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ON THE EXISTENCE OF THREE SOLUTIONS
FOR JUMPING PROBLEMS

INVOLVING QUASILINEAR OPERATORS

Annamaria Canino

Abstract. A jumping problem for quasilinear elliptic equations is con-
sidered. A local saddle argument in the framework of nonsmooth critical

point theory is applied.

Introduction

In this paper, we study the number of solutions of a quasilinear elliptic prob-
lem of the form

(QP)


−

n∑
i,j=1

Dj(aij(x, u)Diu) +
1
2

n∑
i,j=1

Dsaij(x, u)DiuDju

= g(x, u) + ω in Ω,

u = 0 on ∂Ω,

where aij(x, s) = aji(x, s), Ω is a bounded domain in Rn, ω ∈ H−1(Ω), and
g : Ω× R → R satisfies

lim
s→−∞

g(x, s)
s

= α, lim
s→∞

g(x, s)
s

= β.
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2 A. Canino

Setting Aij(x) = lim|s|→∞ aij(x, s), let us denote with λk the eigenvalues of the
operator −

∑n
i,j=1Dj(AijDiu) with homogeneous Dirichlet condition, repeated

according to multiplicity.
In the semilinear case:

(SP)

{
−∆u = g(x, u) + ω in Ω,

u = 0 on ∂Ω,

the number of the solutions of (SP), depending on the relation of α and β with
respect to the eigenvalues λk of the operator −∆, has been widely investigated
(see e.g. [17], [25], [21], [13] and references therein), starting from the pioneer-
ing paper [1]. The methods used are, often, a combination of topological and
variational techniques.

In this paper, we suppose β < λ1, α > λ2, ω0 ∈ H−1(Ω) and we study (QP)
when ω = tϕ1+ω0, where ϕ1 is a positive eigenfunction corresponding to the first
eigenvalue. We prove that (QP) has at least three solutions for t large enough.
Let us remark that α can be allowed to be one of the eigenvalues λk.

The case β < λ1 < α has been already considered in [6], [7], where it is
shown that (QP) has at least two solutions for t large enough and no solutions
for t small enough.

As we pointed out in [5]–[8], in the case of quasilinear equations the first
difficulty is that classical critical point theory fails. In fact, let us consider the
associated functional f : H1

0 (Ω) → R defined by

f(u) =
1
2

∫
Ω

n∑
i,j=1

aij(x, u)DiuDju dx−
∫

Ω

G(x, u) dx− 〈ω, u〉,

where G(x, s) =
∫ s

0
g(x, t) dt. Under reasonable assumptions on aij and g, it is

possible to prove that f is continuous, but we cannot expect f to be of class C1

or locally Lipschitz continuous.
On the other hand,{
u 7→ −

n∑
i,j=1

Dj(aij(x, u)Diu) +
1
2

n∑
i,j=1

Dsaij(x, u)DiuDju− g(x, u)
}

is not well defined as an operator from H1
0 (Ω) to H−1(Ω) and the classic topo-

logical methods, applied so far in the literature, cannot be directly adapted to
this setting.

As in previous papers concerning quasilinear equations (see, e.g. [4]–[10],
[22]), we will use variational methods based on the nonsmooth critical point
theory of [11], [12] to find critical points of an associated functional which are
also weak solutions of (QP).
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Let us mention that similar abstract techniques have been developed also in
[18], [19], while different techniques have been applied to quasilinear equations
in [3], [26].

Let us emphasize that, in the semilinear case, an even stronger result holds
for β < λ1 and α > λ2, namely the existence of four solutions, as it was proved
in [17] and [25], combining variational methods with degree or Morse theory.
The same result can be obtained also by the introduction of suitable natural
constraints, following the technique used in [16] for variational inequalities.

It seems to be hard to adapt such approaches to the quasilinear case, because
of the lack of regularity we have already remarked. Thus, the problem of the
existence of at least four solutions seems far from being solved in the quasilinear
case.

Our approach, which is purely based on min-max theorems, is more similar
to the techniques developed in [23], where a different proof of the existence of at
least three solutions was given in the semilinear case.

Let us point out that also in [15] the nonsmooth critical point theory of [11],
[12] is applied to obtain the same kind of result for the variational inequality
associated with the constraint u ≥ ϑ, ϑ ∈ H1

0 (Ω), ϑ− ∈ L∞(Ω). However such
setting does not cover the case of equations. More precisely, in the proof of the
min-max inequalities the presence of constraint provides some simplifications be-
cause in the asymptotic problem the constraint becomes u ≥ 0 and this excludes
all eigenfunctions ϕk of the asymptotic linear problem with k ≥ 2. As a conse-
quence, in [15] it is used the classic Rabinowitz saddle theorem, whereas in this
paper we have to apply a more refined local saddle argument.

After giving in Section 2 a brief exposition of nonsmooth critical point theory
as developed in [11], [12], in Section 3, by means of some min-max inequalities,
we prove the existence of a saddle point for the energy functional f . In Section 4
by studying the critical levels of f , we show that this solution cannot coincide
with the other ones already found in [6], [7].

1. The main result

Let Ω be a connected bounded open subset of Rn (n ≥ 3). Let aij : Ω×R → R
(1 ≤ i, j ≤ n) be such that{

for all s ∈ R aij(x, s) is measurable with respect to x,

for a.e. x ∈ Ω aij(x, s) is of class C1 with respect to s.

Let us make the following assumptions.
For a.e. x ∈ Ω, for all s ∈ R, 1 ≤ i, j ≤ n,

(a.1) aij(x, s) = aji(x, s).
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There exists C > 0 such that for a.e. x ∈ Ω, for all s ∈ R, 1 ≤ i, j ≤ n,

(a.2) |aij(x, s)| ≤ C, |Dsaij(x, s)| ≤ C.

There exists ν > 0 such that for a.e. x ∈ Ω, for all s ∈ R, and all ξ ∈ Rn,

(a.3)
n∑

i,j=1

aij(x, s)ξiξj ≥ ν|ξ|2.

There exists R > 0 such that for a.e. x ∈ Ω, for all s ∈ R, and all ξ ∈ Rn,

(a.4) |s| ≥ R⇒
n∑

i,j=1

sDsaij(x, s)ξiξj ≥ 0.

There exists a uniformly Lipschitz continuous bounded function θ : R → [0,∞[
such that for a.e. x ∈ Ω, s ∈ R, for all ξ ∈ Rn

(a.5)
n∑

i,j=1

sDsaij(x, s)ξiξj ≤ sθ′(s)
n∑

i,j=1

aij(x, s)ξiξj .

For a.e. x ∈ Ω, 1 ≤ i, j ≤ n,

(a.6) lim
s→−∞

aij(x, s) = lim
s→∞

aij(x, s).

Let us observe that by (a.4) such limits exist.
Now, let us consider a Carathéodory function g : Ω × R → R such that for

a.e. x ∈ Ω, for all s ∈ R:

(g.1) |g(x, s)| ≤ a(x) + b(x)|s|

with a ∈ L2n/(n+2)(Ω) and b ∈ Ln/2(Ω).
Moreover, assume there exist α, β ∈ R such that for a.e. x ∈ Ω:

(g.2) lim
s→−∞

g(x, s)
s

= α, lim
s→∞

g(x, s)
s

= β.

Finally, setting

Aij(x) = lim
s→±∞

aij(x, s),

let us denote with λk the eigenvalues of the operator −
∑
Dj(AijDiu) with

homogeneous Dirichlet condition, repeated according to multiplicity. Let ϕ1 be
a nonnegative eigenfunction corresponding to λ1.

It is known (see [14]) that ϕ1 ∈ H1
0 (Ω) ∩ L∞(Ω) ∩ C(Ω) and ϕ1(x) > 0 for

every x ∈ Ω.
Now, we can state the main result of the paper.
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Theorem 1.1. Let aij and g satisfy hypotheses (a.1)–(a.6), (g.1)–(g.2) and
let ω ∈ H−1(Ω). Assume that β < λ1 and α > λ2. Then there exists t0 ∈ R+

such that for every t > t0 the equation

(1.1.1) −
n∑

i,j=1

Dj(aij(x, u)Diu) +
1
2

n∑
i,j=1

Dsaij(x, u)DiuDju

= g(x, u) + tϕ1 + ω

has at least three weak solutions in H1
0 (Ω). Moreover, if ω ∈W−1,p(Ω) for some

p > n and a, b ∈ Lr(Ω) with r > n/2, such solutions belong to H1
0 (Ω) ∩ L∞(Ω).

Let us recall that for weak solutions belonging to H1
0 (Ω) ∩ L∞(Ω), further

regularity results can be found in [20].

2. Functionals of the calculus of variations

In this section, we recall some results of the nonsmooth critical point theory
developed in [11] and [12].

Let X denote a metric space endowed with the metric d. Let us set Bρ(u) =
{v ∈ X : d(u, v) ≤ ρ} and Sρ(u) = {v ∈ X : d(u, v) = ρ}.

Definition 2.1. Let f : X → R be a continuous function and let u ∈ X.
We denote by |df |(u) the supremum of the σ’s in [0,∞[ such that there exist
δ > 0 and a continuous map H : Bδ(u)× [0, δ] → X such that

d(H(v, t), v) ≤ t for all v ∈ Bδ(u) and all t ∈ [0, δ],

f(H(v, t)) ≤ f(v)− σt for all v ∈ Bδ(u) and all t ∈ [0, δ].

The extended real number |df |(u) is called the weak slope of f at u.

Based on weak slope we introduce the following fundamental notions.

Definition 2.2. Let f : X → R be a continuous function. A point u ∈ X

is said to be (lower) critical for f , if |df |(u) = 0. A real number c is said to be
a (lower) critical value for f , if there exists u ∈ X such that |df |(u) = 0 and
f(u) = c.

Definition 2.3. Let f : X → R be a continuous function and let c ∈ R. We
say that f satisfies (PS)c, i.e. the Palais–Smale condition at level c, if from every
sequence (uh) in X with |df |(uh) → 0 and f(uh) → c as h→∞ it is possible to
extract a subsequence (uhk

) converging in X.

The next results are extensions of two classical theorems to a continuous
functional. (cf. [2], [24], [27], [21]).
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Theorem 2.4 (cf. e.g. [6, Theorem 1.3]). Let X be complete and f : X → R
a continuous functional. Let v0, v1 ∈ X. Suppose that there exists r > 0 such
that d(v1, v0) > r and

inf{f(u) : u ∈ X, d(u, v0) = r} > max{f(v0), f(v1)}.

Set
Γ = {γ : [0, 1] → X continuous with γ(0) = v0, γ(1) = v1},

c1 = inf
Br(v0)

f and c2 = inf
γ∈Γ

max
[0,1]

(f ◦ γ).

Assume that c1 > −∞, Γ 6= ∅ and that f satisfies the Palais–Smale condition at
the two levels c1 and c2. Then c1 < c2 and there exist a critical point u1 of f
with d(u1, v0) < r and f(u1) = c1 and a second critical point u2 with f(u2) = c2.

Theorem 2.5. Let X be a Banach space and X1 and X2 two closed subspaces
of X such that X = X1 ⊕X2 and dimX1 <∞. Let f : X → R be a continuous
function and let us suppose that there exist ρ1 > 0 and ρ2 > 0 such that

sup
Bρ1 (0)∩X1

f < inf
Sρ2 (0)∩X2

f, sup
Sρ1 (0)∩X1

f < inf
Bρ2 (0)∩X2

f.

Moreover, let us suppose that f satisfies the (PS)c condition for every c ∈ R.
Then there exists at least a critical point u0 for f such that

inf
Bρ2 (0)∩X2

f ≤ f(u0) ≤ sup
Bρ1 (0)∩X1

f.

Proof. If f ∈ C1(E), the result can be found in [21, Theorem 2.3]. On the
other hand, the Noncritical Interval Theorem has been extended to the continu-
ous case in [11, Theorem 2.15]. Then the argument of [21, Theorem 2.3] can be
easily adapted to our situation. �

Now, let Ω, ai,j and g as in the previous section. Let ω belong to H−1(Ω).
Let us define f : H1

0 (Ω) → R by

(2.1) f(u) =
1
2

∫
Ω

n∑
i,j=1

aij(x, u)DiuDju dx−
∫

Ω

G(x, u) dx− 〈ω, u〉,

where G(x, s) =
∫ s

0
g(x, t) dt.

The associated Euler equation is formally given by the quasilinear problem

(2.2)


−

n∑
i,j=1

Dj(aij(x, u)Diu) +
1
2

n∑
i,j=1

Dsaij(x, u)DiuDju

= g(x, u) + ω in Ω,

u = 0 on ∂Ω.
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Definition 2.6. We say that u is a weak solution of (2.2), if u ∈ H1
0 (Ω) and

−
n∑

i,j=1

Dj(aij(x, u)Diu) +
1
2

n∑
i,j=1

Dsaij(x, u)DiuDju = g(x, u) + ω

in D′(Ω).

In order to apply variational methods, let us introduce a natural adaptation
of Palais–Smale condition.

Definition 2.7. Let c ∈ R. A sequence (uh) in H1
0 (Ω) is said to be a con-

crete Palais–Smale sequence at level c ((CPS)c-sequence, for short) for f , if
limh f(uh) = c,

−
n∑

i,j=1

Dj(aij(x, uh)Diuh) +
1
2

n∑
i,j=1

Dsaij(x, uh)DiuhDjuh − g(x, uh) ∈ H−1(Ω)

eventually as h→∞ and(
−

n∑
i,j=1

Dj(aij(x, uh)Diuh)+
1
2

n∑
i,j=1

Dsaij(x, uh)DiuhDjuh−g(x, uh)−ω
)
→ 0

strongly in H−1(Ω).
We say that f satisfies the concrete Palais–Smale condition at level c ((CPS)c

for short), if every (CPS)c-sequence for f admits a strongly convergent subse-
quence in H1

0 (Ω).

Theorem 2.8 (cf. [8, Corollary 2.1.4]). Let u ∈ H1
0 (Ω), c ∈ R and let (uh)

be a sequence in H1
0 (Ω). Then the following facts hold

(a) if u is a (lower) critical point of f , then u is a weak solution of (2.2),
(b) if (uh) is a (PS)c-sequence for f , then (uh) is a (CPS)c-sequence for f ,
(c) if f satisfies (CPS)c, then f satisfies (PS)c.

3. Saddle point

In this section we prepare the proof of our main result.
Let us set g0(x, s) = g(x, s) − βs+ + αs− and G0(x, s) =

∫ s

0
g0(x, t) dt. Of

course, g0 is a Carathéodory function satisfying

lim
|s|→∞

g0(x, s)
s

= 0 a.e. in Ω,

|g0(x, s)| ≤ a(x) + b̃(x)|s| with b̃ ∈ Ln/2(Ω).
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Let us consider the energy functional f̃t : H1
0 (Ω) → R, associated with (1.1.1),

f̃t(u) =
1
2

∫
Ω

n∑
i,j=1

aij(x, u)DiuDju dx−
1
2
β

∫
Ω

(u+)2 dx− 1
2
α

∫
Ω

(u−)2 dx

−
∫

Ω

G0(x, tu) dx− t

∫
Ω

ϕ1u dx− 〈ω, u〉,

for t > 0 and define ft : H1
0 (Ω) → R by ft(u) = t−2f̃t(tu), namely

ft(u) =
1
2

∫
Ω

n∑
i,j=1

aij(x, tu)DiuDju dx−
1
2
β

∫
Ω

(u+)2 dx− 1
2
α

∫
Ω

(u−)2 dx

− 1
t2

∫
Ω

G0(x, tu) dx−
∫

Ω

ϕ1u dx−
1
t
〈ω, u〉.

It is easy to verify that

(3.1) |dft|(u) =
1
t
|df̃t|(tu).

We still define f∞, f̂∞ : H1
0 (Ω) → R by

f∞(u) =
1
2

∫
Ω

n∑
i,j=1

Aij(x)DiuDju dx

− 1
2
β

∫
Ω

(u+)2 dx− 1
2
α

∫
Ω

(u−)2 dx−
∫

Ω

ϕ1u dx,

f̂∞(u) =
1
2

∫
Ω

n∑
i,j=1

Aij(x)DiuDju dx−
1
2
α

∫
Ω

u2 dx−
∫

Ω

ϕ1u dx.

Theorem 3.1. For every real number c the functional ft satisfies (PS)c.

Proof. It follows from [6, Theorem 3.4], [7, Theorem 4.5 and Lemma 3.14]
and Theorem 2.8. �

Theorem 3.2.

(i) If (th) is a sequence in ]0,∞[ with th →∞ and (uh) a sequence strongly
convergent to u in H1

0 (Ω), then limh fth
(uh) = f∞(u).

(ii) If (th) is a sequence in ]0,∞[ with th →∞ and (uh) a sequence weakly
convergent to u in H1

0 (Ω) such that lim suph fth
(uh) ≤ f∞(u), then (uh)

strongly converges to u in H1
0 (Ω).

Proof. (i) It is easy to prove.
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(ii) Let us observe that by hypothesis

lim sup
h

1
2

∫
Ω

∑
ij

aij(x, thuh)DiuhDjuh dx

= lim sup
h

(
1
2

∫
Ω

∑
ij

aij(x, thuh)DiuhDjuh dx−
β

2

∫
Ω

(u+
h )2 dx

− α

2

∫
Ω

(u−h )2 dx− 1
t2

∫
Ω

G0(x, thuh) dx−
∫

Ω

ϕ1uh dx−
1
th
〈ω, uh〉

)
+
β

2

∫
Ω

(u+)2 dx+
α

2

∫
Ω

(u−)2 dx+
∫

Ω

ϕ1u dx

≤ 1
2

∫
Ω

∑
ij

AijDiuDju dx.

Then, as in the proof of Lemma (3.2) in [6], let us observe that

lim sup
h

∫
Ω

∑
ij

aij(x, thuh)Di(uh − u)Dj(uh − u) dx(3.2.2)

= lim sup
h

∫
Ω

∑
ij

aij(x, thuh)DiuhDjuh dx

−
∫

Ω

∑
ij

AijDiuDju dx ≤ 0.

By (3.2.2) and (a.3) we conclude that

ν lim sup
h

‖Duh −Du‖2L2

≤ lim sup
h

∫
Ω

∑
ij

aij(x, thuh)Di(uh − u)Dj(uh − u) dx ≤ 0.

Then uh converges strongly to u in H1
0 (Ω). �

Corollary 3.3. Let K ⊂ H1
0 (Ω) be a compact set. Then for each ε > 0

there exists t > 0 such that, for all t ≥ t

max
K

ft ≤ max
K

f∞ + ε.

Proof. If the assertion were false, then we could consider ε > 0, a sequence
(th) ⊂ R tending to ∞ and a sequence (uh) ∈ K such that for every h

(3.3.1) fth
(uh) > max

K
f∞ + ε.

Up to a subsequence, uh converges strongly to some u ∈ K and, by Theorem 3.2,
limh fth

(uh) = f∞(u). Then passing to the limit in (3.3.1) we get

f∞(u) ≥ max
K

f∞ + ε

which is absurd. �
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Corollary 3.4. Let C ⊂ H1
0 (Ω) be a closed and bounded set. Then for

each ε > 0 there exist t > 0 and δ > 0 such that, for all t ≥ t

inf
C
ft ≥ min

{
inf
C
f∞ − ε, inf

C
w
f∞ + δ

}
,

where C
w

is the weak closure of C.

Proof. If the assertion were false, then we could consider ε > 0, a sequence
(th) ⊂ R tending to ∞ and a sequence (uh) ∈ C such that for every h

fth
(uh) < inf

C
f∞ − ε,(3.4.1)

fth
(uh) < inf

C
w
f∞ +

1
h
.(3.4.2)

Up to a subsequence, uh weakly converges to some u in H1
0 (Ω) and there exists

l = lim
h
fth

(uh).

Let us suppose, as a first case, that l ≤ f∞(u). Then, by Theorem 3.2(ii), uh → u

strongly in H1
0 (Ω), and u ∈ C since C is closed. Thus, by Theorem 3.2(i),

limh fth
(uh) = f∞(u) and by (3.4.1), f∞(u) ≤ infC f∞ − ε, that is absurd.

Now, let us consider the case l > f∞(u). Since u ∈ Cw
, by (3.4.2)

inf
C

w
f∞ ≥ l > f∞(u) ≥ inf

C
w
f∞

which is absurd. �

Now, let λk < α ≤ λk+1 with k ≥ 1. Let us denote by Ẽ− the subspace
spanned by the eigenvectors associated to the first k eigenvalues (λ1, . . . , λk)
and E+ the closed subspace of H1

0 (Ω) spanned by the eigenvectors associated to
the eigenvalues (λk+1, . . . ). Let also ϕk be an eigenfunction associated with λk.
Recall that we have chosen ϕ1 ≥ 0.

Theorem 3.5. There exists a subspace E− ⊂ Rϕ1 +C∞0 (Ω) with dimE− =
dim Ẽ− and H1

0 (Ω) = E− ⊕ E+ such that

(a) for each ρ > 0 one has: supS−ρ
f̂∞ < f̂∞(−ϕ1/(α− λ1)),

(b) there exists ρ > 0 such that f̂∞(−ϕ1/(α− λ1)) < infS+
ρ
f∞, where S±ρ =

−ϕ1/(α− λ1) + (E± ∩ Sρ(0)).

Proof. It is easy to verify that −ϕ1/(α− λ1) is a critical point for f̂∞ and

f̂ ′′∞(u)(v)2 =
∫

Ω

∑
i,j

AijDivDjv dx− α

∫
Ω

v2 dx for all u, v ∈ H1
0 (Ω).

Then, from the definition of Ẽ−, for all ρ > 0 we get

(3.5.1) sup
eE−∩Sρ(−ϕ1/(α−λ1))

f̂∞ < f̂∞

(
− ϕ1

α− λ1

)
.
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Now, we can take ψ2, . . . , ψk ∈ C∞0 (Ω) and consider E− = span {ϕ1, ψ2, . . . , ψk}.
If ψ2 . . . ψk are sufficiently close in the H1

0 -norm to ϕ2, . . . , ϕk, respectively, it is
readily seen that the above inequality is true also for Ẽ− replaced by E−.

To prove assertion (b), denote by Y the eigenspace associated to λk+1. Since
k + 1 ≥ 2, there exists ρ > 0 such that

for all u ∈ − ϕ1

α− λ1
+ Y : u ≤ 0 a.e. ⇒

∥∥∥∥u+
ϕ1

α− λ1

∥∥∥∥ < ρ.

By contradiction, let (uh) be a sequence in S+
ρ with

lim
h
f∞(uh) ≤ f̂∞

(
− ϕ1

α− λ1

)
.

Up to a subsequence, uh is weakly convergent in H1
0 (Ω) to some u ∈ −ϕ1/(α−

λ1) + E+. It follows

lim
h
f∞(uh) ≤ f̂∞

(
− ϕ1

α− λ1

)
≤ f̂∞(u) ≤ f∞(u),

so that uh is strongly convergent in H1
0 (Ω) to u, f∞(u) = f̂∞(u) = f̂∞(−ϕ1/(α−

λ1)) and ‖u+ ϕ1/(α− λ1)‖ = ρ. Therefore, u+ ϕ1/(α− λ1) ∈ Y and

1
2
(α− β)

∫
Ω

(u+)2 dx = f∞(u)− f̂∞(u) = 0,

namely u ≤ 0 a.e. in Ω. This is impossible by the choice of ρ and (b) follows. �

Lemma 3.6. Let E− be as in Theorem 3.5. Then there exists ρ > 0 such
that for every u ∈ E− ∩Bρ(−ϕ1/(α− λ1)) one has u(x) ≤ 0 in Ω.

Proof. It is sufficient to recall that infK ϕ1 > 0 for every compact subset
K of Ω. �

Now, let us formulate the main result of the section.

Theorem 3.7. Let aij and g satisfy hypotheses (a.1)–(a.6), (g.1), (g.2) and
let ω ∈ H−1(Ω). Assume that β < λ1 < α. Then for every ε > 0 there exists
t ∈ R+ such that for every t > t the functional ft has a critical point ut with∣∣∣∣ft(ut)− f∞

(
− ϕ1

α− λ1

)∣∣∣∣ < ε.

Proof. Let k ≥ 1 be such that λk < α ≤ λk+1, E− as in Theorem 3.5,
ρ+ > 0 as in (b) of Theorem 3.5 and ρ− > 0 as in Lemma 3.6.

Set B± = −ϕ1/(α− λ1) + (E± ∩Bρ±(0)) and S± = −ϕ1/(α− λ1) + (E± ∩
Sρ±(0)). Let us observe that f∞(u) = f̂∞(u) for every u ∈ B− while in general
f∞(u) ≥ f̂∞(u) for every u ∈ H1

0 (Ω). It is easy to prove that

(3.7.1) sup
B−

f∞ = f∞

(
−ϕ1

α− λ1

)
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and

(3.7.2) f∞

(
−ϕ1

α− λ1

)
= inf

B+
f̂∞ ≤ inf

B+
f∞.

Moreover, by Theorem 3.5, it follows

(3.7.3) inf
S+

f∞ > f∞

(
−ϕ1

α− λ1

)
.

Let us take

(3.7.4) ε′ =
1
2

[
inf
S+

f∞ − f∞

(
−ϕ1

α− λ1

)]
.

Applying Corollary 3.4 with C = S+ and ε′ as in (3.7.4), we have that there
exist t1 > 0 and δ > 0 such that, for all t ≥ t1

(3.7.5) inf
S+

ft ≥ min
{

inf
S+

f∞ − ε′, inf
B+

f∞ + δ

}
.

Thus, there exists δ′ ∈ (0, ε) such that, for all t ≥ t1

(3.7.6) inf
S+

ft ≥ f∞

(
−ϕ1

α− λ1

)
+ 2δ′.

Now, by (3.7.1) and applying Corollary 3.3 with K = B−, we have that there
exists t2 > 0 such that, for all t ≥ t2

(3.7.7) max
B−

ft ≤ f∞

(
−ϕ1

α− λ1

)
+ δ′.

By (3.7.6) and (3.7.7) we have that there exists t3 > 0 such that, for all t ≥ t3

(3.7.8) max
B−

ft < min
{

inf
S+

ft, f∞

(
−ϕ1

α− λ1

)
+ ε

}
.

Now, with an analogous argument it can be proved that there exists t4 > 0 such
that, for all t ≥ t4

(3.7.9) max
{

max
S−

ft, f∞

(
−ϕ1

α− λ1

)
− ε

}
< inf

B+
ft.

Let t = max{t3, t4}. By (3.7.8), (3.7.9) and Theorem 3.1, it is enough to apply
Theorem 2.5 to have that for all t ≥ t the functional ft has a critical point ut

such that ∣∣∣∣ft(ut)− f∞

(
− ϕ1

α− λ1

)∣∣∣∣ < ε. �
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4. Proof of the main result

Lemma 4.1. Let aij and g satisfy hypotheses (a.1–a.6), (g.1), (g.2) and let
ω ∈ H−1(Ω). Assume that β < λ1 and α > λ2. Then there exists a continuous
curve γ : [0,∞[−→ H1

0 (Ω) such that

γ(0) =
ϕ1

λ1 − β
, lim

s→∞
f∞(γ(s)) = −∞,

sup
s≥0

f∞(γ(s)) < f∞

(
− ϕ1

α− λ1

)
.

Proof. Let k ≥ 2 be such that λk < α ≤ λk+1, ψ2 as in the proof of
Theorem 3.5, and ρ as in Lemma 3.6. In the subspace spanned by {ϕ1, ψ2},
let us consider a curve γ consisting of the union of γ1, γ2, γ3 where γ1 is given
by the points on ϕ1-axis between −ϕ1/(α− λ1) + ρϕ1/‖ϕ1‖ and ϕ1/(λ1 − β)
with γ1(0) = ϕ1/(λ1 − β); γ2 is the upper semicircle of radius ρ and center
−ϕ1/(α− λ1); γ3 is given by the points τϕ1 with τ < −1/(α− λ1)− ρ/‖ϕ1‖.

By definition of f∞ and Theorem 3.5, γ has the required properties. �

Now, let γ be as in the previous lemma, let ε > 0 be such that

sup
s≥0

f∞(γ(s)) < f∞

(
− ϕ1

α− λ1

)
− ε,

and let t ∈ R as in Theorem 3.7.

Theorem 4.2. Let aij and g satisfy hypotheses (a.1)–(a.6), (g.1), (g.2) and
let ω ∈ H−1(Ω). Assume that β < λ1 and α > λ2. Then there exists t0 ≥ t such
that, for every t > t0, the functional ft has two critical points ut and ût with

ft(ut) < ft(ût) < ft(ut)

where ut is the critical point found in Theorem 3.7.

Proof. First of all, let us point out that from the definition of f∞ and
hypothesis on α and β, it can be easily seen that there exists r > 0 such that

inf
Sr(ϕ1/(λ1−β))

f∞ > f∞

(
ϕ1

λ1 − β

)
and

min
Br(ϕ1/(λ1−β))

f∞ = f∞

(
ϕ1

λ1 − β

)
.

Moreover, there exists s large enough such that

f∞(γ(s)) ≤ f∞

(
ϕ1

λ1 − β

)
and

∥∥∥∥γ(s)− ϕ1

λ1 − β

∥∥∥∥ > r.



14 A. Canino

Now, let us apply Corollary 3.4 with C = Sr(ϕ1/(λ1 − β)) and

ε′ =
1
2

[
inf

Sr(ϕ1/(λ1−β))
f∞ − f∞

(
ϕ1

λ1 − β

)]
.

Then there exist t1 > 0 and δ > 0 such that for all t ≥ t1,

inf
Sr(ϕ1/(λ1−β))

ft ≥ min
{

inf
Sr(ϕ1/(λ1−β))

f∞ − ε′, inf
Br(ϕ1/(λ1−β))

f∞ + δ

}
.

In particular, there exists δ′ > 0 such that, for all t ≥ t1,

(4.2.1) inf
Sr(ϕ1/(λ1−β))

ft ≥ f∞

(
ϕ1

λ1 − β

)
+ 2δ′.

Now, by applying Corollary 3.3 with K = {ϕ1/(λ1 − β), γ(s)} we have that there
exists t2 > 0 such that, for all t ≥ t2,

(4.2.2) max
{ϕ1/(λ1−β),γ(s)}

ft ≤ max
{ϕ1/(λ1−β),γ(s)}

f∞ + δ′ = f∞

(
ϕ1

λ1 − β

)
+ δ′.

By (4.2.1) and (4.2.2), we have that there exists t3 > 0 such that, for all t ≥ t3,

(4.2.3) inf
Sr(ϕ1/(λ1−β))

ft > max
{ϕ1/(λ1−β),γ(s)}

ft.

Applying Corollary 3.3 with K = γ([0, s]), we have that there exists t0 > t3 such
that, for all t ≥ t0,

(4.2.4) max
γ([0,s])

ft < f∞

(
− ϕ1

α− λ1

)
− ε.

Then, by Theorem 3.1 and (4.2.3), we may apply Theorem 2.4. So, for all t ≥ t0

the functional ft has two distinct critical points ut and ût with

ft(ut) < ft(ût) < f∞

(
− ϕ1

α− λ1

)
− ε < ft(ut) �

Proof of Theorem 1.1. By Theorems 3.7 and 4.2, we deduce that the
functional ft has at least three distinct critical points and then, by (3.1) and
Theorem 2.8, that the equation (1.1.1) has at least three distinct weak solutions.
For the L∞-regularity, we refer the reader to [7]. �
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