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STABILITY OF PRINCIPAL EIGENVALUE
OF THE SCHRODINGER TYPE PROBLEM
FOR DIFFERENTIAL INCLUSIONS

GRZEGORZ BARTUZEL — ANDRZEJ FRYSZKOWSKI

ABSTRACT. Let Q C R? be a bounded domain. Denote by A1 (m) the prin-
cipal eigenvalue of the Schrédinger operator Ly, (u) = —V2u — mu defined
on H}(Q) N W?21(Q). We prove that A1 : L3/2(©2) — R is continuous.

Consider differential inclusion
~V2x € F(t,z),
zloq = 0,

(%)

where ¢ runs over bounded domain 2 C R" with sufficiently smooth boundary
I' = 09, V2 is Laplace operator in 2 and F is a Lipschitzean multifunction with

a constant m € LP(2), i.e.
disty (F(t, 2), F(t,y)) < m(t)|x —yl.
By a solution () we mean a function z € Hg () N W21(Q) such that
~V3%z € F(t,z(t))
for a.e. t € Q. In the paper [2] we examined the case n =1 i.e.

() { -z e F(t,x) for t € [0; 7],
z(0) =0 = x(m).
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We have proved that if m is sufficiently small then the set of solutions of (xx)
is an absolute retract. The main tool used in [2] were the spectral properties of

2 —m extended to Sobolev space H} and in particular the

the operator L,, = —V
stability property of the principal eigenvalue of the operator L,,, m € L'. Having
this property we were able to renorm L', in such a way that the solution set of
(#%) is the set fixed of points of certain multivalued contraction and then apply
the B-C-F theorem [3], [6] on properties of the set of fixed points. Transfering
of these methods to the case of R™ it seems to be possible however it demands

thorough study of spectral properties of the operator
L,x = —V2z—-m-x forz GH(}.

In particular, we need to examine the stability properties of the principal eigen-
value of the operator L,, in dependence on m € LP with properly chosen p. We
should point out that spectral properties of the operator L,, are well known, in
case m is a sufficiently smooth function. The results, known in the literature,
concerning the stability of the principal (or others) eigenvalue of the operator
L,, seem not to cover our case m € LP. In this paper we deal with L,, for
t € Q C R3, where Q is bounded domain and m € L3/2.

Let © C R3 be a bounded domain with sufficiently smooth boundary I' and
H{(£2) be a Sobolev space i.e. a completion in the norm

lu |l = (IVullz + Jull2)'2,

of the space C§°(Q) = {u : @ — R | suppu C Q} of infinitely many times

differentiable functions where [Jul, = ([ |u|p)1/p, is a norm in LP? with obvious
Q

modification for p = co. Moreover,
W2P = {u € LP|9;0;uc€LP, i,j=1,2,3}

Then H{ can be continuously embedded in L® and compactly embedded in L?.
The latter means in particular that there exists a constant S such that

) ([t a)” < sl

for u € H. Moreover, for m € L3/2 the space H} can be continuously embedded
in L?(m) = {u | u?m € L'}, because from (1) and the Holder inequality we have

2/3 N\ 1/3 » )
@) mu® < (/ m3/2) (/ 12| ) <Jlm (1273 52w |
Q Q Q

Consider a quadratic form

(3) Dy lu] = /Q(|Vu|2 — mu?) dt
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and let
(4) Dy u,v] = /(VUVU — muv) dt
Q

be the corresponding bilinear form. It generates the operator L,, by the formula
(Lmu,v). The previous remarks mean, in particular, that the domain of L,,
contains H}. Let

(5) Hiu] = /Q W2(1) dt.

In case, when m = 0 it is known [5], that there exists a number

Do|u]
6 A=A (Q):= in
©) ! 16 o£ueH} Hlu]
and it is the principal eigenvalue of the Laplace operator Lou = —V?2u, for

u € H}. Therefore, there exists an eigenfunction u; € H{ such that

(7) —V2u1 = Al(Q)ul for U1|p =0.
Moreover, there exists A\1(2) < Ay < A3 < ..., such that lim, ..o A\, = 00
and A1,...,\, are consequtive eigenvalues of Ly. The relation (6) means, in

particular, that for arbitrary u € H} we have

(3) [ = @) [ o

(9) vl = 2@ [

We shall show that the operator L,, posses analogous properties for m € L3/2.
The most methods used are based on the monograph [5]. We begin with

PROPOSITION 1. Let m,, — mq in L3/2. Then for arbitrary € > 0, there
exists a constant K. > 0 such that

(10) /mnu2(t) dtge/ |Vu|2dt+KE/ lu(t)]? dt.
Q Q Q
PROOF. Let S be a constant such that

(11) {/Quﬁ(t) dt}1/6 <$ {/Q[|Vu|2 +lu@® dt}l/z.

Fix € > 0 and pick N such that

M — mol|3/2 < e/28%  forn > N.
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Observe that the function maxo<;<n |m;(t)| € L3/? and therefore
li t i(t)] > K —¢e}=0.
A pdt | max |mi(t)] €}

Applying the Vitali-Hahn—Saks Theorem we conclude that there exists a con-
stant K, such that on the set

Q.= {t| orgnz‘?%v |m;(t)] > K. — ¢}

is satisfied the following inequality

32 £3/2
My, dt <
/QE o () ~ 2¢/263
for n =0,1,... To see that (10) holds we have to consider two cases.

(a) If n < N, then

/mnu2:/ mnu2+/ mnu2
Q Q\Q. Qe
2/3 1/3
<o [ e { [ meh{ ] e
Q\Q. Q. Q.
2 € @2 2 2
(. o) [+ g5t [ 1)+ vurt]
€ 2 € 2
=< K.—< .
2/Qwu| +< 2)/Qu|
) For n > N we have
/mnu </ |, — mio|u® +/m0u
2/3 5 /3
et} )
Q
2><1/6
<l =l { [t} 5 [wut - [ 2

and from (a) it can be estimated by

_ﬁ52/|Vu| —|—u—|—< >/u—€/|Vu| +K/

PROPOSITION 2. Let m,, — mg in L3/2. Then there exists a constant K > 0
such that

(12) /mnu2(t)dt§ 1/ |w2dt+K/ lu(t)|? dt
Q 2 Ja Q

IN
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forn=0,1,... and u € H},

(13) L |* < 2Dy, [u] + (2K + 1) H[u);
Dy, Jul 1
(14) “H[d 2 5/\1(9) - K.

PROOF. To obtain (12) put in Proposition 1 € = 1/2 and K = K /3. Observe
that from (12) we have

1 1
glulf =3 [ 19«5 [ @ = Do+ [ mod =5 [ 1Val’ + 50
2 Jo 2

< Dy, [u] + (K + 1)H[u]

2
and thus (13).
To prove (14) observe that from (12) it follows that

mn /|vu| 7/mn|u|
1
z/ Vul|® 77/ [Vul” fK/ lu> = = Dolu] — K HI[u]
Q 2 Ja Q 2

Donfu] = [;)\1(9) - K}H[u}.

and so

Now we divide the last inequlity by H[u] > 0 and this yields (14). O
COROLLARY 1. Let m,, — mg in L3/2. Then there exists constant K > 0
such that for alln =0,1,...

. Dy, [u]
inf
o#ueH) Hlu)

> )\1(9) — K > —o0.

[N

COROLLARY 2. There exists a constant C' such that for arbitrary u € HE we

have
Lo, ) /|V|70/|u|

COROLLARY 3. The operator Ly, is continuous on H} since the quadratic
form Dy, is continuous.

PROOF. Let uj — ug in Hi. Then from (12) we have
[ m)us(e) — uo(0)? de .
Q

Le. up — ug in L*(m). Therefore [, m(t)(ug(t))®dt — [, m(t)(uo(t))*dt, and
hence
Do [ur] = Dimluo).

Similarly (L,,u,v) = D,,[u,v] is a continuous bilinear form on H{. O
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PROPOSITION 3. Assume that there ezists a function uy € H} such that

Dm[u] o Dm{ul]

in = = M\
opubmy Hlu]  Hpu)

Then A1 and uy are, respectively, an eigenvalue and an eigenfunction of L,,, i.e.
—V2uy € L% and

(—V2 - m)u1 = )\1’(1,1.
PROOF. For any 0 # u € H} denote by Flu] = D,,[u]/H[u]. Then

15 inf Flu]l=F =)\
(15) . [u] [ur] = A1

Fix ¢ € H}. Then taking into account (15) we have, for arbitrary ¢ € R, an
inequality

(16) Fluy + ] > Fluq].

We shall show that there exists the variation d—dEF [u1 + €¢]|c=0, it is represented
by the Gateaux derivative and it vanishes. Denote by h(e) = Flu; + €¢] and
notice that h is a differentiable function, since it is a composition of an affine
function and the quotient of continuous quadratic forms on H} (and therefore
Frechet’s differentiable). It assumes the minimum at ¢t = 0, i.e. h(0) < h(e).
Thus from Fermat’s Lemma we get h'(0) = 0. One can easily check that

(17) B(0) = {H[ul]}_12{/Q(Vngo—mul(p—)\lulgo)}.

Hence

Dm[ul,ga}:)\l/ulga for allgoEH&,
Q

ie. Lyu; = Mug and — V2u; = Muq +mug € L8 + L3216 ¢ L8/5. Indeed,

DFlu1] - ¢ = {H[u1]} ™ Dy [ur, ] = {Hlua]} "> H[u1, @] Drnua]

= )y Dl gl A1 [ e

for uy # 0, and so

ZME| =DFlnteg] fnte)
L R RO PN .
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PROPOSITION 4. Denote by K = {p € H} | H[p] = 1}. Then there exists
a function uy € K such that for every uw € K the following inequality

Dy, [u1] < Dy [ul
holds.

PrOOF. Put A\; = inf,ecx D, [u]. From Proposition 1 we can conclude that
Dy [u] > A (Q)/2 — C for arbitrary u € K. Hence

(18) A > A(Q)/2 - C > —oc.
Consider a sequence {pr} C K, k=1,... such that
(19) Dplpr] = N1 for k — oo.

Since from (13) in Proposition 2 we have || ¢ || < 2D [¢x] + (2C + 1) then
from (17) one can conclude that the sequence {¢;} C K is bounded in H}.
Hence it relatively compact in L?(Q2) and, passing to a subsequence, we may
assume that ¢, — u; in L2. The latter, in particular, means that

(20) Hlpr —u1] — 0 for k — oo.

We shall check that u is a required function. Let us notice that

— + 1 1
(21) H| PP b | S5 = 0 H ] + 5 Hlpd =1

2 2 2 2
and

Pk — i Pr+ @ 1 1

929 D, |- % L p —>D,, =D, [,
(22) (22 D, | B — LDl + 3Dl
From (21) and (20) we see that
(23) H {wk;(pl} — 0 when k,l — o0

and H[(pr +¢1)/2] = 1 as k,l — co. From the definition of A; one can easily
see that for arbitrary k,l we have

Dm{%;w} < H|:80k‘2"‘ﬁpl:|)\1.

Thus, from (22), we have
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Fix € > 0. Then there exist ng such that for k,l > ng the following inequalities
Pt {%;w} <

2

Dm[cpk]; Dm[@l} <A+e

W} S — e
2
hold. Then from (23) and (22) we may see that

Do B2 <o =2
But this, taking into account (13) in Proposition 1, means that

I ox — 1 |I> < (5+40)e.

Hence {px} is a sequence Cauchy in H(}, SO @i — U1 in H& and uq € H&. More-
over, from the continuity of D,, (Corollary 3) and (18) we see that D, [pr] —

Dy ur] = M. O
Assume that functions wuq,...,ux—1; € H} are such that Hlu;] = 1, j =
1,...,k—1and for ¢ € H}

/(VUJVQO — (m(t) + )\j)Ung) dt = 0.

Q

Consider the space L(k) = span {uy,... ,ux_1}+, i.e.

/ o()u; (E) dt =0, j=1,... k- 1}.
Q

PROPOSITION 5. Denote by K (k) the set K(k) = {¢ € L(k) | H[e] = 1}.
Then K (k) is closed in H} and there exists u, € K(k) such that

L(k) = {v € Hy

inf Dy, [u] = Ag = D [ug].
0#£uEK (k)

Moreover, every Ay, uy, s, respectively, an eigenvalue and a corresponding eigen-

function of the operator L,,, i.e.

—V2uy, — mug = A\pug.

PROOF. The closedness of K(k) in Hi follows from a fact that the con-
vergence in H} implies the convergence in L? and L(k) is closed in the norm
topology in L2. Let ¢; € K (k) be such a sequence that D,,[p;] —1 0o Ag. Sim-
ilarly as in Proposition 4 we may show that {¢;} contains a converging in H_
sebsequence. With no loss of generality we may assume that

o — up  for | — o0
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in H}. But H[p;] = 1. Then also H[uz] = 1 and
Dm[(pl} l—> Dm[uk] = )\k~

Analogously, as in Proposition 3, we have, for arbitrary ¢ € L(k),

(24) %[W] = {Hlu]} {/Q(VUN@ — MUY — ApUrp) dt} =0

and thus, for ¢ € L(k),

(25) /Q—VQUW:/Q(W+M)UW~

The latter means that

—V2uy, — mug — A\gug, € L(k)L Cspan{uy,... ,Ug—1}-
Therefore there exist constants C1,... ,Ckr_1 such that
(26) Lyup — Agup = Crug + ..o+ Cr_qug—1-

Multiplying both sides of (26) by u; € M(k),j =1,...,k—1 and then integrating
we get

Cj = / (=V?up — mug — Apup)uj = (Lpuj,up) =0, j=1,... k-1
Q

Hence C; =...=Cj_; =0 and —V2up — muy — A\pug = 0. O
Now we shall show that the oprator L,, has infinitely many eigenvalues.

THEOREM 1. There exist an nondecreasing sequence of reals A\ < ... < Ag
< ... and a sequence of functions uy,... ,Uk,... € H& such that limy_, oo A\, = 00

and for an arbitrary ¢ € H} we have

(27) /Q(VUkVQO — mugp — Apupp) dt =0,

(28) /Qukul dt=0 for k #1,
(29) /Quiul dt=1 fork>1,
(30) /Q[VukVul —mugw]dt =0  for k #1,
(31) /anukﬁ —mud]dt =\, fork>1,

Proor. It follows from Proposition 4 that there exist w1, A1 such that for
any ¢ € H} we have the relations

/{VmV(p —muip — Auptdt =0,
Q
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_ _ o . DWL[U]
Hluijl =1, Dpfui]=XM= ulenlgl Hiu] -

Let S; = span {u;}. Proposition 5 guarantees the existence of Ay and us € Mo
such that for every ¢ € Si

/{VuQVga — mugp — Aausp dt =0,
Q

_ e Dmly]
Hlug) =1, Dpfus] =X = ulensff Hlu]

and/ﬂul(t)uz(t) dt = 0.

Denote by So = span {uj,us}. Continuing inductively this procedure we have
the existence of eigenvalues A\; < Ay < ... and eigenfunctions of the operator
L,, and they are orthonormal in L2.

We shall observe that A\, — oo for & — co. Assume to a contrary that there
is an A such that A\, < A, for k > 1. Since D,,[ug] = A; then from Proposition
13 we would have

|| < VIAT2CF1 < oo
for every k € N. Hence {u} would be a bounded in Hj sequence, and therefore
compact in L?. Passing to a subsequence we may require that u, — ug in L2
and so

lug —wil]2 = 0 as k,I — oo.

But this is impossible since u;, and u; are ortonormal in L? and
luw = wll2® = ugll® + [wll2®> =2 /40 as k1 — oc.

Thus Ay — oo for k,l — oo. O

REMARK 1. It easy to observe that for {m,} C L*, n = 0,1,..., and
m, — mg in L

)\1(mn) — Al(mo).

PrOOF. To see this let u, be the first eigenfunction corresponding to the

eigenvalue A\j(my,) of Ly, with |lup|l2 =1,n=0,1,... Then, from Theorem 1,
we have
Dy, o] D, [uo] — A1 (mo) H[uo)]
A n) — A < ——— - = L
1(mn) = Ar(mo) < Hiugl 1(mo) Hluo]
D, |ugl — Do lu
- Dt = [ o
S ||mn - mOHoo - O
for n — oo. Similarly
A1(mo) — Ai(my) < |[mo — mnllecl|tin]lz2 = 0 for n — oo. O
Much more difficult is the case when {m,} c L%/2 n=0,1,... and m, —

mg in L3/2. The previous way of reasoning demands the boundedness of norms
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{||un||}. Indeed, let u, be the first eigenfunction corresponding to the first
eigenvalue A\;(my,) of L,, , n = 0,1,... Then, from Theorem 1, we conclude
that

|A1(mn) —A1(mo)| < sup { D, [“O]H)[\;(()TO)H[UO] ’ Do [tim] H?;f:fn)H[um] }

= sup {/ (M, — mo)uj dt, / (M, — mi)u2 dt}
Q Q

< sup{||mn —molls/2/|wolls, [[mo — mull3/2llunlle}-

So boundedness of the {|| u, ||} is needed.
From Proposition 1, see also Corollary 1, it follows that if m,, — mg in L3/2
then there exists a constant Cy such that for n =0,1,... we have

A1(mn) > Co,

and, for every 0 # u € H},

Dy 1] = / (IVuf2 = mou?) dt > CoH[u).

Q

It means that for all 0 # v € H} and for all 1 > ¢ >0

/(|Vu|2 — (my, + Cy — e)u?) dt > 5/ u? dt

Q Q

and equivalently

/((1 +2)|Vul? = (mn + Co — )u2) dt > 5/ (W + [Vul?) dt
Q Q

or

9 2_(MnT% —€) 2 > _° .
(32) /Q(lvu ( 1+¢ >u>dt_1+€||u

Denote by
mn+CO—€ ELB/Q

Pn,e = 1+e

and by
D,, c[u,v] = / (VuVu — py, Juv dt.
Q

The inequality (32) means that for every u € H} we have
5

2
1+e¢ ’

(33) Dy c[u,u] > (K

hence the form D, . is positively defined. Moreover, D,, . are continuous bilinear
forms on H} x Hg. Therefore, from the Lax-Milgram theorem, for every a* €
H=!and n =0,1,... there exists a unique u,, € H} such that

(34) D,, [un,v] = (¥, v)
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for all v € H}. Notice that since H} embedds in LS thus L5/ embedds in
H~'. To see this let us consider, for f € L5/5 a functional z* by (z*,v) =
Jo f(t)v(t) dt. Observe that for every v € Hg, the following inequalities

(@ o)l < [ fllessllvlle < Sl fllessll v |

hold. The latter implies that z* is continuous on H{. Hence, from (34) one can

conclude that for every f € L%% and n = 0,1,... there exists unique u,, € H}
such that
(35) Dn,s[unv v} = <f’ ’U>

for all v € H}. Moreover, from (32) and (35),
1+e¢ 1+e¢ 1+e

” Un, ”2 < Dn,s[unaun} = - <fa Un> < - Hf||6/5S|| Un ”
So we get
1+¢
(36) I n Il < =225l

Denote by T, : L%/5 — H} «— LS the mapping T,,f = u,, such that for all
v € H we have
Dn,s[Tnfa U] - <fa 1}>.

Obviously all T,,’s are linear and inequality (36) means that
1T, | <(1+4+¢)S/e, n=0,1,...

Thus operators T}, : L8/> — LS are uniformly bounded.
We shall show the following

LEMMA 1. There exists a constant C such that
| Tnf —Tof || < Cllmn —molls/2ll flle)s
for every f € L5 andn=1,...

PROOF. Let us recall that from (35) for all n =0,1,... it follows that

/ (V(un — 1) VU — (Pn,etn — Po,eUo)v)dt = 0.
Q
Equivalently

/Q(V(un —up)Vv — (1 + &)~ [(my — mo)un + (mo + co — ) (un — ug)]v) dt =0
Do [tn,v] = (1 + &)~  (mpn — mo)un, v)

Uy —uo = To((1 +€) " (my — mo)un).
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From (36) we conclude that

1+e

Fun = o || < ——=51I(1 + &)™ (mn — mo)unl6/s
1 1+4+¢
< gSHmn —mollz/2/|unlle < = S?lmn — molls 2/l flle/s-
Finally
| Tnf —Tof || < Cllmn —mollz/2ll flle/s
where C' = (1 +¢€)593/&2. O

From Lemma 1 it follows that

I Tn = To || < Cllmn —molla/2

and therefore the operators T}, : L%/®> — H} tend to Ty : L%/ — H{. Moreover,

the operators

Tplpe : L? — L2

are compact. Thus from Lemma VII.6.3 in [4] it follows that

o(Tn) — o(To)

in the Hausdorft metric. But ¢(T,) C [0,00) and sup o(7T,) tend to

() -%57)
A1 T — .
+e 1+¢

Thus A1 (my, /(1 +€)) tends to A1(mo/(1 + €)) for every 0 < € < 1. Therefore,
we have proved the following:

[1]

2]

(3]

THEOREM 2. Let {m,} C L*/?, n=0,1,... and m, — mq in L3/?. Then

Al(mn) — )\1(7%0).
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