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EXISTENCE OF MANY SIGN-CHANGING
NONRADIAL SOLUTIONS FOR SEMILINEAR

ELLIPTIC PROBLEMS ON THIN ANNULI

Alfonso Castro — Marcel B. Finan

Abstract. We study the existence of many nonradial sign-changing so-

lutions of a superlinear Dirichlet boundary value problem in an annulus
in RN . We use Nehari-type variational method and group invariance tech-

niques to prove that the critical points of an action functional on some

spaces of invariant functions in H1,2
0 (Ωε), where Ωε is an annulus in RN of

width ε, are weak solutions (which in our case are also classical solutions)

to our problem. Our result generalizes an earlier result of Castro et al.

(See [4])

1. Introduction

In this article we discuss the existence of many sign-changing nonradial so-
lutions of semilinear elliptic equations on an annulus in RN , N ≥ 2:

Ωε := {x ∈ RN : 1− ε < |x| < ε},

where ε > 0.
We consider the Dirichlet boundary value problem

(1.1)

{
∆u + f(u) = 0 in Ωε,

u = 0 on ∂Ωε,
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where the non-linearity f is of class C1(R) and satisfies the following assump-
tions:

(A1) f(0) = 0 and f ′(0) < λ1, where λ1 is the smallest eigenvalue of −∆
with zero Dirichlet boundary condition in Ωε.

(A2) f ′(u) > f(u)/u for all u 6= 0.
(A3) (Superlinearity)

lim
|u|→∞

f(u)
u

= ∞.

(A4) (Subcritical growth) There exist constants p ∈ (1, (N + 2)/(N − 2)) and
C > 0 such that

|f ′(u)| ≤ C(|u|p−1 + 1) for all u ∈ R.

(A5) There exist constants m ∈ (0, 1) and ρ such that

uf(u) ≥ 2
m

F (u) > 0,

where |u| > ρ and F (u) =
∫ u

0
f(s) ds.

If N = 2, then p ∈ (1,∞). A typical nonlinearity is the function f(t) = t3,
although our results are not restricted to an odd nonlinearity.

We note that the condition f ′(0) < λ1 is necessary for the existence of sign-
changing solutions (see [2]).

In [11], Wang proved that, over a smooth bounded domain, problem (1.1) has
a positive solution, a negative solution, and a third solution with no information
about its sign. In [2], Castro et al. proved the existence of a third solution
that changes sign exactly once. Later in [4], they established the existence of a
nonradial sign-changing solution when the underlying domain is an annulus in
RN . Furthermore, if the annulus is two dimensional they proved that (1.1) has
many sign-changing nonradial solutions. The purpose of this paper is to extend
their result to higher dimensions.

Our main result is the following

Theorem 1.1. Assume f satisfies (A1)–(A5). Then for each positive integer
k there exists ε1(k) > 0 such that if 0 < ε < ε1(k) then (1.1) has k sign-changing
nonradial solutions.

In our context, by a solution to (1.1) we mean a function u ∈ H1,2
0 (Ωε) that

satisfies

(1.2)
∫

Ωε

(∇u · ∇v − vf(u)) dx = 0,

for all v ∈ C∞
0 (Ωε), where H1,2

0 (Ωε) is the Sobolev space with inner product
〈u, v〉 =

∫
Ωε
∇u · ∇v dx (see [1]). Note that (1.2) is obtained by multiplying the
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equation in (1.1) by v and integrating by parts. So classical solutions of (1.1)
(that is, the ones which are in C2(Ωε) ∩C(Ωε)) are also weak solutions. By the
assumptions on f and the regularity theory for elliptic boundary value problems
(see [7]), a weak solution of (1.1) is also a classical solution.

The left-hand side of (1.2) is just the Fréchet derivative of the functional

J(u) =
∫

Ωε

{
1
2
|∇u|2 − F (u)

}
dx

defined on H1,2
0 (Ωε). Note that J ∈ C2(H1,2

0 (Ωε), R) (see [10]). Moreover, u is
a solution to (1.1) if and only if u is a critical point of J .

Instead of looking for sign-changing critical points of the functional J on
H1,2

0 (Ωε), we look for them on a subset of a submanifold of invariant functions
in H1,2

0 (Ωε).
Our main tools for proving existence and multiplicity results consist of an

idea in [8] and [9] and critical point theory, i.e., we consider the functional J

defined above and the functional

γ(u) =
∫

Ωε

(
|∇u|2 − uf(u)

)
dx.

For a positive integer k, we define

H(ε, k) := Fix(G(k))

= {v ∈ H1,2
0 (Ωε) : v(gx, Ty) = v(x, y), for all (g, T ) ∈ G(k)}

= {v ∈ H1,2
0 (Ωε) : v(x, y) = u(x, |y|), for some u

which satisfies u(gx, |y|) = u(x, |y|) for all g ∈ Gk},

where G(k) = Gk × O(N − 2), O(j) denotes the group of j × j orthogonal
matrices, and

Gk :=
{

g ∈ O(2) :

g(x1, x2) =
(

x1 cos
2πl

k
+ x2 sin

2πl

k
,−x1 sin

2πl

k
+ x2 cos

2πl

k

)
,

(x1, x2) ∈ R2, l ∈ Z
}

.

Note that H(ε, k) can be regarded as the class of functions that are periodic of
period 2π/k in the θ variable, where (r, θ) are the polar coordinate of x = (x1, x2),
and that depend on |y|, where y = (x3, . . . , xN ).

Also, we consider the Nehari manifold

S(ε, k) = {v ∈ H(ε, k) \ {0} : γ(v) = 0}.
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Of particular interest is the subset of S(ε, k) given by

S1(ε, k) = {v ∈ S(ε, k) : v+, v− ∈ S(ε, k)},

where v+(x) = max {v(x), 0} and v−(x) = min {v(x), 0} are the positive and
negative parts of v respectively.

Similarly, we define

H(ε,∞) := {v ∈ H1
0 (Ωε) : v(gx, Ty) = v(x, y),

for all (g, T ) ∈ O(2)×O(N − 2)}
= {v ∈ H1,2

0 (Ωε) : v(x, y) = u(|x|, |y|), for some u},

the manifold
S(ε,∞) = {v ∈ H(ε,∞) \ {0} : γ(v) = 0},

and the set
S1(ε,∞) = {v ∈ S(ε,∞) : v+, v− ∈ S(ε,∞)}.

Note that if u ∈ H(ε,∞) then u is θ-independent.
We consider the following numbers associated with the above sets

jε
k = inf

v∈S1(ε,k)
J(v), jε

∞ = inf
v∈S1(ε,∞)

J(v).

We will obtain many sign-changing nonradial solutions to (1.1) by establish-
ing the following properties:

(i) jε
k is achieved by some uε,k ∈ S1(ε, k) and uε,k is a critical point of J

on H(ε, k).
(ii) uε,k is a critical point of J on H1,2

0 (Ωε).
(iii) jε

k < jε
∞ for k ≥ 1 and 0 < ε < ε1(k).

(iv) jε
k < jε

kn whenever jε
kn < jε

∞.

Note that assertion (ii) is related to the symmetric criticality principle: if uε,k

is a critical point of J on H(ε, k), then uε,k is a critical point of J on H1,2
0 (Ωε)

(see [12]).
The paper is organized as follows: in Section 2, we discuss assertions (i), (iii),

and (iv). In Section 3, we prove Theorem 1.1.

2. Existence results

Assertion (i) of the previous paragraph is a direct consequence of the following
theorem

Theorem 2.1. For each positive integer k = 1, 2 . . . and ε > 0 there exists
a minimizer uε,k of jε

k which changes sign. Moreover, uε,k is a critical point of
J on H(ε, k).

Proof. This follows from a recent result of Castro, Cossio, and Neuber-
ger [2]. �
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As for assertion (iii) we have

Theorem 2.2. For a positive integer k, there exists ε1(k) > 0 such that if
0 < ε < ε1(k) then jε

k < jε
∞. Thus, uε,k is θ-dependent.

Proof. A proof of this theorem can be found in [6]. �

The following lemma, which establishes assertion (iv), shows that if k divides
n and jε

n < jε
∞ then jε

k < jε
n.

Lemma 2.3. Let f satisfies (A1)–(A5). For n = 2, 3, . . . , k = 1, 2, . . . . if
jε
kn < jε

∞ then jε
k < jε

kn.

Proof. Fix k and n. For ε > 0, Theorem 2.1 guarantees the existence of
a sign-changing minimizer u of J on S1(ε, kn). According to Theorem 2.1 and
assertion (ii), u is a solution to (1.1). Furthermore, invoking Theorem 2.2 with
0 < ε < ε1(k), we know that u is θ-dependent. Now, by the regularity theory of
elliptic equations we know that u is a C2 function. Let x = (r, θ) be the polar
coordinate of x ∈ R2 and write u = u(r, θ, |y|). Then∫

Ωε

|∇u|2 dx dy =
∫

(r,|y|)

∫ 2π

0

(u2
r +

1
r2

u2
θ + |∇yu|2)r dr dθ dy

and ∫
Ωε

F (u) dx dy =
∫

(r,|y|)

∫ 2π

0

F (u)r dr dθ dy.

Define the function

v(r, θ, |y|) = u(r, θ/n, |y|), 0 ≤ θ ≤ 2π.

Since u is θ-dependent and changes sign so does v. Also,

v±(r, θ + 2π/k, |y|) = v±(r, θ, |y|).

It follows that v± ∈ H(ε, k).
An easy calculation yields the following equalities∫

Ωε

|∇v±|2 dx dy =
∫

(r,|y|)

∫ 2π

0

((u±)2r(r, θ, |y|) +
1

r2n4
(u±)2θ(r, θ, |y|)

+ |∇yu±(r, θ, |y|)|2)r dr dθ dy

and ∫
Ωε

F (v±) dx dy =
∫

(r,|y|)

∫ 2π

0

F (u±(r, θ, |y|))r dr dθ dy.

Since u does not belong to S1(ε,∞) we have∫
(r,|y|)

∫ 2π

0

(u±)2θ(r, θ, |y|)r dr dθ dy > 0.
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This implies that γ(v±) < 0. That is

(2.1)
∫

Ωε

|∇v±|2 dx dy <

∫
Ωε

v±f(v±) dx dy.

Now, by Lemma 2.2 of [2] we can find 0 < α < 1 and 0 < β < 1 such that
αv+ ∈ S(ε, k) and βv− ∈ S(ε, k). Let w = αv+ + βv− ∈ S1(ε, k). Using the fact
that Pv(λ) = λvf(λv)/2− F (λv) is monotonically increasing for λ > 0 and the
definition of jε

k we have

jε
k ≤ Pv+(α) + Pv−(β) < Pv+(1) + Pv−(1) = J(u) = jε

kn.

Putting together all the arguments above we conclude a proof of the lemma. �

3. Proof of Theorem 1.1

Let k ≥ 1 be an integer. According to Theorem 2.2 there exists ε1(2k) such
that if 0 < ε < ε1(2k) then jε

2k < jε
∞. Applying Lemma 2.3 to obtain

(3.1) jε
2 < jε

22 < . . . < jε
2k < jε

∞.

According to Theorem 2.1 there exists ui ∈ S1(ε, 2i), i = 1, . . . , k, such that
jε
2i = J(ui). Moreover, ui is a solution of (1.1). Also, according to Theorem 2.2,

ui is θ-dependent. Finally, by (3.1), {ui}k
i=1 are distinct. The proof of Theo-

rem 1.1 is now complete. �
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