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REACTION-DIFFUSION EQUATIONS
ON UNBOUNDED THIN DOMAINS

Francesca Antoci — Martino Prizzi

Abstract. We prove existence and upper semicontinuity of attractors for

a reaction-diffusion equation on a family of thin unbounded domains col-

lapsing onto a lower dimensional subspace.

1. Introduction

In their paper [7] J. Hale and G. Raugel posed the following problem. Con-
sider an evolution equation on a spatial domain Ω and assume that Ω is small
in some direction: to what extent is it possible to approximate the model by
mean of an equation on a lower dimensional spatial domain? Is it possible to
determine the approximant?

This problem is particularly interesting in the case of equations generating
dissipative dynamical systems. In fact, if such systems satisfy some additional
compactness properties, they possess compact global attractors, which retain
most of the dynamical information. It is then possible to express the concept of
closeness of two semiflows in terms of the Hausdorff distance of their attractors.

A typical example is given by reaction-diffusion equations of the form

(1.1)

{
ut = ∆u− λu + f(u) + g in ]0,∞[× Ωε,

∂u

∂νε
= 0 in ]0,∞[× ∂Ωε,
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where (Ωε)ε>0 is a family of open bounded domains collapsing onto some lower
dimensional subspace. In [7], Hale and Raugel treated in detail the case of
domains of the form

(1.2) Ωε = {(x, y) | x ∈ ω and 0 < y < εh(x)},

where ω is an open bounded domain and h is a smooth positive function defined
on ω. They identified a limit equation and proved convergence of the semiflows
and upper-semicontinuity of attractors. Also, if ω is an interval in R, they
constructed a family of inertial manifolds for equations (1.1).

Domains of the form (1.2) are very special: in particular, they are not allowed
to exibit holes or other horizontal branches. A much more general class of thin
domains, namely domains of the form

(1.3) Ωε = {(x, εy) ∈ RN+P | (x, y) ∈ Ω},

where Ω is an open bounded domain, was investigated by Prizzi and K. Ry-
bakowski in [13]. They developed an abstract framework for the analysis of such
problems, based on a property of strong spectral convergence (i.e. convergence
of eigenvalues and eigenfunctions) satisfied by the linear part of the equation.
In [14], under some additional conditions on Ω, they established also the ex-
istence and the persistence of large gaps in the spectra of the corresponding
linear operators and they used this property to construct inertial manifolds for
equation (1.1). Some applications of the Conley index to thin domain problems
are contained in the recent paper [4] of M. Carbinatto and K. Rybakowski. For
more references, the reader is referred to the Montecatini lecture notes [15] by
G. Raugel.

If the domains Ωε are unbounded, the semiflows generated by (1.1) might
loose their compactness properties. Establishing the existence of compact global
attractors becomes then itself an interesting task. In [2] Babin and Vishik over-
came the difficulties arising from the lack of compactness by introducing weighted
Sobolev spaces. The choice of weighted spaces, however, imposes some severe
conditions on the forcing term g and on the initial data. Very recently, Wang
([18]) established the asymptotic L2-compactness of the semiflows and conse-
quently the existence of global (L2 − L2) attractors for reaction-diffusion equa-
tions on RN (or, more generally, on unbounded subdomains of RN ) avoiding
the use of weighted spaces. It is then natural to ask whether convergence results
similar to those in [7] and [13] hold also in the case of a family of unbounded thin
domains. However, since the techniques developed in [7] and [13] rely heavily
on the compactness of the resolvent operator of ∆, in order to deal with general
unbounded domains a different approach is needed. Spectral convergence has to
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be replaced by strong resolvent convergence, and a stronger version of Trotter-
Kato Theorem has to be established. Moreover, following Wang’s pattern, some
uniform asymptotic L2-compactness of the semiflows has to be proved. Finally,
asymptotic H1-compactness has to be recovered by a continuity argument similar
to that of [12].

In the present paper, we identify a limit equation for the family (1.1) when
Ωε, ε > 0, are unbounded domains of the form (1.3). We prove convergence of
the semiflows and upper-semicontinuity of attractors in the H1-strong topology.
The limit problem turns out to be an abstract semilinear parabolic equation on
the subspace of H1 consisting of the functions whose partial derivatives in the y

directions vanish. As in [13], under suitable conditions this abstract equation can
be characterized as a system of concrete reaction-diffusion equations in N spatial
variables, coupled by compatibility and balance conditions at the boundaries. We
shall not treat here this aspect of the problem, and we refer the reader to [13]
for further details.

The paper is organized as follows. In Section 2 we introduce notations and
some necessary preliminaries. In Section 3 we deal with the linear problems asso-
ciated to (1.1): in particular we establish a stronger version of the Trotter–Kato
Theorem, which ensures convergence of the corresponding linear semigroups. In
Section 4 we study the nonlinear problems (1.1); we prove convergence of the cor-
responding semiflows and we establish the existence of absorbing sets for them.
In Section 5, we prove uniform asymptotic compactness of the semiflows, and
finally we deduce existence and upper-semicontinuity of attractors.

2. Notation and preliminaries

Let Ω ⊂ RN ×BRP (0, 1) be a Lipschitz open, possibly unbounded, domain in
RN ×RP , where BRP (0, 1) is the open ball of radius one centered at zero in RP .
We write the points of RN × RP as (x, y), with x ∈ RN and y ∈ RP . Through-
out the paper, ∇x and ∇y denote the gradient in RN and RP , respectively.
Analogously, ∆x and ∆y denote the Laplacian in RN and RP .

For 0 < ε ≤ 1, we define Ωε := Tε(Ω), where Tε: RN ×RP → RN ×RP is the
mapping (x, y) 7→ (x, εy). We consider the family of reaction-diffusion Neumann
problems

(2.1)

{
ut = ∆u− λu + f(u) + g(x) in ]0,∞[× Ωε,

∂u

∂νε
= 0 in ]0,∞[× ∂Ωε,

where νε is the outward normal to ∂Ωε. We make the following assumptions:

λ > 0, g ∈ L2(RN ),(2.2)

f(0) = 0, f(s)s ≤ 0, f ′(s) ≤ C for all s ∈ R,(2.3)
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|f ′(s)| ≤ C(1 + |s|β) for all s ∈ R,(2.4)

where C is some positive constant and

(2.5)
0 ≤ β if (N + P ) = 2,

0 ≤ β ≤ (2∗/2)− 1 if (N + P ) ≥ 3,

where 2∗ = 2(N + P )/(N + P − 2). Rescaling the y variables by the factor 1/ε,
we see that (2.1) is equivalent to the family of problems

(2.6)


ut = ∆xu +

1
ε2

∆yu− λu + f(u) + g(x) in ]0,∞[× Ω,

∂u

∂νx
+

1
ε2

∂u

∂νy
= 0 in ]0,∞[× ∂Ω,

on the fixed domain Ω, where ν = (νx, νy) is the outward normal to ∂Ω. We
denote by H1

ε (Ω) the Hilbert space H1(Ω) endowed with the norm

‖u‖H1
ε

:=
( ∫

Ω

|∇xu(x, y)|2 dx dy

+
1
ε2

∫
Ω

|∇yu(x, y)|2 dx dy +
∫

Ω

u(x, y)2 dx dy

)1/2

and by aε the bilinear form

(2.7) aε(u, v) :=
∫

Ω

∇xu(x, y) · ∇xv(x, y) dx dy

+
1
ε2

∫
Ω

∇yu(x, y) · ∇yv(x, y) dx dy,

defined for u, v ∈ H1(Ω). Besides, we denote by 〈 · , · 〉 the standard inner prod-
uct in L2(Ω). Finally, Aε:D(Aε) ⊂ H1(Ω) → L2(Ω) is the linear self-adjoint
operator associated to the bilinear form aε, defined by

(2.8)


D(Aε) := {u ∈ H1 | there exists w ∈ L2 such that

for all v ∈ H1 : aε(u, v) = 〈w, v〉},
Aεu := w, u ∈ D(Aε).

Notice that H1(Ω) = D((Aε + I)1/2) and

aε(u, v) + 〈u, v〉 = 〈(Aε + I)1/2u, (Aε + I)1/2v〉, u, v ∈ H1(Ω).

Since the Nemitski operator f̂ generated by f turns out to be a locally lipschitzian
map from H1(Ω) to L2(Ω) (see Proposition 4.1 below), equation (2.6) can be
formulated as the abstract equation

(2.9) u̇ + Aεu + λu = f̂(u) + g,

in the space L2(Ω). By classical results on abstract semilinear parabolic equa-
tions (see [9]), equation (2.9) defines a local semiflow πε in the phase space
H1(Ω).
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As we are interested in the behaviour of the solutions of (2.9) as ε → 0, we
immediately observe that, for u ∈ H1(Ω), we have

(2.10) lim
ε→0

aε(u, u) =

{ ∫
Ω

|∇xu(x, y)|2 dx dy if ∇yu = 0 a.e.

∞ otherwise.

Thus we are lead to consider the closed subspace of H1(Ω) consisting of all
functions u ∈ H1(Ω) such that ∇yu = 0. We denote this space by H1

s (Ω) and
we endow it with the norm

‖u‖H1
s

:=
( ∫

Ω

|∇xu(x, y)|2 dx dy +
∫

Ω

u(x, y)2 dx dy

)1/2

.

Moreover, we denote by a0 the bilinear form

(2.11) a0(u, v) :=
∫

Ω

∇xu(x, y) · ∇xv(x, y) dx dy,

defined for u, v ∈ H1
s (Ω). We define L2

s(Ω) to be the closure of H1
s (Ω) in L2(Ω).

Finally, A0:D(A0) ⊂ H1
s (Ω) → L2

s(Ω) is the linear self-adjoint operator associ-
ated to the bilinear form a0, defined by

(2.12)


D(A0) := {u ∈ H1

s | there exists w ∈ L2
s such that

for all v ∈ H1
s , a0(u, v) = 〈w, v〉},

A0u := w, u ∈ D(A0).

Again notice that H1
s (Ω) = D((A0 + I)1/2) and

a0(u, v) + 〈u, v〉 = 〈(A0 + I)1/2u, (A0 + I)1/2v〉, u, v ∈ H1
s (Ω).

As in the case of a bounded domain considered in [13], the natural candidate for
being a “limit” equation for the family (2.9) is the abstract semilinear parabolic
equation

(2.13) u̇ + A0u + λu = f̂(u) + g,

in the space L2
s(Ω).

3. The linear problem

In this section we discuss some properties of the operators Aε and A0, defined
by (2.8) and (2.12), and of the corresponding linear semigroups e−Aεt, e−A0t. In
particular we prove some strong convergence of e−Aεt to e−A0t. First, we recall
that, since the operators Aε, ε ≥ 0, are self-adjoint and positive, there exist two
positive constants α and M such that, for u ∈ L2(Ω) and for ε > 0,

(3.1)
‖e−Aεtu‖L2 ≤ Meαt‖u‖L2 , t ≥ 0,

‖e−Aεtu‖H1
ε
≤ Mt−1/2eαt‖u‖L2 , t > 0.
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and, for u ∈ L2
s,

(3.2)
‖e−A0tu‖L2

s
≤ Meαt‖u‖L2

s
, t ≥ 0,

‖e−A0tu‖H1
s
≤ Mt−1/2eαt‖u‖L2

s
, t > 0.

The constants α and M can be chosen independent of ε; this is a straightforward
byproduct of the spectral representation of the semigroups (see e.g. [10]). The
family of quadratic forms (Qε)ε>0, corresponding to the bilinear forms (aε)ε>0,
is increasing and converges pointwise to the quadratic form

Q0(u) :=

{
a0(u, u) if u ∈ H1

s (Ω),

∞ otherwise.

It is well known (see e.g. [5]) that this is enough to detect convergence of Aε to
A0 in the strong resolvent sense in L2(Ω). However, for our purposes, we need a
more precise result:

Lemma 3.1. Let (εn)n∈N be a sequence of positive numbers, εn → 0 as
n → ∞. Let (wn)n∈N be a sequence in L2(Ω), let w0 ∈ L2

s(Ω) and assume
that wn → w0 in the strong topology of L2(Ω). Let

un := (Aεn + I)−1wn, u0 := (A0 + I)−1w0.

Then

‖un − u0‖H1
εn
→ 0 as n →∞.

Proof. For any v ∈ H1(Ω), we have

(3.3)
∫

Ω

∇xun(x, y) · ∇xv(x, y) dx dy +
1
ε2

n

∫
Ω

∇yun(x, y) · ∇yv(x, y) dx dy

+
∫

Ω

un(x, y)v(x, y) dx dy =
∫

Ω

wn(x, y)v(x, y) dx dy.

Choosing v := un in (3.4), we obtain that (un)n∈N is bounded in H1(Ω). It
follows that there exists u ∈ H1(Ω) such that, up to a subsequence, un ⇀ u in
the weak topology of H1(Ω). Moreover, ∇yun → 0 in the strong topology of
(L2(Ω))M . Then ∇yu = 0, so u ∈ H1

s (Ω). Choosing v ∈ H1
s (Ω) and passing to

the limit in (3.4), we obtain

(3.4)
∫

Ω

∇xu(x, y) · ∇xv(x, y) dx dy

+
∫

Ω

u(x, y)v(x, y) dx dy =
∫

Ω

w(x, y)v(x, y) dx dy.
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Since v ∈ H1
s (Ω) is arbitrary, we have that u = (A0 + I)−1w0 = u0. Finally, we

have∫
Ω

|∇xu0(x, y)|2 dx dy +
∫

Ω

u0(x, y)2 dx dy

≤ lim inf
n→∞

( ∫
Ω

|∇xun(x, y)|2 dx dy

+
∫

Ω

|∇yun(x, y)|2 dx dy +
∫

Ω

un(x, y)2 dx dy

)
≤ lim sup

n→∞

( ∫
Ω

|∇xun(x, y)|2 dx dy

+
∫

Ω

|∇yun(x, y)|2 dx dy +
∫

Ω

un(x, y)2 dx dy

)
≤ lim

n→∞

( ∫
Ω

|∇xun(x, y)|2 dx dy

+
1
ε2

n

∫
Ω

|∇yun(x, y)|2 dx dy +
∫

Ω

un(x, y)2 dx dy

)
= lim

n→∞

∫
Ω

wn(x, y)un(x, y) dx dy =
∫

Ω

w0(x, y)u0(x, y) dx dy

=
∫

Ω

|∇xu0(x, y)|2 dx dy +
∫

Ω

u0(x, y)2 dx dy.

It follows that un → u0 in the strong topology of H1(Ω). Moreover,

1
ε2

n

∫
Ω

|∇yun(x, y)|2 dx dy → 0 as n →∞,

and hence ‖un − u0‖H1
εn
→ 0 as n →∞. �

In view of Lemma 3.1, Trotter–Kato Theorem implies that, whenever (εn)n∈N

is a sequence of positive numbers, εn → 0 as n →∞, then for every u0 ∈ L2
s(Ω),

e−Aεn tu0 → e−A0tu0 as n →∞

in the strong topology of L2(Ω). However, we need a stronger convergence result:

Proposition 3.2. Let (εn)n∈N be a sequence of positive numbers, εn → 0
as n →∞. Let (un)n∈N be a sequence in L2(Ω), let u0 ∈ L2

s(Ω) and assume that
un → u0 in the strong topology of L2(Ω). Then

(3.5) ‖e−Aεn tun − e−A0tu0‖H1
εn
→ 0 as n →∞

uniformly on [t1, t2] for every [t1, t2] ⊂ ]0,∞[.

The proof of Proposition 3.2 follows essentially that of the classical Trotter–
Kato Theorem (see e.g. [17]). Therefore, we give only a sketch of the proof,
pointing out the necessary modifications.
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Proof of Proposition 3.2. First of all, observe that

‖e−Aεn tun − e−A0tu0‖H1
εn

≤ ‖e−Aεn tun − e−Aεn tu0‖H1
εn

+ ‖e−Aεn tu0 − e−A0tu0‖H1
εn

≤ Mt−1/2eαt‖un − u0‖L2 + ‖e−Aεn tu0 − e−A0tu0‖H1
εn

.

Hence, it is sufficient to show that

‖e−Aεn tu0 − e−A0tu0‖H1
εn
→ 0 as n →∞

uniformly on [t1, t2] for every [t1, t2] ⊂ ]0,∞[. A straightforward computation
shows that, if u0 ∈ L2

s(Ω),

(Aεn
+ I)−1(e−A0t − eAεn t)(A0 + I)−1u0

=
∫ t

0

e−Aεn (t−s)((A0 + I)−1 − (Aεn
+ I)−1)e−A0su0 ds.

Applying to both sides the closed operator (Aεn
+ I)1/2 and taking into account

(3.1), we find that

‖(Aεn + I)1/2(Aεn + I)−1(e−A0t − eAεn t)(A0 + I)−1u0‖L2

≤
∫ t

0

Meα(t−s)‖(Aεn
+ I)1/2((A0 + I)−1 − (Aεn

+ I)−1)e−A0su0‖L2 ds.

By Lemma 3.1, the integrand converges to 0 uniformly on [0, t1] for every t1 > 0.
Hence, we obtain that for every y0 ∈ D(A0),

(3.6) ‖(Aεn + I)1/2(Aεn + I)−1(e−A0t − eAεn t)y0‖L2 → 0 as n →∞

uniformly on [0, t1] for every t1 > 0. By a standard density argument one can
easily show that (3.6) holds for y0 ∈ L2

s(Ω). Now, let u0 ∈ L2
s(Ω). We have

‖(Aεn
+ I)1/2(e−A0t − e−Aεn t)(A0 + I)−1u0‖L2

≤‖(Aεn + I)1/2(e−Aεn t(A0 + I)−1 − (Aεn + I)−1e−Aεn t)u0‖L2

+ ‖(Aεn + I)1/2(Aεn + I)−1(e−A0t − e−Aεn t)u0‖L2

+ ‖(Aεn + I)1/2((Aεn + I)−1e−A0t − e−A0t(A0 + I)−1)u0‖L2 .

By Lemma 3.1 and in view of (3.6) and (3.1) we obtain that, for every y0 ∈
D(A0),

(3.7) ‖(Aεn + I)1/2(e−A0t − e−Aεn t)y0‖L2 → 0 as n →∞

uniformly on [0, t1] for every t1 > 0. In order to recover (3.7) for y0 ∈ L2
s(Ω), we

use again a density argument. However, the situation here is more delicate than
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before, so we give the details. Let y0 ∈ L2
s(Ω). For every η > 0, there exists

z0 ∈ D(A0) such that ‖y0 − z0‖L2 < η. Now,

‖(Aεn + I)1/2(e−A0t − e−Aεn t)y0‖L2 ≤ ‖(Aεn + I)1/2(e−A0t − e−Aεn t)z0‖L2

+ ‖(Aεn + I)1/2(e−A0t − e−Aεn t)(y0 − z0)‖L2 .

The first summand in the right hand side tends to 0 as n → ∞ by (3.7), so we
just need to estimate the second summand.

‖(Aεn + I)1/2(e−A0t − e−Aεn t)(y0 − z0)‖L2

≤ ‖(Aεn + I)1/2e−Aεn t(y0 − z0)‖L2 + ‖(Aεn + I)1/2e−A0t(y0 − z0)‖L2 .

By (3.1) we get

(3.8) ‖(Aεn
+ I)1/2e−Aεn t(y0 − z0)‖L2 ≤ Mt−1/2eαtη,

on the other hand,

‖(Aεn
+ I)1/2e−A0t(y0 − z0)‖2

L2

= ‖e−A0t(y0 − z0)‖2
L2 + aεn

(e−A0t(y0 − z0), e−A0t(y0 − z0))

= ‖e−A0t(y0 − z0)‖2
L2 + a0(e−A0t(y0 − z0), e−A0t(y0 − z0))

= ‖(A0 + I)1/2e−A0t(y0 − z0)‖2
L2 .

By (3.2) we get

(3.9) ‖(Aεn + I)1/2e−A0t(y0 − z0)‖L2 ≤ Mt−1/2eαtη.

Since η is arbitrary, we finally obtain that

‖(Aεn
+ I)1/2(e−A0t − e−Aεn t)y0‖L2 → 0 as n →∞

uniformly on [t0, t1] for every [t0, t1] ⊂ ]0,∞[. �

Remark. In [13] the authors obtained a convergence result analogous to
that of Proposition 3.2, by first proving a spectral convergence result for the
family of operators (Aε)ε>0 and then using the representation of the linear semi-
groups on suitable bases of eigenfunctions. Here, since the operators Aε and A0

might not have compact resolvent, we used a different approach based on strong
convergence of the resolvents. This approach seems to be even simpler and of
course it could be applied as well to the problem considered in [13]. On the other
hand, spectral convergence retains much more information than simple resolvent
convergence. For example, in some cases, spectral convergence is very impor-
tant in establishing the persistence of large gaps in the spectrum of the linear
operators Aε. This property was used in [14] to construct inertial manifolds for
equations (2.9) and (2.13).
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4. The nonlinear problem

In this section we consider the nonlinear equations (2.9) and (2.13). We
begin by establishing some regularity of the Nemitski operator generated by f .
Assume that (2.2)–(2.5) hold. The following result is well known; for a sketch of
the proof see [12].

Lemma 4.1. The assignement u 7→ f ◦ u defines a map f̂ :H1(Ω) → L2(Ω),
which is Lipschitz continuous on every bounded set in H1(Ω). Moreover, when-
ever u, u1, u2 ∈ H1(Ω) and ‖u1‖H1 , ‖u2‖H1 ≤ R, the following estimates hold:

‖f̂(u)‖L2 ≤ C1(‖u‖L2 + ‖u‖(β+1)
H1 ),

‖f̂(u1)− f̂(u2)‖L2 ≤ C1(1 + Rβ)‖u1 − u2‖H1 .

Here C1 is a positive constant.

Lemma 4.2. Let u ∈ D(Aε). Then 〈f̂(u), Aεu〉 ≤ Caε(u, u), where C is the
constant of conditions (2.3), (2.4).

Proof. For n ∈ N, choose a function hn ∈ C∞(R), with 0 ≤ h′n(s) ≤ 1 for
all s ∈ R, such that

hn(s) =


s if −n ≤ s ≤ n,

n + 1 if 2n ≤ s,

−(n + 1) if s ≤ −2n.

Define fn := f ◦ hn. By (2.3), it follows that fn(0) = 0, |f ′n(s)| is bounded
on R and f ′n(s) ≤ C for all s ∈ R. By Proposition IX.5 in [3], it follows that
fn ◦ u ∈ H1(Ω) and ∇(fn ◦ u) = (f ′n ◦ u) · ∇u. Then, for all n ∈ N, we have

〈f̂n(u), Aεu〉 = aε(f̂n(u), u)

=
∫

Ω

f ′n(u(x, y))
(
|∇xu(x, y)|2 +

1
ε2
|∇yu(x, y)|2

)
dx dy

≤ C

∫
Ω

(
|∇xu(x, y)|2 +

1
ε2
|∇yu(x, y)|2

)
dx dy = Caε(u, u).

The proof will be complete if we show that fn ◦ u → f ◦ u in L2(Ω) as n →∞.
This is true since fn(u(x, y)) → f(u(x, y)) almost everywhere in Ω as n → ∞
and the estimates

|fn(u(x, y))| ≤ C(|u(x, y)|+ |u(x, y)|β+1),

|f(u(x, y))| ≤ C(|u(x, y)|+ |u(x, y)|β+1)

hold. The conclusion follows from the Lebesgue dominated convergence theo-
rem. �

By the same argument one can also prove the following
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Lemma 4.2. If u ∈ H1
s (Ω), then f̂(u) ∈ L2

s(Ω). Moreover, if u ∈ D(A0),
then 〈f̂(u), A0u〉 ≤ Ca0(u, u).

Let ε > 0, let uε ∈ H1(Ω) and let us consider the Cauchy problem

(4.1)

{
v̇ + Aεv + λv = f̂(v) + g,

v(0) = uε.

Moreover, let u0 ∈ H1
s (Ω) and let us consider the Cauchy problem

(4.2)

{
v̇ + A0v + λv = f̂(v) + g,

v(0) = u0.

By classical results on abstract semilinear parabolic equations (see [9]), equations
(4.1) and (4.2) define local semiflows πε and π0 in the phase spaces H1(Ω) and
H1

s (Ω), respectively. We have the following

Lemma 4.4. Let uε: [0, T [→ H1(Ω) be the maximal solution of the Cauchy
problem (4.1). If ‖uε‖L2 ≤ R, then, for t ∈ [0, T [,

‖uε(t)‖2
L2 ≤ e−λtR2 +

‖g‖2
L2

λ2
.

Proof. For t ∈ ]0, T [, we have

d

dt

1
2
‖uε(t)‖2

L2 = 〈uε(t), u̇ε(t)〉

= 〈uε(t),−Aεuε(t)− λuε(t) + f̂(uε(t)) + g〉
≤ − aε(uε(t), uε(t))− λ〈uε(t), uε(t)〉

+ 〈uε(t), f̂(uε(t))〉+ 〈uε(t), g〉.

By (2.3) we get

d

dt

1
2
‖uε(t)‖2

L2 + aε(uε(t), uε(t)) + λ‖uε(t)‖2
L2

≤ 〈uε(t), g〉 ≤
λ

2
‖uε(t)‖2

L2 +
1
2λ
‖g‖2

L2 .

It follows that
d

dt
‖uε(t)‖2

L2 + λ‖uε(t)‖2
L2 ≤

‖g‖2
L2

λ
.

Multiplication by eλt and integration yields

(4.3) ‖uε(t)‖2
L2 ≤ e−λt‖uε(0)‖2

L2 +
‖g‖2

L2

λ2
,

and the conclusion follows. �

An analogous result holds for the H1
ε -norm of the solutions:
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Lemma 4.5. Let uε: [0, T [→ H1(Ω) be the maximal solution of the Cauchy
problem (4.1). There exist two positive constants K1 = K1(C, λ), K2 = K2(C, λ),
such that, if ‖uε‖H1

ε
≤ R, then, for t ∈ [0, T [,

‖uε(t)‖2
H1

ε
≤ K1R

2e−λt + K2‖g‖2
L2 .

Proof. For t ∈ ]0, T [ we have

d

dt

1
2
aε(uε(t), uε(t)) = 〈Aεuε(t), u̇ε(t)〉

= 〈Aεuε(t),−Aεuε(t)− λuε(t) + f̂(uε(t)) + g〉
= − ‖Aεuε(t)‖2

L2 − λaε(uε(t), uε(t)) + 〈Aεuε(t), f̂(uε(t))〉+ 〈Aεuε(t), g〉.

By Lemma 4.2 and by Young inequality we obtain

(4.4)
d

dt
aε(uε(t), uε(t)) ≤ −‖Aεuε(t)‖2

L2 − 2(λ− C)aε(uε(t), uε(t)) + ‖g‖2
L2 .

Let ν > 0 and let v ∈ D(Aε). We have

aε(v, v) ≤ ν

2
‖Aεv‖2

L2 +
1
2ν
‖v‖2

L2 ,

whence

(4.5) −‖Aεv‖2
L2 ≤ −2

ν
aε(v, v) +

1
ν2
‖v‖2

L2 .

By (4.4) and (4.5), choosing ν := (λ + |λ− C|)−1, we obtain

d

dt
aε(uε(t), uε(t)) ≤ −2λaε(uε(t), uε(t)) +

1
ν2
‖uε(t)‖2

L2 + ‖g‖2
L2 .

By (4.3)

d

dt
aε(uε(t), uε(t)) + 2λaε(uε(t), uε(t)) ≤

‖uε‖2
L2

ν2
e−λt +

(
1 +

1
λ2ν2

)
‖g‖2

L2 .

Multiplication by e2λt and integration yields

aε(uε(t), uε(t)) ≤ e−2λtaε(uε, uε) +
‖uε‖2

L2

ν2λ
e−λt +

1
2λ

(
1 +

1
λ2ν2

)
‖g‖2

L2

and the conclusion follows. �

As a consequence, we have the following result:

Proposition 4.6. Let uε: [0, T [ → H1(Ω) be the maximal solution of the
Cauchy problem (4.1). Then

(1) T = ∞,
(2) if ‖uε‖H1

ε
≤ R, then, for every t ≥ 0, ‖uε(t)‖2

H1
ε
≤ K1R

2 + K2‖g‖2
L2 ,

with K1 and K2 independent of ε,
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(3) there exists a positive constant K and for every R > 0 there exists
T = T (R) > 0 such that, whenever ‖uε‖H1

ε
≤ R, ‖uε(t)‖H1

ε
< K for all

t ≥ T (R). Both K and T (R) are independent of ε.

In particular, for every ε > 0, the set {u ∈ H1(Ω) | ‖u‖H1
ε

< K} is an absorbing
set for the global semiflow πε.

Analogous results hold also for the solutions of (4.2). In particular, we have:

Proposition 4.7. Let u0: [0, T [→ H1
s (Ω) be the maximal solution of the

Cauchy problem (4.2). Then

(1) T = ∞,
(2) if ‖u0‖H1

s
≤ R, then, for every t ≥ 0, ‖u0(t)‖2

H1
s
≤ K1R

2 + K2‖g‖2
L2 ,

(3) there exists a positive constant K and for every R > 0 there exists
T = T (R) > 0 such that, whenever ‖u0‖H1

s
≤ R, ‖u0(t)‖H1

s
< K for all

t ≥ T (R).

In particular the set {u ∈ H1
s (Ω) | ‖u‖H1

s
< K} is an absorbing set for the global

semiflow π0. �

We remark that the estimates in Propositions 4.6 and 4.7 are uniform with
respect to ε. We are now in a position to state our first important continuous-
dependence result:

Theorem 4.8. Let (εn)n∈N be a sequence of non-negative numbers, let ε0 ≥
0, and assume that εn → ε0. Let (un)n∈N be a sequence in H1(Ω) (un ∈ H1

s (Ω)
if εn = 0) converging in the norm of L2(Ω) to some u0 ∈ H1(Ω) (u0 ∈ H1

s (Ω) if
ε0 = 0). Assume also that there exists a positive constant R such that ‖un‖H1

εn
≤

R for all n ∈ N (‖un‖H1
s
≤ R if εn = 0). Let b ∈ ]0,∞[. Then, for every t ∈ ]0, b]

and every sequence (tn)n∈N in ]0, b] converging to t,

‖πεn
(tn, un)− πε0(t, u0)‖H1

εn
→ 0 as n →∞.

Proof. In the case ε0 = 0, Theorem 4.8 can be proved exactly like Theo-
rem 5.1 in [13]. In fact, the proof relies only on the convergence of the linear
semigroups (Proposition 3.2), on the Lipschitz continuity of f̂ and on the well
known singular Gronwall Lemma due to D. Henry ([9, Lemma 7.1.1]). The case
ε0 > 0 is even easier, since it is a regular perturbation problem (for a sketch of
the proof, see also [12]). �

5. Existence and upper semicontinuity of attractors

In the last section we have seen that the semiflows πε, ε ≥ 0, possess absorb-
ing sets in the H1-topology. In order to prove existence and upper semicontinuity
of attractors, we need to establish some compactness of the semiflows πε. Since
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the domain Ω is unbounded, the nonlinear map πε(t, · ) might not be compact.
However, as we shall see, it is asymptotically compact, that is, whenever (un)n∈N

is a bounded sequence in H1(Ω) and tn → ∞, the set {πε(tn, un) | n ∈ N} is
precompact in H1(Ω). The following crucial lemma is essentially due to B. Wang
(see [18]). Wang’s result deals with a single equation on a fixed unbounded do-
main. Here we present a slightly modified version of it, which gives estimates,
independent of ε, for the entire family of problems (4.1).

Lemma 5.1. Let uε: R+ → H1(Ω) be the solution of the Cauchy problem
(4.1), with ‖uε‖H1

ε
≤ R. Then, for every η > 0, there exist two positive constants

k and T such that for every t ≥ T and k ≥ k,∫
Ω∩{|x|>k}

|uε(t, x, y)|2 dx dy ≤ η.

The constants k and T depend only on R and η and are independent of ε.

Proof. Let θ : R+ → R be a smooth function such that 0 ≤ θ(s) ≤ 1 for
s ∈ R+, θ(s) = 0 for 0 ≤ s ≤ 1 and θ(s) = 1 for s ≥ 2. Let D := sups∈R+

|θ′(s)|.
For k ∈ N, let us define the multiplication operator

Θk:H1(Ω) → H1(Ω), (Θku)(x, y) := θ

(
|x|2

k2

)
u(x, y).

We have

d

dt

1
2

∫
Ω

θ

(
|x|2

k2

)
|uε(t, x, y)|2 dx dy

=
d

dt

1
2
〈Θkuε(t), uε(t)〉 = 〈Θkuε(t), u̇ε(t)〉

= 〈Θkuε(t),−Aεuε(t)− λuε(t) + f̂(uε(t)) + g〉
= − aε(Θkuε(t), uε(t))− λ〈Θkuε(t), uε(t)〉

+ 〈Θkuε(t), f̂(uε(t))〉+ 〈Θkuε(t), g〉.

By (2.3) we get

d

dt
〈Θkuε(t), uε(t)〉+ 2λ〈Θkuε(t), uε(t)〉

≤ −2aε(Θkuε(t), uε(t)) + 2〈Θkuε(t), g〉.

Since

aε(Θkuε(t), uε(t)) =
∫

Ω

θ

(
|x|2

k2

)
|∇xuε(t, x, y)|2 dx dy

+
∫

Ω

θ′
(
|x|2

k2

)
uε(t, x, y)

2
k2

x · ∇xuε(t, x, y) dx dy

+
1
ε2

∫
Ω

θ

(
|x|2

k2

)
|∇yuε(t, x, y)|2 dx dy,
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it follows that

−aε(Θkuε(t), uε(t)) ≤ −
∫

Ω

θ′
(
|x|2

k2

)
uε(t, x, y)

2
k2

x · ∇xuε(t, x, y) dx dy

≤ 2D

∫
Ω∩{k≤|x|≤

√
2k}

|x|
k2
|uε(t, x, y)||∇xuε(t, x, y)| dx dy

≤ 2
√

2D

k

∫
Ω∩{k≤|x|≤

√
2k}

|uε(t, x, y)||∇xuε(t, x, y)| dx dy

≤ 2
√

2D

k
‖uε(t)‖L2‖∇uε(t)‖L2 .

So, by Proposition (4.6), for t ≥ T (R), we have

−aε(Θkuε(t), uε(t)) ≤
2
√

2DK2

k
.

Let η > 0 and choose k = k(η) such that

2
√

2DK2

k
< η.

Then for t > T (R) and k > k(η), we obtain

d

dt
〈Θkuε(t), uε(t)〉+ 2λ〈Θkuε(t), uε(t)〉 ≤ 2η + 2〈Θkuε(t), g〉.

By Young inequality we have

〈Θkuε(t), g〉 ≤
λ

2
〈Θkuε(t), uε(t)〉+

1
2λ

∫
Ω

θ

(
|x|2

k2

)
g(x, y)2 dx dy.

Since g ∈ L2(Ω), there exists k′ = k′(η) such that, if k > k′(η),

1
2λ

∫
Ω

θ

(
|x|2

k2

)
g(x, y)2 dx dy ≤ η.

So we obtain that for t > T (R) and for k > max{k(η), k′(η)},

d

dt
〈Θkuε(t), uε(t)〉+ λ〈Θkuε(t), uε(t)〉 ≤ 3η.

Multiplication by eλt and integration yields

eλt〈Θkuε(t), uε(t)〉 − eλT (R)〈Θkuε(T (R)), uε(T (R))〉 ≤ 4η

λ
eλt

for t > T (R). It follows that for t > T (R)

〈Θkuε(t), uε(t)〉 ≤ e−λ(t−T (R))〈Θkuε(T (R)), uε(T (R))〉+
4η

λ

≤ e−λ(t−T (R))K2 +
4η

λ
.
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Finally, for t ≥ T (R) + λ−1 log(η−1) and for k > max{k(η), k′(η)}, we get∫
Ω∩{|x|>

√
2k}

|uε(t, x, y)|2 dx dy ≤
∫

Ω

θ

(
|x|2

k2

)
|uε(t, x, y)|2 dx dy ≤

(
K2 +

4
λ

)
η,

and the proof is complete. �

Similarly, one can prove

Lemma 5.2. Let u0: R+ → H1
s (Ω) be the solution of the Cauchy problem

(4.2), with ‖u0‖H1
s
≤ R. Then, for every η > 0, there exist two positive constants

k and T such that for every t ≥ T and k ≥ k,∫
Ω∩{|x|>k}

|u0(t, x, y)|2 dx dy ≤ η.

The constants k and T depend only on R and η.

Now we are able to state and prove our first compactness result:

Theorem 5.3. Let (εn)n∈N be a sequence of non-negative numbers, let ε0 ≥
0, and assume that εn → ε0. Let (un)n∈N be a sequence in H1(Ω) (un ∈ H1

s (Ω) if
εn = 0). Assume also that there exists a positive constant R such that ‖un‖H1

εn
≤

R for all n ∈ N (‖un‖H1
s
≤ R if εn = 0). Let (tn)n∈N be a sequence of positive

numbers tending to ∞. Then there exists u0 ∈ H1(Ω) (u0 ∈ H1
s (Ω) if ε0 = 0)

such that, up to a subsequence,

πεn
(tn, un) → u0 in L2(Ω) as n →∞.

In particular, choosing εn = ε0 for all n, we obtain that the semiflow πε0 is
asymptotically L2-compact.

Proof. By Propositions 4.6 and 4.7, there exist two positive constants K1

and K2 such that

‖uε(t)‖2
H1

ε
≤ K1R

2 + K2‖g‖2
L2 for all t ≥ 0 and for all n.

It follows that there exists u0 in H1(Ω) such that, up to a subsequence,

πεn(tn, un) ⇀ u0 in H1(Ω) as n →∞.

Moreover,

‖∇yπεn
(tn, un)‖2

L2 = 0 if εn = 0,

‖∇yπεn(tn, un)‖2
L2 ≤ 1

ε2
n

(K1R
2 + K2‖g‖2

L2) if εn > 0,

so u0 ∈ H1
s (Ω) if ε0 = 0. In order to recover strong L2-convergence, we just need

to show that the set
{πεn

(tn, un) | n ∈ N}
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is precompact in L2(Ω). To this end, we apply Propositions 5.1 and 5.2. Let
η > 0 and choose k > max{k(η), k′(η)} like in the proof of Proposition 5.1.
Moreover, take n such that tn ≥ T (R) + λ−1 log(η−1) for all n ≥ n. Then, for
n ≥ n,

(5.1) {πεn
(tn, un) | n ∈ N}
= {Θkπεn

(tn, un) + (I −Θk)πεn
(tn, un) | n ∈ N}

⊂ {Θkπεn
(tn, un) | n ∈ N}+ {(I −Θk)πεn

(tn, un) | n ∈ N}
⊂ Bη(0) + {(I −Θk)πεn

(tn, un) | n ∈ N},

where Bη(0) is the ball of radius η centered at 0 in L2(Ω). The set

{(I −Θk)πεn
(tn, un) | n ∈ N}

consists of functions of H1(Ω) which are equal to zero outside the ball B√
2k(0)

in RN+P . On the other hand, the H1(Ω) norm of these functions is bounded
by the constant (K1R

2 + K2‖g‖2
L2)1/2. Then, by Rellich Theorem, we deduce

that the set {(I − Θk)πεn(tn, un) | n ∈ N} is precompact in L2(Ω). Hence we
can cover it by a finite number of balls of radius η in L2(Ω). This observation,
together with (5.1), implies that the set {πεn

(tn, un) | n ∈ N} is totally bounded
and hence precompact in L2(Ω). �

Remark. In the case ε0 > 0, Theorem 5.3 is due to B. Wang (see [18]).
Indeed, he considers a single fixed concrete reaction-diffusion equation and his
proof is based on energy estimates and weak continuity of solutions with respect
to initial data. However, his technique seems not to apply to the singular problem
we are dealing with. Our proof is simpler and the singular behaviour of the
problem does not introduce any further difficulties. On the other hand, the
advantage of Wang’s technique is that it applies as well to different classes of
problems, like Navier-Stokes equations and damped wave equations.

Now, thanks to Theorems 4.6 and 5.3, one could easily prove the existence
of compact global (L2 − L2)-attractors for the semiflows πε, ε > 0 (see [18]).
However, since our phase space is H1, we are mostly interested in the existence
of (H1 −H1)-attractors. To this end, we need to establish the asymptotic H1-
compactness of the semiflows πε. We argue like in [12]. In fact, Theorems 5.3
and 4.8 together imply the following stronger compactness result:

Theorem 5.4. Under the same assumptions of Theorem 5.3, there exists
u0 ∈ H1(Ω) (u0 ∈ H1

s (Ω) if ε0 = 0) such that, up to a subsequence,

‖πεn
(tn, un)− u0‖H1

εn
→ 0 as n →∞.

In particular, choosing εn = ε0 for all n, we obtain that the semiflow πε0 is
asymptotically H1-compact.
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Proof. Let t > 0, sn := tn − t; then sn → ∞ and by Theorem 5.3 there
exists v0 ∈ H1

s (Ω) such that, up to a subsequence,

πεn
(sn, un) → v0 in L2(Ω) as n →∞.

Let u0 := π0(t, v0). Then u0 ∈ H1
s (Ω) and, by Theorem 4.8,

‖πεn
(tn, un)− u0‖H1

εn
= ‖πεn

(t + sn, un)− π0(t, v0)‖H1
εn

= ‖πεn
(t, πεn

(sn, un))− π0(t, v0)‖H1
εn
→ 0

as n →∞. �

Now we are able to prove existence of the global attractors for the semiflows
πε, ε ≥ 0.

Theorem 5.5. For every ε ≥ 0, the semiflow πε has a global attractor Aε in
H1(Ω) (in H1

s (Ω) if ε = 0). The set Aε is H1-compact, connected, and consists
of all the full bounded solutions of equation (4.1) (of equation (4.2) if ε = 0).

Proof. By Proposition 4.6 (Proposition 4.7 if ε = 0), the global semiflow
πε has an absorbing set in H1(Ω). Moreover, by Theorem 5.4, the semiflow πε

is asymptotically H1-compact. The conclusion follows from the classical results
of [6], [11], [16] and [1]. �

Finally, we can prove the upper-semicontinuity result announced in the In-
troduction:

Theorem 5.6. For ε ≥ 0, let Aε be the attractor of the semiflow πε. Then
for every δ > 0 there exists ε > 0 such that if 0 < ε < ε

dH1
ε
(Aε,A0) := max

u∈Aε

dH1
ε
(u,A0) < δ.

Proof. If the theorem is not true, there exist δ > 0, a sequence (εn)n∈N of
positive numbers, εn → 0, and a sequence (un)n∈N, un ∈ Aεn for all n ∈ N, such
that

dH1
εn

(un,A0) ≥ δ for all n ∈ N.

Since un ∈ Aεn , for every n ∈ N there exists a full bounded solution σn(t) of
equation (4.1), with ε = εn, passing through un. This means that

(i) the function t 7→ σn(t) is a bounded solution of equation (4.1), with
ε = εn,

(ii) σn(t) = πεn(t, un) for t ≥ 0.

Moreover, by Proposition 4.6, there exists K > 0, independent of n, such that

(iii) ‖σn(t)‖H1
εn
≤ K for t ∈ R.
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Let k be a positive integer and let (hn)n∈N be a sequence of positive numbers,
hn →∞; by (iii) and by Proposition 5.4, there exists uk ∈ H1

s (Ω) such that, up
to a subsequence,

‖σn(−k)− uk‖H1
εn

= ‖πεn(hn, σn(−k − hn))− uk‖H1
εn
→ 0 as n →∞.

By a Cantor diagonal procedure, we can assume that

‖σn(−k)− uk‖H1
εn
→ 0 as n →∞

for every positive integer k. By Theorem 4.8, for every t > 0,

(5.2) ‖πεn(t, σn(−k))− π0(t, uk)‖H1
εn
→ 0 as n →∞.

Choosing t = k we get

‖un − π0(k, uk)‖H1
εn
→ 0 as n →∞.

Notice that π0(k, uk) is independent of k, so we can define u0 := π0(k, uk). The
proof will be complete if we show that u0 ∈ A0. To this end, let us define
σ0(t) := π0(t + k, uk), t ≥ −k. By (5.2) and Theorem 4.8, for every t > −k

‖σn(t)− π0(t + k, uk)‖H1
εn

= ‖πεn
(t + k, σ(−k))− π0(t + k, uk))‖H1

εn
→ 0

as n → ∞. It follows that π0(t + k, uk) is independent of k and therefore σ0(t)
is unambiguously defined for every t ∈ R. Moreover, σ0(t) is a solution of (4.2)
and ‖σ0(t)‖H1

s
≤ K for every t ∈ R. Thus there is a full bounded solution of

equation (4.2) through u0. This finally implies that u0 ∈ A0. �
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