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NABLA THEOREMS AND MULTIPLE SOLUTIONS
FOR SOME NONCOOPERATIVE ELLIPTIC SYSTEMS

Antonio Marino — Claudio Saccon

Abstract. We study some variational principles which imply the existence
of multiple critical points for a functional f , using the properties of both
f and ∇f on some suitable sets. We derive some multiplicity theorems for
a certain class of strongly indefinite functionals and we apply these results

for finding multiple solutions of an elliptic system of reaction-diffusion type.

1. Introduction

In the study of nonlinear differential partial equations and systems of varia-
tional type it sometimes happens that the topological structure of the sublevels
of the functional associated with the problem gives satifactory estimates of the
number of solutions only in the “generic case”. Morse theory, for instance, al-
lows to estimate in a precise way the number of critical points of a functional f
provided it is a priori known that they are all non-degenerate. This condition
is usually very hard to check, nevertheless, in some problems, other types of
conditions on the gradient of f have proved themselves useful. In [9] the authors
give some variatonal theorems of “mixed type” (which we now call ∇-theorems),
which prove multiplicity results for critical points of a functional f by means of
some properties both of the gradient of f and on the sublevels of f (the latter,
by themselves, would not be enough). The main idea in proving such theorems is
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the constuction of another functional g which has more complex sublevels (hence
the multiplicity result for g) and is such that its critical points are also critical
poins for f (thanks to the assumptions on the gradient). These theorems have
been applied in [9] to problems of elliptic equations with jumping nonlinearities
or to variational inequalities (see [6]).

In this paper we are concerned with the following elliptic system

(ES)


−∆u = αu− δv + Fr(x, u, v),

∆v = −δu− γv + Fs(x, u, v),

u, v ∈W 1,2
0 (Ω),

where Ω is a bounded subset of R
N , F : Ω×R

2 → R is a differentiable function
such that F (x, 0, 0) = 0, F ′(x, 0, 0) = 0, F ′′(x, 0, 0) = 0 and F is superquadratic
at infinity. Nontrivial solutions of (ES) have been found in [8], [2] (see also the
references therein). As well known the solutions of (ES) are the critical points
of the functional I : W 1,2

0 (Ω)×W 1,2
0 (Ω)→ R defined by

I(u, v) =
1
2

∫
Ω

[(|Du|2 − αu2) + 2δuv − (|Dv|2 − γv2)] dx−
∫

Ω

F (x, u, v) dx.

For suitable values of the parameters α, γ and δ we show that I satisfies a set
of inequalities analogous to those which occur in jumping problems; in this case
however an additional technical difficulty shows up, since the quadratic term in I
has infinitely many positive eigenvalues and infinitely many negative ones (this
is commonly referred as I being a “strongly indefinite” functional). To face this
fact we have adopted the point of view of [1], [5], using the notion of limit relative
category (which is recalled in the appendix) and we have developed a “limit”
version of the ∇-theorems, which fits the situation we are confronted with. This
is done in Section 2.

In Section 3 we present an abstract framework for functionals which are the
sum of a quadratic form and a superquadratic nonlinear term. This framework
is used in Section 4, and allows us to find other nontrivial solutions of (ES)

2. The ∇-theorems

In this section we formalize the ideas predented in the introduction. The
main results are Theorems 2.5 and 2.10 which extend some of the ∇-theorems
stated in [9]. In our case the properties of g are shown in the following theorem.
First we need some notation.

Notation 2.1. As in the previous section we consider a Hilbert space H .
Moreover, we consider three closed subspaces X1, X2 and X3, such that H =
X1 ⊕ X2 ⊕ X3. We assume, for simplicity, X1, X2 and X3 to be mutually
orthogonal and denote by P1, P2 and P3 the associated orthogonal projections.
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We shall use the following sets

∆R,R1,R2 = {u ∈ X1 ⊕X2 | ‖P1u‖ ≤ R, R1 ≤ ‖P2u‖ ≤ R2},
TR,R1,R2 = {u ∈ X1 ⊕X2 | ‖P1u‖ = R, R1 ≤ ‖P2u‖ ≤ R2}

∪ {u ∈ X1 ⊕X2 | ‖P1u‖ ≤ R, ‖P2u‖ = R1}
∪ {u ∈ X1 ⊕X2 | ‖P1u‖ ≤ R, ‖P2u‖ = R2},

Sρ = {u ∈ X2 ⊕X3 | ‖u‖ = ρ},
where 0 ≤ R1 ≤ R2, R ≥ 0 and ρ > 0 are real numbers. Furthermore, we
consider the set

C = {u ∈ H | ‖P2u‖ ≥ 1}.
Finally, given a non negative integer h we denote by Bh+1 the ball in R

h+1 and
by Sh its boundary.
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Figure 1. The topological situation of Teorems 2.2 and 2.7

Theorem 2.2. Let g : C → R be a C1,1-function. Let R,R1, R2 and ρ be
such that 1 ≤ R1 < ρ < R2, R > 0 and let ∆ = ∆R,R1,R2 , T = TR,R1,R2 , S = Sρ.
Assume that dim (X1) <∞, 1 ≤ dim (X2) <∞ and

sup g(T ) < inf g(S ∩ C)

(see Figure 1). Set a = inf g(S), b = sup g(∆) and suppose b <∞. Then

cat C,T (gb) ≥ 2,(2.2.1)

if sup g(T ) ≤ β < a, then cat C,T (gβ) = 0.(2.2.2)
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Finally, if (PS)c holds for all c in [a, b], then g has at least two lower critical
points in g−1([a, b]).

Proof. It is easy to see that there exists a retraction from C to ∆, which
keeps T fixed, hence

cat C,T (gb) ≥ cat C,T (∆) = cat ∆,T (∆).

Moreover, the pair (∆, T ) is homeomorphic to the pair (Bn+1×Sm,Sn×Sm) (as
one can easily check). From Lemma 2.3 which follows, we obtain cat ∆,T (∆) = 2,
hence (2.2.1) holds.

Up to some standard work, it can be proved that T is a deformation retract
of C \ S. If sup g(T ) ≤ β < a, then T ⊂ gβ ⊂ C \ S, therefore cat C,T (bβ) = 0.

The remaining part of the thesis follows easily from Theorem 5.5. �

Lemma 2.3. For any non negative integers h, k we have:

catBh+1×Sk,Sh×Sk(Bh+1 × Sk) = 2.

Proof. As shown for instance in [5]

cuplength (Bh+1 × Sk,Sh × Sk) = cuplength (Bh+1,Sh) + cuplength (Sk) = 1.

The conclusion follows from Theorem 5.2. �

Let f : H → R be a C1-function. The property which allows to reduce the
study of the critical points of f to the study of topologically richer functional is
expressed by the following condition.

Definition 2.4. Let X be a closed subspace of H and c be a real number.
We say that f satisfies the condition ∇(X, c) if there exists δ > 0 such that

inf{‖PX⊕[u]grad f(u)‖ | u ∈ H, dist(u,X) < δ, |f(u)− c| < δ} > 0

where [u] = span (u) and by PX⊕[u] we denote the orthogonal projection onto
X ⊕ [u].

This conditions means that there are no critical points at level c for the
restriction of f on X , up to some uniformity. Actually is not difficult to see that
∇(X, c) is equivalent to the following pair of conditions:

• f |X has no critical points u in X with f(u) = c,
• if (un)n is a sequence in H such that dist(un, X) → 0, f(un) → c

and PX⊕[un]gradf(un) → 0, then (un)n admits a subsequence which
converges.
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We point out that the above condition is weaker than the one introduced
in [9], due to the presence of PX⊕[un] instead of PX , so Theorem 2.5 which
follows is more general than the corresponding one in [9]. This is useful, for
instance, in applications where superlinear nonlinearities occur.

Theorem 2.5 (Torus-sphere linking). Let f : H → R be a C1-function.
Assume that dim (X1 ⊕X2) <∞, dimX2 ≥ 1 and

sup f(T ) < inf f(S)

where T = TR,R1,R2 , S = Sρ, 0 ≤ R1 < ρ < R2 and R > 0 (see Figure 2). Let
a = inf f(S) and b = sup f(∆) (∆ = ∆R,R1,R2). Assume that b <∞ and

• (PS)c holds for any c in [a, b],
• ∇(X1 ⊕X3, c) holds for any c in [a, b].

Then f has at least two critical points in f−1([a, b]).
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Figure 2. The topological situation of Teorems 2.5 and 2.10

Proof. The proof goes through several steps.
(I) We define the map Φ : H \X1 ⊕X3 → H setting

Φ(z) = z − P2z

‖P2z‖ for z /∈ X1 ⊕X3,
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and the map g : C → R by g = f ◦ Φ. It turns out that

(2.5.1) grad−
Cg(z) =



Pz(grad f)(Φ(z))

+
(

1− 1
‖P2z‖

)
Qz(grad f)(Φ(z)) if z ∈ int(C),

Pz(grad f)(Φ(z))

−
〈

(grad f)(Φ(z)),
P2z

‖P2z‖
〉+

P2z

‖P2z‖ if z ∈ ∂C,
where Pz denotes the orthogonal projection onto X1⊕X3⊕ [z] and Qz = Id−Pz

(for the notion of lower gradient gradCg see Definition 5.3).
It is clear that g satisfies to the inequalities of Theorem 2.2 on the sets

T ′ = Φ−1(T ) and S′ = Φ−1(S).
(II) Now we prove that g verifies (PS)c for all c in [a, b]. Let (zn)n be a se-

quence in C such that g(zn)→ c and grad−
Cg(zn)→ 0. Set un = Φ(zn), it is clear

that f(un)→ c. We claim that inf ‖P2zn‖ > 1. By contradiction if ‖P2zn‖ → 1,
then dist(un, X1 ⊕X3)→ 0 and, using (2.5.1), PX1⊕X3⊕[un]gradf(un)→ 0 (no-
tice that if un ∈ X1⊕X3, then PX1⊕X3⊕[un] is just PX1⊕X3). By ∇(X1 ⊕X3, c)
this is impossible. This implies inf dist (un, X1⊕X3) > 0, hence grad f(un)→ 0,
that is (un)n is a Palais–Smale sequence for f . By (PS)c for f (un)n has a conver-
gent subsequence and it is easy to check that the same property holds for (zn)n.

(III) Using Theorem 2.2 we find two lower critical points z1 and z2 for g, with
a ≤ g(zi) ≤ b, i = 1, 2. Using property ∇ again we get that zi /∈ ∂C, i = 1, 2;
then (as one can easily prove) ui = Φ(zi), i = 1, 2, are critical points for f with
a ≤ f(ui) ≤ b. �

Now we need some versions of Theorem 2.2 and Theorem 2.5 in the case
dim (X1) = ∞. To this aim we shall prove some limit version of the previous
theorems, using Theorem 5.8 instead of Theorem 5.5.

Notation 2.6. We consider now a sequence (Hn)n of closed subspaces ofH ,
of finite dimension and such that X2 ⊂ Hn for all n. We also assume Hn ⊂ Hn+1

and
⋃

n∈N
Hn to be dense in H . We denote by PHn the orthogonal projection

onto Hn. We set also Cn = C∩Hn. It is not difficult to see that, since X2 ⊂ Hn,
P2PHn = PHnP2 = P2, hence Cn = {u ∈ Hn | ‖P2u‖ ≥ 1}.

Theorem 2.7. Let g : C → R be a C1,1-function. Let R,R1, R2 and ρ be
such that 1 ≤ R1 < ρ < R2, R > 0 and let ∆ = ∆R,R1,R2 , T = TR,R1,R2 and
S = Sρ. Assume that 1 ≤ dim (X2) < ∞ and sup g(T ) < inf g(S ∩ C). Set
a = inf g(S), b = sup g(∆). Let b < ∞ and assume that (PS)∗c with respect to
(Cn)n holds for all c in [a, b]. Then g has at least two lower critical points in
g−1([a, b]).

Proof. Set Tn = T ∩Hn, ∆n = ∆∩Hn and Sn = S ∩Hn; it turns out that
sup g(Tn) < inf g(Sn) for all n. Then, using (2.2.1) and (2.2.2), we obtain that
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cat Cn,Tn(gb ∩ Cn) ≥ 2,

if sup g(T ) ≤ β < a then cat Cn,Tn(gβ ∩ Cn) = 0,

for all n. This implies

cat∗C,T (gb) ≥ 2,

if sup g(T ) ≤ β < a then cat∗C,T (gβ) = 0.

and applying Theorem 5.8 we get the conclusion. �

We want now to consider a theorem analogous to Theorem 2.5 with dimX1 =
∞. To this aim we introduce a suitable adaptation of the condition (∇).

Definition 2.8. Let X be a closed subspace of H such that PXPHn =
PHnPX for all n, where PX denotes the orthogonal projection onto X . Let c be
a real number. We say that f satisfies the condition ∇∗(X, c) with respect to
(Hn)n, if there exists δ > 0 such that

lim inf
n→∞ {‖PHnPX⊕[u]gradf(u)‖ | u ∈ Hn, dist(u,X) < δ, |f(u)− c| < δ} > 0

(as before [u] = span (u) and PX⊕[u] is the projection onto X ⊕ [u]).
It can be easily seen that, under the above made assumptions, ∇∗(X, c) is

equivalent to the following pair of conditions:

• f |X has no critical points u in X with f(u) = c,
• if (hn)n is a sequence in N such that hn → ∞, (un)n is a sequence

in H such that un ∈ Hhn for all n, dist(un, X) → 0, f(un) → c and
PHhn

PX⊕[un]grad f(un) → 0, then (un)n admits a subsequence which
converges.

Lemma 2.9. Let X be a closed subspace of H and denote by PX , QX the
orthogonal projections onto X,X⊥ respectively. Assume that PXPHn = PHnPX

for all n. Let c be a real number and let f satisfy (PS)∗c and ∇∗(X, c) with respect
to (Hn)n. Define the set C = {z ∈ H | ‖QXz‖ ≥ 1} and the map Φ : H\X → H,
by

Φ(z) = z − QXz

‖QXz‖ .
Then

(1) the function g = (f ◦ Φ)|C verifies the condition (PS)∗c with respect to
the sequence (Cn)n = (C ∩Hn)n,

(2) there are no critical points z for g such that g(z) = c and z ∈ ∂C.

Proof. We prove the first claim. Let (hn)n be a sequence in N with hn →
∞ and (zn)n be a sequence in C with zn ∈ Chn for all n, g(zn) → c and
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grad−
Chn

g(zn)→ 0. Set un = Φ(zn); obviously f(un)→ c. We first consider the
case zn /∈ ∂Chn for n large. Notice that, for n, h in N:

grad−
Ch
g(zn) = PHh

(
PX⊕[zn]gradf(un)

+
(

1− 1
‖QX(zn)‖

)
P(X⊕[zn])⊥grad f(un)

)
.

Using the commutation properties of the projections one can easily deduce that

PHhn
PX⊕[un]gradf(un)→ 0 and(2.9.1) (

1− 1
‖QX(zn)‖

)
PHhn

P(X⊕[un])⊥grad f(un)→ 0.

It is not possible that ‖QX(zn)‖ → 1 because in this case dist(un, X) → 0 and
the sequence (un)n would contradict ∇∗(X, c). So by (2.9.1) we get

PHhn
grad f(un)→ 0.

Using (PS)∗c for f it follows that (un)n admits a subsequence (ukn)n such that
ukn → u for some u in H \X . Since Φ is invertible in int (C), zkn → Φ−1(u).
It remains to consider the case zn ∈ ∂Chn for infinitely many n. We claim that
this case cannot occur. Actually if zn ∈ ∂Chn we have:

grad−
Chn

g(zn) = PHhn
(PX⊕[zn]gradf(un)− 〈grad f(un), QXzn〉+QXzn).

Using again the properties of the projections we get PHhn
PXgrad f(un)→ 0 and

again this fact contradicts the property ∇∗(X, c).
To have the second claim proved, just notice that, for z in ∂C, grad−g(z) =

PX⊕[z]gradf(Φ(z))− 〈grad f(Φ(z)), QXz〉QXz. �

Now we can state the main theorem of this section.

Theorem 2.10. Let f : H → R be a C1,1 function. Assume that 1 ≤
dimX2 <∞ and

sup f(T ) < inf f(S),

where T = TR,R1,R2 , S = Sρ, 0 ≤ R1 < ρ < R2 and R > 0. Let a = inf f(S)
and b = sup f(∆) (∆ = ∆R,R1,R2). Assume that b <∞ and

• (PS)∗c holds for any c in [a, b],
• ∇∗(X1 ⊕X3, c) holds for any c in [a, b].

Then f has at least two critical points in f−1([a, b]).

Proof. We argue as in the proof of Theorem 2.5: let C, Φ and g = (f ◦Φ)|C
be as in the proof of Theorem 2.5. By (1) of Lemma 2.9, g verifies (PS)∗c for
every c in [a, b] with respect to the sequence (Cn)n=(C ∩Hn)n. By Theorem 2.7,
g has two lower critical points z1, z2 in g−1([a, b]). By (2) of Lemma 2.9, zi /∈ ∂C
for i = 1, 2. Therefore ui = Φ(zi) are critical points for f in f−1([a, b]). �
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3. An abstract framework

Let H be a separable Hilbert space with inner product 〈 · , · 〉 and norm
‖ · ‖. Let L : H → H be a continuous, symmetric linear operator of the form
L = J +K, where J is an isomorphism and K is compact. Let ω : H → R be
a C1,1-function. We denote by Q the quadratic form Q(u) = 〈Lu, u〉 and define
the functional f : H → R by

f(u) =
1
2
Q(u)− ω(u).

In the sequel we shall use some of the following assumptions on ω.

(ω, 0) ω(0) = 0, ω(u) > 0 if u �= 0, gradω(u) = o(‖u‖) as u→ 0,
(ω,∞) there exist c > 0, µ > 2 and b in R such that ω(u) ≥ c‖u‖µ0 − b for

all u in H , where ‖ · ‖0 is a norm in H weaker than ‖ · ‖,
(Kω) gradω is a compact map,

(ω, ω′, 0) if ω′(u)(u)− 2ω(u) = 0, then gradω(u) = 0,
(ω, ω′,∞) if ‖un‖ → ∞ and (ω′(un)(un)− 2ω(un))/‖un‖ → 0, then there

exists (uhn)n and w in H such that

gradω(uhn)
‖uhn‖

→ w and
uhn

‖uhn‖
⇀ 0,

(ω, ω′) there exist ϕ, ψ : [0,∞[→ R continuous and such that ψ(s)/s→ 0
as s→ 0, ϕ(s) > 0 if s > 0,

‖gradω(u)‖2 ≤ ψ(ω(u)) for all u,

ω′(u)(u)− 2ω(u) ≥ ϕ(u) for all u.

Remark 3.1. If H = W 1,2
0 (Ω), Ω bounded subset of R

N , then the function

ω(u) =
∫

Ω

|u|p dx,

with 2 < p < 2∗, verifies all the above conditions.

Remark 3.2. The assumption L = J +K, J isomorphism and K compact
is equivalent to saying that there exist three closed subspaces H−, H0 and H+

which are mutually orthogonal and two numbers c−, c+ > 0 such that H0 =
ker(L), dim (H0) <∞, H = H− ⊕H0 ⊕H+ and

Q(u) ≥ c+‖u‖2 for all u in H+,

Q(u) ≤ −c−‖u‖2 for all u in H−.
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Definition 3.3. We shall consider H−, H0, H+, c+ and c− as in the pre-
vious remark and denote by P+ P 0 and P− the relative orthogonal projections.
Given a sequence (Hn)n of closed subspaces of H we shall consider the following
assumption:

(L,Hn) Hn = H−
n ⊕H0 ⊕H+

n where H+
n ⊂ H+, H−

n ⊂ H− for all n (H+
n and

H−
n are subspaces of H), dim (Hn) <∞, Hn ⊂ Hn+1,

⋃
n∈N

Hn is dense
in H .

In this situation we shall denote by PHn the ortogonal projections onto Hn.

Proposition 3.4. Assume that (ω,∞) holds. Then for every finite dimen-
sional space X we have:

sup f(X ⊕H0 ⊕H−) <∞, lim sup
‖u‖→∞

u∈X⊕H0⊕H−

f(u)
‖u‖2 < 0.

Proof. We first prove the second statement. We have:

(3.4.1)
f(u)
‖u‖2 ≤ ‖L‖‖P

+û‖2 − c‖û‖µ0‖u‖µ−2 +
b

‖u‖2 − c
−‖P−û‖2,

where û = u/‖u‖. Let ‖un‖ → ∞, two possible cases arise.

• ‖ûn‖0 → 0. In this case it follows that ûn ⇀ 0, hence P̂+u → 0 and
P̂ 0u → 0 (since they lie a finite dimensional space). Then ‖P−û‖ → 1
and then

lim sup
n→∞

f(un)
‖un‖2 ≤ −c

−.

• ‖ûn‖0 ≥ ε > 0. By (3.4.1) this implies

lim
n→∞

f(un)
‖un‖2 = −∞.

In any case the conclusion follows. In particular f ≤ 0 outside a suitable large
ball. On the other side, by (3.4.1), f is bounded on any bounded set, so the first
assertion follows. �

Lemma 3.5. Let (Hn)n verify the assumptions (L,Hn) and let (zn)n be a se-
quence such that

zn ∈ Hn for all n, PHnLzn → w (in H)

for a point w in H. Then Lzn → w. As a consequence, (since L = J + K) if
(zn)n is also bounded, then (zn)n has a subsequence which converges to a point
z such that Lz = w.

Proof. Since P+ P 0 and P− commute with PHn and with L we get

PHnLP
+zn → P+w, PHnLP

−zn → P−w, P 0w = 0.
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Let z+ be the unique point in H+ such that Lz+ = P+w, we claim that P+zn →
z+. We have

(0←) PHnLP
+zn − Lz+ = PHnL(P+zn − z+) + (PHnLz+ − Lz+)

hence
PHnL(P+zn − z+) = PHnL(P+zn − PHnz+)→ 0.

Then〈
PHnL(PHnz+ − P+zn), PHnz+ − P+zn

〉
=

〈
L(PHnz+ − P+zn), PHnz+ − P+zn

〉 ≥ c+‖PHnz+ − P+zn‖2

which gives

c+‖PHnz
+ − P+zn‖ ≤ ‖PHnL(PHnz+ − P+zn)‖ → 0.

So z+ − P+zn = (z+ − PHnz+) + (PHnz+ − P+zn)→ 0. In the same way, if z−
is such that Lz− = P−w, it follows P−zn → z− and the conclusion follows. �

Proposition 3.6. Let (Hn)n verify (L,Hn) and assume that (Kω) and
(ω, ω′,∞) hold. Then the functional f verifies (PS)∗c with respect to (Hn)n for
every real number c.

Proof. Let c ∈ R and (un)n be a sequence in N such that hn → ∞, (un)n

be a sequence such that

un ∈ Hhn for all n, f(un)→ c, PHhn
grad f(un)→ 0.

We claim that (un)n is bounded. If not, by contradiction, we can suppose ‖un‖ →
∞ and set ûn = un/‖un‖. Then〈

PHhn
grad f(un), ûn

〉
= 〈grad f(un), ûn〉 = 2

f(un)
‖un‖ −

ω′(un)(un)− 2ω(un)
‖un‖ ,

hence (ω′(un)(un)− 2ω(un))/‖un‖ → 0. By (ω, ω′,∞) this implies that

gradω(un)/‖un‖ converges and ûn ⇀ 0.

We get

0← PHhn
gradf(un)
‖un‖ = PHhn

Lûn − PHhn

gradω(un)
‖un‖

so (PHhn
Lûn)n converges. Using Lemma 3.5 and the fact that (ûn)n is bounded,

we obtain that (ûn)n has a limit (up to subsequences). Since ûn ⇀ 0 we get
ûn → 0 which is impossible because ‖ûn‖ = 1. So we have proved that (un)n is
bounded.

We can now suppose that un ⇀ u, for some u in H . By (Kω) we obtain that
gradω(un) → gradω(u), then (PHhn

Lun)n converges. Using Lemma 3.5 again,
we deduce that, up to a subsequence, (un)n converges to some u and it is trivial
to see that u is critical for I. �
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We can now state a preliminar existence result.

Theorem 3.7. Let (ω, 0), (ω,∞), (ω, ω′,∞) and (Kω) hold. Then f has
a nontrivial critical point.

Proof. For R, ρ positive real numbers and e in H we set

S+
ρ = {u ∈ H+ | ‖u‖ = ρ},

Σ−
R(e) = {u | u = se+ v, s ≥ 0, v ∈ H0 ⊕H+, ‖u‖ = R}

∪ {v ∈ H0 ⊕H+, ‖v‖ ≤ R},
∆−

R(e) = {u | u = se+ v, s ≥ 0, v ∈ H0 ⊕H+, ‖u‖ ≤ R}.

Then, using (ω, 0), we can find ρ small enough such that

a = inf f(S+
ρ ) > 0 = sup f(Ho ⊕H+).

Let e ∈ H+, using Proposition 3.4 and the fact that ω ≥ 0, we can find R large
enough such that

sup f(Σ−
R) = 0.

Moreover, we set b = sup f(∆−
R(e)), it is clear that b <∞.

Now let (Hn)n be a sequence of subspaces of H satisfying (L,Hn) (such
a sequence exists because H is separable). Clearly we can suppose e ∈ Hn for
all n. We have, for all n in N,

sup f(Σ−
R(e) ∩Hn) < inf f(S+

ρ ∩Hn).

Moreover, (PS)c holds for fn = f |Hn for any c in R, so, by linking arguments,
there exists a critical point un for fn with

a ≤ inf f(S+
ρ ∩Hn) ≤ f(un) ≤ sup f(∆−

R(e) ∩Hn) ≤ b.

Using the (PS)∗c condition, we obtain that, up to a subsequence, un → u, with u
a critical point for f such that a ≤ f(u) ≤ b (hence u �= 0). �

We introduce now a closed subspaceX ofH and denote by PX the orthogonal
projection onto X .

Lemma 3.8. Let (ω, ω′,∞) and (Kω) hold and let (Hn)n be a sequence of
subspaces of H satisfying (L,Hn). Moreover, assume that X has finite codimen-
sion in H. Then for any real number c and any sequence (un)n such that

un ∈ Hn for all n, f(un)→ c, PX⊕[un]PHngradf(un)→ 0,

there exists a subsequence of (un)n which converges to a point u such that f(u) =
0 and PX⊕[u]gradf(u) = 0. Here [u] = span{u} and PX⊕[u] is the orthogonal
projection onto X ⊕ [u] (and the same with un instead of u).
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Proof. We first prove that (un)n is bounded. If not, by contradiction, we
can suppose ‖un‖ → ∞ and we take ûn = un/‖un‖. We have:

0← 〈
PX⊕[un]PHngradf(un), ûn

〉
= 〈gradf(un), ûn〉

= 2
f(un)
‖un‖ −

ω′(un)(un)− 2ω(un)
‖un‖ .

Using (ω, ω′,∞) we deduce that (gradω(un)/‖un‖)n converges and ûn ⇀ 0.
Then PX⊕[un]PHnLûn converges and since PX is the sum of the identity plus a
compact operator (X has finite codimension), we get that PHnLûn converges. By
Lemma 3.5, we obtain that (ûn)n converges and this is contradictory since ûn ⇀

0 and ‖ûn‖ = 1. So (un)n is bounded and we can suppose that un ⇀ u for some
u in H . By (Kω) gradω(un) → gradω(u) so, by difference, (PX⊕[un]PHnLun)n

converges. As before this implies that (PHnLun)n converges and, by Lemma 3.5,
we have the conclusion. �

The following result is an immediate consequence of Lemma 3.8.

Corollary 3.9. Under the same assumptions of Lemma 3.8, if c is such
that f |X has no critical points u with f(u) = c, then f satisfies ∇∗(X, c).

We can now state a multiplicity theorem wich will allow to prove the main
results of the next section.

Theorem 3.10. Assume that (ω, 0), (ω,∞), (ω, ω′,∞) and (Kω) hold. Let
Y be a closed subspace of H+ with finite dimension. Suppose that

(3.10.1) sup
u∈H−⊕H0⊕Y

f(u) < inf{f(u) | f(u) > 0, u ∈ Y ⊥, gradf |Y ⊥(u) = 0}.

Then f has at least two distinct critical points u1, u2 such that, for i = 1, 2,

sup
ρ>0

inf
u∈H+, ‖u‖=ρ

f(u) ≤ f(ui) ≤ sup
u∈H−⊕H0⊕Y

f(u).

Proof. Set X1 = H−⊕H0, X2 = Y , X3 = (X1⊕X2)⊥(⊂ H+); we use the
notations introduced in Notations 2.1. We have that X2 ⊕X3 = H+, then, by
(ω, 0), there exists ρ > 0 such that a = inf f(Sρ) > 0.

By Proposition 3.4 it turns out that sup f(T ) = 0, where T = TR,0,R2 for R
and R2 large enough. Moreover, if b = sup f(∆) (∆ = ∆R,0,R2), then b <∞.

Let now (Hn)n be a sequence of subspaces ofH verifying (L,Hn). By (3.10.1)
f |X1⊕X3 has no critical levels between a and b, hence, by Corollary 3.9, f satisfies
∇∗(X1 ⊕X3, c) for any c in [a, b]. By Proposition 3.6 the (PS)c condition with
respect to (Hn)n holds, for any c in [a, b]. Using the∇Theorem 2.5 the conclusion
follows. �
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We consider now some conditions under which we are able to prove that
(3.10.1) holds. Such conditions will be useful in the next section. In the sequel
the following two lemmas will be applied to the restriction of f on Y ⊥.

Lemma 3.11. Assume that (ω, 0), (ω, ω′, 0), (ω, ω′,∞) and (Kω) hold. Sup-
pose that H0 = {0}. Then there exists ε in R such that ε > 0 and f has no
critical points u with 0 < |f(u)| < ε.

Proof. Since H0 = {0}, there exists a constant c > 0 such that

(3.11.1) ‖Lu‖ ≥ c‖u‖ for all u in H.

This fact and assumption (ω, 0) imply that 0 is an isolated critical point for f ,
that is there exists R > 0 such that 0 is the only critical point for f in the ball
BR(0).

We now claim that 0 is the only critical point u of f such that f(u) = 0.
Actually if u is such a point:

0 = 〈gradf(u), u〉 = f ′(u)(u) = 2f(u)− (ω′(u)(u)− 2ω(u))

⇒ (ω′(u)(u)− 2ω(u)) = 0 ⇒ gradω(u) = 0 ⇒ Lu = 0 ⇒ u = 0.

To conclude we argue by contradiction and suppose that there exists a sequence
(un)n such that grad f(un) = 0, f(un) �= 0 for all n and f(un) → 0. As in the
proof of Theorem 3.6 we can easily show that (un)n converges to a critical point
u with f(u) = 0. Then un → 0 but this contradicts the fact that 0 is an isolated
critical point. �

Lemma 3.12. Assume that (ω, ω′) hold. Then there exists a real number
ε = ε(ϕ, ψ, c+) > 0 such that, if f(u) ≥ 0 and grad f(u) = 0, then f(u) ≥ ε.

Proof. Let u be a critical point for f such that f(u) ≥ 0. Then

0 ≤ f(u) =
1
2

〈
LP+u, u

〉− 1
2

〈
LP−u, u

〉− ω(u)⇒ 2ω(u) ≤ 〈
LP+u, u

〉
.

Then

0 = gradf(u) = LP+u+ LP−u− gradω(u)

⇒ ψ(ω(u)) ≥ ‖gradω(u)‖2 = ‖LP+u‖2 + ‖LP−u‖2
≥ ‖LP+u‖2 ≥ c+ 〈

LP+u, u
〉 ≥ 2c+ω(u)⇒ ω(u) ≥ δ,

where δ is such that

0 < |s| < δ ⇒ ψ(s)
s

< 2c+.

Finally

f(u) =
ω′(u)(u)

2
− ω(u) ≥ 1

2
ϕ(ω(u)) ≥ ε

provided 2ε = inf{ϕ(s) | s ≥ δ} (ε > 0). �
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4. Some non-cooperative elliptic systems

In this section we deal with the following elliptic system

(ES)


−∆u = αu− δv + Fr(x, u, v),

∆v = −δu− γv + Fs(x, u, v),

u, v ∈W 1,2
0 (Ω),

where Ω is a bounded, connected open subset of R
N , N ≥ 3 (for the sake of

simplicity), α, γ and δ are real numbers, F : Ω× R× R→ R is a Carathéodory
function which has continuous derivatives Fr(x, r, s), Fs(x, r, s) with respect to r
and s, for almost any x in Ω. We shall consider the following assumptions on
the nonlinear term F :

F (x, 0, 0) = 0, F (x, r, s) > 0 if (r, s) �= (0, 0), inf
x∈Ω

r2+s2=R2

F (x, r, s) > 0,(F.0)

|Fr(x, r, s)| + |Fs(x, r, s)| ≤ a(|r|ν + |s|ν) for all x, r, s,(F.1)

rFr(x, r, s) + sFs(x, r, s) ≥ µF (x, r, s) for all x, r, s,(F.2)

|Fr(x, r, s)| + |Fs(x, r, s)| ≤ c(F (x, r, s)δ1 + F (x, r, s)δ2 ),(F.3)

where a ≥ 0, R > 0, µ ∈ ]2, 2∗[, ν ≤ 2∗−1− (2∗−µ)(1−2∗
′
/2∗) and 1/2 < δ1 ≤

δ2 ≤ 1/2∗′.

Remark 4.1. Assume (F.0) and (F.2) to hold. Then there exist a0, b0 in
R, with a0 > 0 such that

F (x, r, s) ≥ a0(|r|µ + |s|µ)− b0 for all x, r, s.

Proof. Let r, s be such that r2 + s2 ≥ R2. For t ≥ 1 we set ϕ(t) =
F (x, tr, ts). Then

ϕ′(t) = rFr(x, tr, ts) + sFs(x, tr, ts) ≥ µ

t
ϕ(t).

Multiplying by t−µ, we get (t−µϕ(t))′ ≥ 0, hence ϕ(t) ≥ ϕ(1)tµ for t ≥ 1. It
follows

F (x, r, s) ≥F
(
x,

Rr√
r2 + s2

,
Rs√
r2 + s2

)(√
r2 + s2

R

)µ

≥ c0
(√

r2 + s2

R

)µ

where c0 = inf{F (x, r, s) | x ∈ Ω, r2 + s2 = R2}. This implies the thesis. �

We observe that (ES) has the the solution u = v = 0 whatever α,γ and δ are.
To investigate the existence of other solutions we start by noticing that (ES) has
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a variational structure. If we define the functional I : W 1,2
0 (Ω) ×W 1,2

0 (Ω) → R

by

I(u, v) = I(α,γ,δ)(u, v) = Q(α,γ,δ)(u, v)−
∫

Ω

F (x, u, v) dx,

where

Q(α,γ,δ)(u, v) =
1
2

∫
Ω

(|Du|2 − αu2
)
dx+ δ

∫
Ω

uv dx− 1
2

∫
Ω

(|Dv|2 − γv2
)
dx,

then is is straightforward to see that I is of class C1,1 and that the solutions of
(ES) are exactly the critical points of I.

Using this framework it is possible to re-prove (see [2]) the following theorem,
by means of Theorem 3.7.

Theorem 4.2. Assume that (F.0)–(F.2) hold. Then for any α, γ and δ the
system (ES) has a nontrivial solution.

We want now to show that, using Theorem 3.10 based on the ∇-theorems
of Section 3 the existence of additional nontrivial solutions can be proved for
suitable α, γ, δ. We first need to introduce some notations.
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λ i
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λ i

δ > 0
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λ�1�

λ�2�
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C ’
λ i

C "
λ i

δ = 0

Figure 3. The sets Cλi

Notations 4.3. We denote by (λi)i∈N the sequence of the eigenvalues of −∆
in W 1,2

0 (Ω) (λ1 < λ2 ≤ λ3 ≤ . . . ) and by (ei)i∈N the associated eigenfunctions.
Let λi be given; we denote by Hλi the subspace spanned by all ej with λj = λi.
We also set:

qλi(α, γ, δ) = (α− λi)(γ − λi) + δ2,

Cλi = {(α, γ, δ) ∈ R
3 | qλi(α, γ, δ) ≤ 0},

C′
λi

= Cλi ∩ {α ≥ γ}, C′′
λi

= Cλi ∩ {α ≤ γ}
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(see Figure 3). Moreover, we denote by µ+
λi

and µ−
λi

the eigenvalues of the 2× 2

matrix
(

λi−α δ

δ γ−λi

)
, namely

µ±
λi

=
1
2
(γ − α±

√
(γ − α)2 + 4qλi(α, γ, δ)).

Moreover, we denote by (c+λi
, d+

λi
) and (c−λi

, d−λi
) the eigenvectors of

(
λi−α δ

δ γ−λi

)
corresponding to µ+

λi
and µ−

λi
respectively (if µ+

λi
= µ−

λi
they can be choosen at

will, provided they are orthogonal).
Finally we denote by W the space W 1,2

0 (Ω)×W 1,2
0 (Ω), set

Eλi = {(ce, de) ∈ W | (c, d) ∈ R
2, e ∈ Hλi},

E+
λi

= {(c+λi
e, d+

λi
e) ∈W | e ∈ Hλi},

E−
λi

= {(c−λi
e, d−λi

e) ∈W | e ∈ Hλi},

and denote by H+
α,γ,δ, H

+
α,γ,δ and H0

α,γ,δ the positive, negative and null space
relative to the quadratic form Q in W .

The following proposition can be proved with easy computations (see [2]).

Proposition 4.4. Let (α, γ, δ) ∈ R
3.

(1) E+
λi

and E−
λi

are eigenspaces for the operator Lα,γ,δ : W →W associated
with Qα,γ,δ, with eigenvalues µ+

λi
/λi and µ−

λi
/λi, respectively. These

spaces generate W as i spans N. Notice that

lim
i→∞

µ−
λi
/λi = −1, lim

i→∞
µ+

λi
/λi = 1,

and lim(α,γ,δ)→(α0,γ0,δ0) µ
±
λi

(α, γ, δ) = µ±
λi

(α0, γ0, δ0) uniformly, with re-
spect to i in N.

(2) We have:

H−
α,γ,δ =

( ⊕
µ−

λi
<0

E−
λi

)
⊕

( ⊕
µ+

λi
<0

E+
λi

)
,

H0
α,γ,δ =

( ⊕
µ−

λi
=0

E−
λi

)
⊕

( ⊕
µ+

λi
=0

E+
λi

)
,

H+
α,γ,δ =

( ⊕
µ−

λi
>0

E−
λi

)
⊕

( ⊕
µ+

λi
>0

E+
λi

)
.

In particular H0
α,γ,δ �= {0} ⇔ (α, γ, δ) ∈ ⋃

i∈N
∂Cλi and in any case

dim (H0
α,γ,δ) <∞.

The following lemma is a straightforward consequence of the above relations.
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Lemma 4.5. Let i ∈ N. Let (α0, γ0, δ0) ∈ ∂C′
λi

. Then there exists a neigh-
bourhood U ′ of (α0, γ0, δ0) in R

3 such that:

(1) for all (α, γ, δ) in U ′ \ C′
λi
H+

α,γ,δ can be split as an orthogonal sum
X2(α, γ, δ)⊕X3(α, γ, δ), where dim (X2(α, γ, δ)) <∞ and

inf{Qα,γ,δ(w) | ‖w‖ = 1, w ∈ X3(α, γ, δ), (α, γ, δ) ∈ U ′ \ C′
λi
}(4.5.1)

= K+ > 0,

lim
(α,γ,δ)→(α0,γ0,δ0)

(α,γ,δ)∈U ′\C′
λi

sup{Qα,γ,δ(w) | ‖w‖ = 1, w ∈ X2(α, γ, δ)} = 0,

(2) if (α0, γ0, δ0) �= (λi, λi, 0) and

(4.5.2) (α, γ, δ) ∈ U ′ \
⋃
j∈N

(α0,γ0,δ0)∈∂C′
λj

C′
λj
,

then

H0 = {0},(4.5.3)

sup{Qα,γ,δ(w) | ‖w‖ = 1, w ∈ H−
α,γ,δ, (4.5.2) holds} < 0.

Now let (α0, γ0, δ0) ∈ ∂C′′
λi

. Then there exists a neighbourhood U ′′ of (α0, γ0, δ0)
in R

3 such that:

(3) conclusion (1) holds with U ′ \ C′
λi

replaced by U ′′ ∩ int (C′′
λi

);
(4) conclusion (2) holds with U ′ \⋃

j∈N,(α0,γ0,δ0)∈∂C′
λj

C′
λj
, replaced by

U ′′ ∩
( ⋂

j∈N

(α0,γ0,δ0)∈∂C′′
λj

int (C′′
λj

)
)
,

and without requiring (α0, γ0, δ0) �= (λi, λi, 0).

Also the following remark is easy to check.

Remark 4.6. Let i ∈ N and let (F.0)–(F.2) hold. If (α0, γ0, δ0) ∈ ∂C′
λi

,
using the notations of Lemma 4.5, we have

lim
(α,γ,δ)→(α0,γ0,δ0)

(α,γ,δ)∈U ′\C′
λi

sup{Iα,γ,δ(w) | w ∈ H−
α,γ,δ ⊕H0

α,γ,δ ⊕X2(α, γ, δ)} = 0.

Moreover, there exists r > 0 such that

lim
(α,γ,δ)→(α0,γ0,δ0)

(α,γ,δ)∈U ′\C′
λi

inf{Iα,γ,δ(w) | w ∈ X3(α, γ, δ), ‖w‖ = r} > 0.
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In the same fashion, if (α0, γ0, δ0) ∈ ∂C′′
λi

, then

lim
(α,γ,δ)→(α0,γ0,δ0)

(α,γ,δ)∈U ′′∩int(C′′
λi

)

sup{Iα,γ,δ(w) | w ∈ H−
α,γ,δ ⊕H0

α,γ,δ ⊕X2(α, γ, δ)} = 0

and there exists r > 0 such that

lim
(α,γ,δ)→(α0,γ0,δ0)

(α,γ,δ)∈U ′′∩int (C′′
λi

)

inf{Iα,γ,δ(w) | w ∈ X3(α, γ, δ), ‖w‖ = r} > 0.

We can finally state our multiplicity results for (ES). The following theo-
rem can be compared with the results of [8] and shows that under the same
assumptions more solutions can be found by means of the ∇-theorems.

Theorem 4.7. Assume that (F.0)–(F.2) hold and let i ∈ N.

(1) For any (α0, γ0, δ0) in ∂C′
λi
\{(λi, λi, 0)} there exists a neighbourhood U ′

of (α0, γ0, δ0) such that for (α, γ, δ) in U ′ \⋃{C′
λj
| (α0, γ0, δ0) ∈ ∂C′

λj
}

problem (ES) has at least three nontrivial solutions and I has at least
two nontrivial critical levels.

(2) For any (α0, γ0, δ0) in ∂C′′
λi

there exists a neighbourhood U ′′of (α0, γ0, δ0)
such that for (α, γ, δ) in U ′′ ∩ ⋂{int(C′′

λj
) | (α0, γ0, δ0) ∈ ∂C′′

λj
} prob-

lem (ES) has at least three nontrivial solutions and I has at least two
nontrivial critical levels.
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Figure 4. The three solutions zones of Theorem 4.7

Proof. By Lemma 4.9 which follows (ω, 0), (ω,∞), (ω, ω′, 0), (ω, ω′,∞)
and (K,ω) hold. It is also clear that the operator Lα,γ,δ associated with Qα,γ,δ

is the sum of an isomorphism and of a compact operator. By Proposition 4.4 it
is possible to constuct a sequence (Hn)n such that (L,Hn) is verified.

Let for instance (α0, γ0, δ0) ∈ ∂C′
λi
\{(λi, λi, 0)} and let U ′ as in Lemma 4.5.

For (α, γ, δ) in U ′ \ ⋃{C′
λj
| (α0, γ0, δ0) ∈ ∂C′

λj
} we set X1 = H−

α,γ,δ, X2 =
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X2(α, γ, δ), X3 = X3(α, γ, δ), with the notations of Lemma 4.5. With this
splitting we can apply Lemma 3.11 (on X1 ⊕X3) and Remark 4.6 to get that,
up to shrinking U ′, (3.10.1) holds true (with Y = X2). Applying Theorem 3.10
we obtain that there exist two distinct solutions u1, u2 of (ES) such that

(4.7.1) 0 < I(uj) ≤ sup I(X1 ⊕X2) for j = 1, 2.

Moreover, by Remark 4.6, up to shrinking U ′, there exists r > 0 such that

sup I(X1 ⊕X2) < inf{I(w) | w ∈ X3, ‖w‖ = r} = a.

Let e be in X3, e �= 0. By Proposition 3.4

lim
w∈X1⊕X3⊕[e]

‖w‖→∞

I(w) = −∞.

Arguing as in the proof of Theorem 3.7 one can find a third critical point u3

such that I(u3) ≥ a, so the conclusion follows. �

Theorem 4.8. Assume that (F.0)–(F.3) hold. Then for any i in N there
exist a neighbourhood U ′

λi
of ∂C′

λi
and a neighbourhood U ′′

λi
of ∂C′′

λi
such that

for (α, γ, δ) in (U ′
λi
\ C′

λi
) ∪ (U ′′

λi
∩ int(C′′

λi
)) problem (ES) has at least three

nontrivial solutions.

α�

γ�

2�

i�

λ�1�+�i�

λ�

λ�

λ�1�

λ�1� λ�2� λ�i� λ�1�+�i� λ�1� λ�2� λ�i� λ�1�+�i�

α�

λ�1�

λ�2�

λ�i�

λ�1�+�i�

γ�

δ > 0δ = 0

Figure 5. The three solutions zones of Theorem 4.8

Proof. By Lemma 4.9 and Lemma 4.11 (ω, 0), (ω,∞), (ω, ω′), (ω, ω′,∞)
and (K,ω) hold. Let (α0, γ0, δ0) ∈ ∂C′

λi
\ {(λi, λi, 0)}, let U ′ and K+ be as in

Lemma 4.5 and, for (α, γ, δ) in U ′ \ C′
λi

, X1 = H−
α,γ,δ, X2 = X2(α, γ, δ) and

X3 = X3(α, γ, δ). Then, for w in X3, Qα,γ,δ(w)K+ ≥ ‖w‖2. By Lemma 3.12,
there exists ε > 0 such that

inf I(w) | w �= 0, grad I|X1⊕X3(w) = 0 ≥ ε
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for all (α, γ, δ) in U ′\C′
λi

. By Remark 4.6, up to shrinking U ′, condition (3.10.1)
is fulfilled (with Y = X2). Therefore for all (α, γ, δ) in U ′ \ C′

λi
there exist two

distinct critical points u1 and u2 such that (4.7.1) holds. The existence of the
third critical point can be proved exactly as in Theorem 4.7. �

It remains to prove the following lemmas, mentioned in the above proofs.

Lemma 4.9. Assume that (F.0)–(F.2) hold. Then the function ω : W → R

defined by

ω(u, v) =
∫

Ω

F (x, u, v) dx

verifies the conditions (ω, 0), (ω,∞), (ω, ω′, 0), (ω, ω′,∞) and (K,ω).

Proof. Condition (ω, 0) follows from (F.0) and (F.1), since 1 < ν < 2∗− 1.
Condition (ω,∞) is a consequence of Remark 4.1, taking ‖u‖0 = ‖u‖Lµ . Condi-
tion (ω, ω′, 0) is implied by (F.2) and the fact that F (x, r, s) > 0 for (r, s) �= (0, 0).

To check (ω, ω′,∞) notice that

ω′(w)(w) − 2ω(w) ≥ (µ− 2)
∫

Ω

F (x,w) dx ≥ (µ− 2)(a0‖w‖µLµ − b0)

(w = (u, v), we are using (F.2) and Remark 4.1. On the other hand, using (F.1),
we have

‖gradω(w)‖ ≤ C1‖Fw(x,w)‖L2∗′ ≤ C2‖|w|ν‖L2∗′ ,

(for suitable constants C1, C2). To get the conclusion it suffices to estimate
‖|w|ν/‖w‖‖L2∗′ in terms of ‖w‖µLµ/‖w‖. If µ ≥ 2∗′ν this is an easy consequence
of Hölder’s inequality, otherwise we use Lemma 4.10 which follows, noticing that,
the assumptions on µ and ν imply

(4.9.2) ν ≤ 2∗ − 1− (2∗ − µ)
(

1− 2∗′

2∗

)
.

Condition (K,ω) is easily obtained with standard arguments. �

The following lemma is easily proved by standard interpolation arguments.

Lemma 4.10. If µ and ν are two numbers such that 1 < µ ≤ 2∗′ν < 2∗, then
there exists a constant C such that∥∥∥∥ |w|ν‖w‖

∥∥∥∥
L2∗′
≤ C

(‖w‖µLµ

‖w‖
)να/µ

‖w‖β ,

where α is such that α/µ+ 1− α/2∗ = 1/2∗′ν for α > 0 and β = (1 − α)ν − 1
−να/µ. If (4.9.2) holds, then β ≤ 0.

Proof. This is a consequence of standard interpolation inequalities. �
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Lemma 4.11. Let the whole set of assumptions (F.0)–(F.3) holds. Then ω

satisfies condition (ω, ω′).

Proof. Set w = (u, v) as before. By (F.3), for all w:

‖gradω(w)‖ ≤ ‖Fw(x,w)‖L2∗′

≤ const‖F (x,w)δ1 + F (x,w)δ2‖L2∗′

≤ const(‖F (x,w)δ1‖L2∗′ + ‖F (x,w)δ2‖L2∗′ )

≤ const(‖F (x,w)δ1‖L1/δ1 + ‖F (x,w)δ2‖L1/δ2 )

≤ const(‖F (x,w)‖δ1
L1 + ‖F (x,w)‖δ2

L1)

= const(ω(w)δ1 + ω(w)δ2),

which gives the first condition in (ω, ω′), since δ1, δ2 > 1/2. The second condition
in (ω, ω′) follows immediately from (4.9.1). �

5. Appendix

We briefly recall here the notion of relative category. Several slightly different
definitions can be found in the literature; we shall use the version of [5], although
any other one would serve to our porpouse as well.

Let X be a topological space and Y be a closed subspace of X .

Definition 5.1. Let A be a closed subset of X with Y ⊂ A. We define the
relative category of A in (X,Y ), which we denote by cat X,Y (A), as the least
integer h such that there exist h+1 closed subsets U0, . . . , Uh with the following
properties:

• A ⊂ U0 ∪ . . . ∪ Uh,
• U1, . . . , Uh are contractible in X ,
• Y ⊂ U0 and there exists a continuous map H : U0 × [0, 1] → X such

that
H(x, 0) = x for all x in U0,

H(x, t) ∈ Y for all x in Y and all t in [0, 1],

H(x, 1) ∈ Y for all x in U0.

If such an h does not exist, we say that cat X,Y (A) =∞.

Relative category is connected with homology and cohomology groups as
shown by the following theorem (see e.g. [5]).

Theorem 5.2. Assume that there exist h+1 integers p0, . . . , ph, with pi ≥ 1
for i = 1, . . . , h, and there exist α0 in Hp0(X,Y ), αi in Hpi(X), for i = 1, . . . , h,
such that α0 ∪ . . . ∪ αh �= 0 (in this case one says that the relative cuplength of
(X,Y ) is greater than or equal to h). Then cat X,Y (X) ≥ h+ 1.
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Now we recall, in a suitable form, a theorem which gives an estimate of the
number of critical points of a functional, in terms of the relative category of its
sublevels. Let H be a Hilbert space, with inner product 〈 · , · 〉 and norm ‖ · ‖
and let M be a C1,1, complete submanifold with boundary. Let g : M → R be a
C1,1-function.

Definition 5.3. If u ∈ M we define the lower gradient of g at u, denoted
by grad−

Mg(u), as

grad−
Mg(u) =

{
PTu(M)grad g̃(u) if u /∈ ∂M ,

PTu(M)grad g̃(u) + 〈grad g̃(u), ν(u)〉 ν(u) if u ∈ ∂M ,

where g̃ is any C1,1 extension of g to a neighbourhood of M , PTu(M) denotes the
orthogonal projection onto the tangent space Tu(M) to M at u and ν(u) (which
is an element of Tu(M)) is the unit normal vector to M at u pointing outwards.
As well known this definition does not depend on the way g̃ is choosen.

Definition 5.4. Let c ∈ R. We say that g satisfies the Palais–Smale con-
dition at level c, briefly (PS)c holds, if for any sequence (un)n in M such that
g(un) → c and grad−

Mg(un) → 0 there exists a subsequence (unk
)k which con-

verges to a point u in M such that (g(u) = c and) grad−
Mg(u) = 0.

Theorem 5.5. Let Y be a closed subset of M . For any integer i we set

ci = inf{sup g(A) | A is closed, Y ⊂ A, cat M,Y (A) ≥ i}.

Assume that (PS)c holds for c = ci and that sup g(Y ) < ci < ∞. Then ci is
a lower critical level for g, that is there exists u in M such that g(u) = ci and
grad−

Mg(u) = 0. Moreover, if ci = . . . = ci+j = c, then

cat M ({u ∈M | g(u) = c, grad−
Mg(u) = 0}) ≥ j + 1.

Proof. The theorem can be proved repeating the classical arguments (see
e.g. [5]), using a deformation lemma for functions on manifolds with boundary.
The latter can be obtained, for example, by means of the theory of C(p, q)
functions (see e.g. [3], [4]). �

We need in the following a version of the previous theorem suited to treat
strongly indefinite functionals. In this case the notion of limit relative category
turns out to be a very useful tool (see [5]). We recall here, briefly, a simplified
version of it.

In the following we denote by (Mn)n a sequence of submanifolds of M .
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Definition 5.6. Let Y be a closed subset of M . For any closed subset A
of M such that Y ⊂ A we define the limit relative category of A in (M,Y ), with
respect to (Mn)n, as

cat∗M,Y (A) = lim sup
n→∞

cat Mn,Y ∩Mn(A ∩Mn).

Definition 5.7. Let c ∈ R. We say that g satisfies the limit Palais–Smale
condition at level c, briefly (PS)∗c holds, with respect to the sequence (Mn)n, if
for any sequences (hn)n in N with hn →∞ and (un)n in M such that un ∈Mhn

for all n, g(un) → c and grad−
Mhn

g(un) → 0 there exists a subsequence (unk
)k

which converges to a point u in M such that (g(u) = c and) grad−
Mg(u) = 0.

Also the following theorem can be proved like the classical one.

Theorem 5.8. Assume that for all n in N there exists a retraction rn : M →
Mn. Let Y be a closed subset of M . For any integer i we set

c∗i = inf{sup g(A) | A is closed, Y ⊂ A, cat∗M,Y (A) ≥ i}.
Assume that (PS)∗c holds for c = c∗i , with respect to (Mn)n and that

sup g(Y ) < c∗i <∞.
Then c∗i is a lower critical level for g. Moreover, if c∗i = . . . = c∗i+j = c, then

cat M ({u ∈M | g(u) = c, grad−
Mg(u) = 0}) ≥ j + 1.
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