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STABILITY OF PRINCIPAL EIGENVALUE
OF THE SCHRÖDINGER TYPE PROBLEM

FOR DIFFERENTIAL INCLUSIONS

Grzegorz Bartuzel — Andrzej Fryszkowski

Abstract. Let Ω ⊂ R3 be a bounded domain. Denote by λ1(m) the prin-

cipal eigenvalue of the Schrödinger operator Lm(u) = −∇2u−mu defined

on H1
0 (Ω) ∩W 2,1(Ω). We prove that λ1 : L3/2(Ω)→ R is continuous.

Consider differential inclusion

(∗)

{
−∇2x ∈ F(t, x),

x|∂Ω = 0,

where t runs over bounded domain Ω ⊂ Rn with sufficiently smooth boundary
Γ = ∂Ω, ∇2 is Laplace operator in Ω and F is a Lipschitzean multifunction with
a constant m ∈ Lp(Ω), i.e.

distH(F(t, x),F(t, y)) ≤ m(t)|x− y|.

By a solution (∗) we mean a function x ∈ H1
0 (Ω) ∩W 2,1(Ω) such that

−∇2x ∈ F(t, x(t))

for a.e. t ∈ Ω. In the paper [2] we examined the case n = 1 i.e.

(∗∗)

{
−x′′ ∈ F(t, x) for t ∈ [0;π],

x(0) = 0 = x(π).
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We have proved that if m is sufficiently small then the set of solutions of (∗∗)
is an absolute retract. The main tool used in [2] were the spectral properties of
the operator Lm = −∇2−m extended to Sobolev space H1

0 and in particular the
stability property of the principal eigenvalue of the operator Lm, m ∈ L1. Having
this property we were able to renorm L1, in such a way that the solution set of
(∗∗) is the set fixed of points of certain multivalued contraction and then apply
the B-C-F theorem [3], [6] on properties of the set of fixed points. Transfering
of these methods to the case of Rn it seems to be possible however it demands
thorough study of spectral properties of the operator

Lmx = −∇2x−m · x for x ∈ H1
0 .

In particular, we need to examine the stability properties of the principal eigen-
value of the operator Lm in dependence on m ∈ Lp with properly chosen p. We
should point out that spectral properties of the operator Lm are well known, in
case m is a sufficiently smooth function. The results, known in the literature,
concerning the stability of the principal (or others) eigenvalue of the operator
Lm seem not to cover our case m ∈ Lp. In this paper we deal with Lm for
t ∈ Ω ⊂ R3, where Ω is bounded domain and m ∈ L3/2.

Let Ω ⊂ R3 be a bounded domain with sufficiently smooth boundary Γ and
H1

0 (Ω) be a Sobolev space i.e. a completion in the norm

‖ u ‖ = (‖∇u‖2 + ‖u‖2)1/2,

of the space C∞0 (Ω) = {u : Ω → R | suppu ⊂ Ω} of infinitely many times
differentiable functions where ‖u‖p =

( ∫
Ω

|u|p
)1/p, is a norm in Lp with obvious

modification for p = ∞. Moreover,

W 2,p = {u ∈ Lp | ∂i∂ju ∈ Lp, i, j = 1, 2, 3}.

Then H1
0 can be continuously embedded in L6 and compactly embedded in L2.

The latter means in particular that there exists a constant S such that

(1)
( ∫

Ω

|u(t)|6 dt

)1/6

≤ S‖ u ‖

for u ∈ H1
0 . Moreover, for m ∈ L3/2 the space H1

0 can be continuously embedded
in L2(m) = {u | u2m ∈ L1}, because from (1) and the Hölder inequality we have

(2)
∫

Ω

mu2 ≤
(∫

Ω

m3/2

)2/3 (∫
Ω

|u2|3
)1/3

≤‖ m ‖2/3
3/2 S2‖ u ‖2

.

Consider a quadratic form

(3) Dm[u] =
∫

Ω

(|∇u|2 −mu2) dt
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and let

(4) Dm[u, v] =
∫

Ω

(∇u∇v −muv) dt

be the corresponding bilinear form. It generates the operator Lm by the formula
〈Lmu, v〉. The previous remarks mean, in particular, that the domain of Lm

contains H1
0 . Let

(5) H[u] =
∫

Ω

u2(t) dt.

In case, when m = 0 it is known [5], that there exists a number

(6) λ1 = λ1(Ω) := inf
0 6=u∈H1

0

D0[u]
H[u]

and it is the principal eigenvalue of the Laplace operator L0u = −∇2u, for
u ∈ H1

0 . Therefore, there exists an eigenfunction u1 ∈ H1
0 such that

(7) −∇2u1 = λ1(Ω)u1 for u1|Γ = 0.

Moreover, there exists λ1(Ω) < λ2 ≤ λ3 ≤ . . . , such that limn→∞ λn = ∞
and λ1, . . . , λn are consequtive eigenvalues of L0. The relation (6) means, in
particular, that for arbitrary u ∈ H1

0 we have∫
Ω

|∇u|2 ≥ λ1(Ω)
∫

Ω

|u|2(8)

and ∫
Ω

|∇u1|2 = λ1(Ω)
∫

Ω

|u1|2.(9)

We shall show that the operator Lm posses analogous properties for m ∈ L3/2.
The most methods used are based on the monograph [5]. We begin with

Proposition 1. Let mn → m0 in L3/2. Then for arbitrary ε > 0, there
exists a constant Kε > 0 such that

(10)
∫

Ω

mnu2(t) dt ≤ ε

∫
Ω

|∇u|2 dt + Kε

∫
Ω

|u(t)|2 dt.

Proof. Let S be a constant such that

(11)
{∫

Ω

u6(t) dt

}1/6

≤ S

{∫
Ω

[|∇u|2 + |u(t)|2] dt

}1/2

.

Fix ε > 0 and pick N such that

‖mn −m0‖3/2 < ε/2S2 for n > N.



184 G. Bartuzel — A. Fryszkowski

Observe that the function max0≤i≤N |mi(t)| ∈ L3/2 and therefore

lim
K→∞

µ{t | max
0≤i≤N

|mi(t)| > K − ε} = 0.

Applying the Vitali–Hahn–Saks Theorem we conclude that there exists a con-
stant Kε such that on the set

Ωε = {t | max
0≤i≤N

|mi(t)| > Kε − ε}

is satisfied the following inequality∫
Ωε

|mn(t)|3/2
dt ≤ ε3/2

2
√

2S3

for n = 0, 1, . . . To see that (10) holds we have to consider two cases.
(a) If n ≤ N , then∫

Ω

mnu2 =
∫

Ω\Ωε

mnu2 +
∫

Ωε

mnu2

≤ (Kε − ε)
∫

Ω\Ωε

u2 +
{∫

Ωε

m3/2
n

}2/3 {∫
Ωε

(u2)3
}1/3

≤ (Kε − ε)
∫

Ω

u2 +
ε

2S2
S2

{∫
Ω

[(u2) + |∇u|2]
}

=
ε

2

∫
Ω

|∇u|2 +
(

Kε −
ε

2

) ∫
Ω

|u|2.

(b) For n > N we have∫
Ω

mnu2 ≤
∫

Ω

|mn −m0|u2 +
∫

Ω

m0u
2

≤
{∫

Ω

|mn −m0|3/2

}2/3 {∫
Ω

|u2|3
}1/3

+
∫

Ω

m0u
2

≤ ‖mn −m0‖3/2

{∫
Ω

u6

}2×1/6

+
ε

2

∫
Ω

|∇u|2 + (Kε − ε)
∫

Ω

u2

and from (a) it can be estimated by

≤ ε

2S2
S2

∫
Ω

|∇u|2 + u2 +
(

Kε −
ε

2

) ∫
Ω

u2 = ε

∫
Ω

|∇u|2 + Kε

∫
Ω

u2. �

Proposition 2. Let mn → m0 in L3/2. Then there exists a constant K > 0
such that

(12)
∫

Ω

mnu2(t) dt ≤ 1
2

∫
Ω

|∇u|2 dt + K

∫
Ω

|u(t)|2 dt
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for n = 0, 1, . . . and u ∈ H1
0 ,

‖ u ‖2 ≤ 2Dmn [u] + (2K + 1)H[u];(13)
Dmn

[u]
H[u]

≥ 1
2
λ1(Ω)−K.(14)

Proof. To obtain (12) put in Proposition 1 ε = 1/2 and K = K1/2. Observe
that from (12) we have

1
2
‖ u ‖2 =

1
2

∫
Ω

|∇u|2 +
1
2

∫
Ω

u2 = Dmn
[u] +

∫
Ω

mnu2 − 1
2

∫
Ω

|∇u|2 +
1
2
H[u]

≤ Dmn
[u] + (K +

1
2
)H[u]

and thus (13).
To prove (14) observe that from (12) it follows that

Dmn
[u] =

∫
Ω

|∇u|2 −
∫

Ω

mn|u|2

≥
∫

Ω

|∇u|2 − 1
2

∫
Ω

|∇u|2 −K

∫
Ω

|u|2 =
1
2
D0[u]−KH[u]

and so

Dm[u] ≥
[
1
2
λ1(Ω)−K

]
H[u].

Now we divide the last inequlity by H[u] > 0 and this yields (14). �

Corollary 1. Let mn → m0 in L3/2. Then there exists constant K > 0
such that for all n = 0, 1, . . .

inf
0 6=u∈H1

0

Dmn
[u]

H[u]
≥ 1

2
λ1(Ω)−K > −∞.

Corollary 2. There exists a constant C such that for arbitrary u ∈ H1
0 we

have
〈Lmu, u〉 ≥ 1

2

∫
Ω

|∇u|2 − C

∫
Ω

|u|2.

Corollary 3. The operator Lm is continuous on H1
0 since the quadratic

form Dm is continuous.

Proof. Let uk → u0 in H1
0 . Then from (12) we have∫

Ω

m(t)(uk(t)− u0(t))2 dt → 0,

i.e. uk → u0 in L2(m). Therefore
∫
Ω

m(t)(uk(t))2 dt →
∫
Ω

m(t)(u0(t))2 dt, and
hence

Dm[uk] → Dm[u0].

Similarly 〈Lmu, v〉 = Dm[u, v] is a continuous bilinear form on H1
0 . �
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Proposition 3. Assume that there exists a function u1 ∈ H1
0 such that

inf
0 6=u∈H1

0

Dm[u]
H[u]

=
Dm[u1]
H[u1]

= λ1.

Then λ1 and u1 are, respectively, an eigenvalue and an eigenfunction of Lm, i.e.
−∇2u1 ∈ L6/5 and

(−∇2 −m)u1 = λ1u1.

Proof. For any 0 6= u ∈ H1
0 denote by F [u] = Dm[u]/H[u]. Then

(15) inf
0 6=u∈H1

0

F [u] = F [u1] = λ1.

Fix ϕ ∈ H1
0 . Then taking into account (15) we have, for arbitrary ε ∈ R, an

inequality

(16) F [u1 + εϕ] ≥ F [u1].

We shall show that there exists the variation d
dεF [u1 + εϕ]|ε=0, it is represented

by the Gateaux derivative and it vanishes. Denote by h(ε) = F [u1 + εϕ] and
notice that h is a differentiable function, since it is a composition of an affine
function and the quotient of continuous quadratic forms on H1

0 (and therefore
Frechet’s differentiable). It assumes the minimum at t = 0, i.e. h(0) ≤ h(ε).
Thus from Fermat’s Lemma we get h′(0) = 0. One can easily check that

(17) h′(0) = {H[u1]}−12
{∫

Ω

(∇u1∇ϕ−mu1ϕ− λ1u1ϕ)
}

.

Hence

Dm[u1, ϕ] = λ1

∫
Ω

u1ϕ for all ϕ ∈ H1
0 ,

i.e. Lmu1 = λ1u1 and −∇2u1 = λ1u1 + mu1 ∈ L6 + L3/2L6 ⊂ L6/5. Indeed,

DF [u1] · ϕ = {H[u1]}−1Dm[u1, ϕ]− {H[u1]}−2H[u1, ϕ]Dm[u1]

= {H[u1]}−1

{
Dm[u1, ϕ]− λ1

∫
Ω

u1ϕ

}
for u1 6= 0, and so

d

dε
h(ε)

∣∣∣∣
ε=0

= DF [u1 + εϕ] · d

dε
(u1 + εϕ)

∣∣∣∣
ε=0

= {H[u1]}−1

{
Dm[u1, ϕ]− λ1

∫
Ω

u1ϕ

}
. �
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Proposition 4. Denote by K = {ϕ ∈ H1
0 | H[ϕ] = 1}. Then there exists

a function u1 ∈ K such that for every u ∈ K the following inequality

Dm[u1] ≤ Dm[u]

holds.

Proof. Put λ1 = infu∈K Dm[u]. From Proposition 1 we can conclude that
Dm[u] ≥ λ1(Ω)/2− C for arbitrary u ∈ K. Hence

(18) λ1 ≥ λ1(Ω)/2− C > −∞.

Consider a sequence {ϕk} ⊂ K, k = 1, . . . such that

(19) Dm[ϕk] → λ1 for k →∞.

Since from (13) in Proposition 2 we have ‖ ϕk ‖2 ≤ 2Dm[ϕk] + (2C + 1) then
from (17) one can conclude that the sequence {ϕk} ⊂ K is bounded in H1

0 .
Hence it relatively compact in L2(Ω) and, passing to a subsequence, we may
assume that ϕk → u1 in L2. The latter, in particular, means that

(20) H[ϕk − u1] → 0 for k →∞.

We shall check that u1 is a required function. Let us notice that

(21) H

[
ϕk − ϕl

2

]
+ H

[
ϕk + ϕl

2

]
=

1
2
H[ϕk] +

1
2
H[ϕl] = 1

and

(22) Dm

[
ϕk − ϕl

2

]
+ Dm

[
ϕk + ϕl

2

]
=

1
2
Dm[ϕk] +

1
2
Dm[ϕl].

From (21) and (20) we see that

(23) H

[
ϕk − ϕl

2

]
→ 0 when k, l →∞

and H[(ϕk + ϕl)/2] → 1 as k, l →∞. From the definition of λ1 one can easily
see that for arbitrary k, l we have

Dm

[
ϕk + ϕl

2

]
≥ H

[
ϕk + ϕl

2

]
λ1.

Thus, from (22), we have

lim inf
k,l→∞

Dm

[
ϕk + ϕl

2

]
≥ λ1.
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Fix ε > 0. Then there exist n0 such that for k, l ≥ n0 the following inequalities

H

[
ϕk − ϕl

2

]
≤ ε,

Dm

[
ϕk + ϕl

2

]
≥ λ1 − ε,

Dm[ϕk], Dm[ϕl] ≤ λ1 + ε

hold. Then from (23) and (22) we may see that

Dm

[
ϕk − ϕl

2

]
≤ λ1 + ε− λ1 + ε = 2ε.

But this, taking into account (13) in Proposition 1, means that

‖ ϕk − ϕl ‖2 ≤ (5 + 4C)ε.

Hence {ϕk} is a sequence Cauchy in H1
0 , so ϕk → u1 in H1

0 and u1 ∈ H1
0 . More-

over, from the continuity of Dm (Corollary 3) and (18) we see that Dm[ϕk] →
Dm[u1] = λ1. �

Assume that functions u1, . . . , uk−1 ∈ H1
0 are such that H[uj ] = 1, j =

1, . . . , k − 1 and for ϕ ∈ H1
0∫

Ω

(∇uj∇ϕ − (m(t) + λj)ujϕ) dt = 0.

Consider the space L(k) = span {u1, . . . , uk−1}⊥, i.e.

L(k) =
{

v ∈ H1
0

∣∣∣∣ ∫
Ω

v(t)uj(t) dt = 0, j = 1, . . . , k − 1
}

.

Proposition 5. Denote by K(k) the set K(k) = {ϕ ∈ L(k) | H[ϕ] = 1}.
Then K(k) is closed in H1

0 and there exists uk ∈ K(k) such that

inf
0 6=u∈K(k)

Dm[u] = λk = Dm[uk].

Moreover, every λk, uk is, respectively, an eigenvalue and a corresponding eigen-
function of the operator Lm, i.e.

−∇2uk −muk = λkuk.

Proof. The closedness of K(k) in H1
0 follows from a fact that the con-

vergence in H1
0 implies the convergence in L2 and L(k) is closed in the norm

topology in L2. Let ϕl ∈ K(k) be such a sequence that Dm[ϕl] →l→∞ λk. Sim-
ilarly as in Proposition 4 we may show that {ϕl} contains a converging in H1

0

sebsequence. With no loss of generality we may assume that

ϕl → uk for l →∞
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in H1
0 . But H[ϕl] = 1. Then also H[uk] = 1 and

Dm[ϕl] −−−→
l→∞

Dm[uk] = λk.

Analogously, as in Proposition 3, we have, for arbitrary ϕ ∈ L(k),

(24)
dF

dϕ
[uk] = {H[uk]}−1

{∫
Ω

(∇uk∇ϕ −mukϕ − λkukϕ) dt

}
= 0

and thus, for ϕ ∈ L(k),

(25)
∫

Ω

−∇2ukϕ =
∫

Ω

(m + λk)ukϕ.

The latter means that

−∇2uk −muk − λkuk ∈ L(k)⊥ ⊂ span {u1, . . . , uk−1}.

Therefore there exist constants C1, . . . , Ck−1 such that

(26) Lmuk − λkuk = C1u1 + . . . + Ck−1uk−1.

Multiplying both sides of (26) by uj ∈ M(k), j = 1, . . . , k−1 and then integrating
we get

Cj =
∫

Ω

(−∇2uk −muk − λkuk)uj = 〈Lmuj , uk〉 = 0, j = 1, . . . , k − 1.

Hence C1 = . . . = Ck−1 = 0 and −∇2uk −muk − λkuk = 0. �

Now we shall show that the oprator Lm has infinitely many eigenvalues.

Theorem 1. There exist an nondecreasing sequence of reals λ1 ≤ . . . ≤ λk

≤ . . . and a sequence of functions u1, . . . , uk, . . . ∈ H1
0 such that limk→∞ λk = ∞

and for an arbitrary ϕ ∈ H1
0 we have∫

Ω

(∇uk∇ϕ −mukϕ − λkukϕ) dt = 0,(27) ∫
Ω

ukul dt = 0 for k 6= l,(28) ∫
Ω

u2
kul dt = 1 for k ≥ 1,(29) ∫

Ω

[∇uk∇ul −mukul] dt = 0 for k 6= l,(30) ∫
Ω

[|∇uk|2 −mu2
k] dt = λk for k ≥ 1,(31)

Proof. It follows from Proposition 4 that there exist u1, λ1 such that for
any ϕ ∈ H1

0 we have the relations∫
Ω

{∇u1∇ϕ −mu1ϕ − λ1u1ϕ} dt = 0,
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H[u1] = 1, Dm[u1] = λ1 = inf
u∈K1

Dm[u]
H[u]

.

Let S1 = span {u1}. Proposition 5 guarantees the existence of λ2 and u2 ∈ M2

such that for every ϕ ∈ S⊥1∫
Ω

{∇u2∇ϕ −mu2ϕ − λ2u2ϕ} dt = 0,

H[u2] = 1, Dm[u2] = λ2 = inf
u∈S⊥1

Dm[u]
H[u]

and
∫

Ω

u1(t)u2(t) dt = 0.

Denote by S2 = span {u1, u2}. Continuing inductively this procedure we have
the existence of eigenvalues λ1 ≤ λ2 ≤ . . . and eigenfunctions of the operator
Lm and they are orthonormal in L2.

We shall observe that λk →∞ for k →∞. Assume to a contrary that there
is an A such that λk ≤ A, for k ≥ 1. Since Dm[uk] = λk then from Proposition
13 we would have

‖ uk ‖ ≤
√

2A + 2C + 1 < ∞
for every k ∈ N. Hence {uk} would be a bounded in H1

0 sequence, and therefore
compact in L2. Passing to a subsequence we may require that uk → u0 in L2

and so
‖uk − ul‖2 → 0 as k, l →∞.

But this is impossible since uk and ul are ortonormal in L2 and

‖uk − ul‖2
2 = ‖uk‖2

2 + ‖ul‖2
2 = 2 6→ 0 as k, l →∞.

Thus λk →∞ for k, l →∞. �

Remark 1. It easy to observe that for {mn} ⊂ L∞, n = 0, 1, . . . , and
mn → m0 in L∞

λ1(mn) → λ1(m0).

Proof. To see this let un be the first eigenfunction corresponding to the
eigenvalue λ1(mn) of Lmn

with ‖un‖2 = 1, n = 0, 1, . . . Then, from Theorem 1,
we have

λ1(mn)− λ1(m0) ≤
Dmn

[u0]
H[u0]

− λ1(m0) =
Dmn

[u0]− λ1(m0)H[u0]
H[u0]

=
Dmn

[u0]−Dm0 [u0]
H[u0]

=
∫

Ω

(mn −m0)u2
0 dt

≤ ‖mn −m0‖∞ → 0

for n →∞. Similarly

λ1(m0)− λ1(mn) ≤ ‖m0 −mn‖∞‖un‖2 → 0 for n →∞. �

Much more difficult is the case when {mn} ⊂ L3/2, n = 0, 1, . . . and mn →
m0 in L3/2. The previous way of reasoning demands the boundedness of norms
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{‖un ‖}. Indeed, let un be the first eigenfunction corresponding to the first
eigenvalue λ1(mn) of Lmn , n = 0, 1, . . . Then, from Theorem 1, we conclude
that

|λ1(mn)−λ1(m0)| ≤ sup
{

Dmn
[u0]−λ1(m0)H[u0]

H[u0]
,
Dm0 [um]−λ1(mn)H[um]

H[um]

}
= sup

{∫
Ω

(mn −m0)u2
0 dt,

∫
Ω

(mn −m0)u2
n dt

}
≤ sup{‖mn −m0‖3/2‖u0‖6, ‖m0 −mn‖3/2‖un‖6}.

So boundedness of the {‖ un ‖} is needed.
From Proposition 1, see also Corollary 1, it follows that if mn → m0 in L3/2

then there exists a constant C0 such that for n = 0, 1, . . . we have

λ1(mn) ≥ C0,

and, for every 0 6= u ∈ H1
0 ,

Dmn
[u] =

∫
Ω

(|∇u|2 −mnu2) dt ≥ C0H[u].

It means that for all 0 6= u ∈ H1
0 and for all 1 > ε > 0∫

Ω

(|∇u|2 − (mn + C0 − ε)u2) dt ≥ ε

∫
Ω

u2 dt

and equivalently∫
Ω

((1 + ε)|∇u|2 − (mn + C0 − ε)u2) dt ≥ ε

∫
Ω

(u2 + |∇u|2) dt

or

(32)
∫

Ω

(
|∇u|2 −

(
mn + C0 − ε

1 + ε

)
u2

)
dt ≥ ε

1 + ε
‖ u ‖2

.

Denote by

pn,ε =
mn + C0 − ε

1 + ε
∈ L3/2

and by

Dn,ε[u, v] =
∫

Ω

(∇u∇v − pn,ε)uv dt.

The inequality (32) means that for every u ∈ H1
0 we have

(33) Dn,ε[u, u] ≥ ε

1 + ε
‖ u ‖2

,

hence the form Dn,ε is positively defined. Moreover, Dn,ε are continuous bilinear
forms on H1

0 × H1
0 . Therefore, from the Lax–Milgram theorem, for every x? ∈

H−1 and n = 0, 1, . . . there exists a unique un ∈ H1
0 such that

(34) Dn,ε[un, v] = 〈x?, v〉
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for all v ∈ H1
0 . Notice that since H1

0 embedds in L6 thus L6/5 embedds in
H−1. To see this let us consider, for f ∈ L6/5, a functional x? by 〈x?, v〉 =∫
Ω

f(t)v(t) dt. Observe that for every v ∈ H1
0 , the following inequalities

|〈x?, v〉| ≤ ‖f‖6/5‖v‖6 ≤ S‖f‖6/5‖ v ‖

hold. The latter implies that x? is continuous on H1
0 . Hence, from (34) one can

conclude that for every f ∈ L6/5 and n = 0, 1, . . . there exists unique un ∈ H1
0

such that

(35) Dn,ε[un, v] = 〈f, v〉

for all v ∈ H1
0 . Moreover, from (32) and (35),

‖ un ‖2 ≤ 1 + ε

ε
Dn,ε[un, un] =

1 + ε

ε
〈f, un〉 ≤

1 + ε

ε
‖f‖6/5S‖ un ‖.

So we get

(36) ‖ un ‖ ≤
1 + ε

ε
S‖f‖6/5.

Denote by Tn : L6/5 → H1
0 ↪→ L6 the mapping Tnf = un, such that for all

v ∈ H1
0 we have

Dn,ε[Tnf, v] = 〈f, v〉.
Obviously all Tn’s are linear and inequality (36) means that

‖ Tn ‖ ≤ (1 + ε)S/ε, n = 0, 1, . . .

Thus operators Tn : L6/5 → L6 are uniformly bounded.
We shall show the following

Lemma 1. There exists a constant C such that

‖ Tnf − T0f ‖ ≤ C‖mn −m0‖3/2‖f‖6/5

for every f ∈ L6/5 and n = 1, . . .

Proof. Let us recall that from (35) for all n = 0, 1, . . . it follows that∫
Ω

(∇(un − u0)∇v − (pn,εun − p0,εu0)v)dt = 0.

Equivalently∫
Ω

(∇(un − u0)∇v − (1 + ε)−1[(mn −m0)un + (m0 + c0 − ε)(un − u0)]v) dt = 0

or
D0,ε[un, v] = 〈(1 + ε)−1(mn −m0)un, v〉

i.e.
un − u0 = T0((1 + ε)−1(mn −m0)un).
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From (36) we conclude that

‖ un − u0 ‖ ≤
1 + ε

ε
S‖(1 + ε)−1(mn −m0)un‖6/5

≤ 1
ε
S‖mn −m0‖3/2‖un‖6 ≤

1 + ε

ε2
S3‖mn −m0‖3/2‖f‖6/5.

Finally
‖ Tnf − T0f ‖ ≤ C‖mn −m0‖3/2‖f‖6/5,

where C = (1 + ε)S3/ε2. �

From Lemma 1 it follows that

‖ Tn − T0 ‖ ≤ C‖mn −m0‖3/2

and therefore the operators Tn : L6/5 → H1
0 tend to T0 : L6/5 → H1

0 . Moreover,
the operators

Tn|L2 : L2 → L2

are compact. Thus from Lemma VII.6.3 in [4] it follows that

σ(Tn) → σ(T0)

in the Hausdorff metric. But σ(Tn) ⊂ [0,∞) and supσ(Tn) tend to(
λ1

(
mn

1 + ε

)
− C0 − ε

1 + ε

)−1

.

Thus λ1(mn/(1 + ε)) tends to λ1(m0/(1 + ε)) for every 0 < ε < 1. Therefore,
we have proved the following:

Theorem 2. Let {mn} ⊂ L3/2, n = 0, 1, . . . and mn → m0 in L3/2. Then

λ1(mn) → λ1(m0).
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