− a+ ε

µ
,−r a− ε

µ

)
for B − δ ≤ t ≤ B + δ.

The continuity of S implies that there exists an open neighbourhood U ⊂ V of
(φ, u) in X so that for every solution (x, v) = (x, v)(φ,u) with (φ, u) ∈ U ,

x(t) > β for ∆ ≤ t ≤ B − δ, β > x(B + δ),

(ẋ(t) =) v(t) ∈
(
− a+ ε

µ
,−r a− ε

µ

)
for B − δ ≤ t ≤ B + δ,

and
∆ + 1 < τ0(φ, u) ∈ (B − δ,B + δ).

Set τ = τ0 | U . Let (φ, u) ∈ U , (x, v) = (x, v)(φ,u). It follows that

x(τ(φ, u)) = β, β < x(t) for ∆ ≤ t < τ(φ, u),

v(τ(φ, u)) ∈
(
− a+ ε

µ
,−r a− ε

µ

)
, ∆ + 1 < τ(φ, u).

Consequently, S(τ(φ, u), (φ, u)) ∈ −A. In case (φ, u) ∈ U ∩A the definition of B
(Proposition 2.3) yields τ(φ, u) = B(φ, u). �

From here the proof of hyperbolic stability is completed exactly as in Sec-
tion 4 of [8].
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