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Abstract. In this paper, we first establish a coincidence theorem under
the noncompact settings. Then we derive some fixed point theorems for a
family of functions. We apply our fixed point theorem to study nonempty
intersection problems for sets with convex sections and obtain a social
equilibrium existence theorem. We also introduce a concept of a quasi-

variational inequalities and prove an existence result for a solution to such
a system.

1. Introduction and preliminaries

In 1952, Debreu [7] introduced the concept of the generalized the Nash equi-
librium which extends the classical concept of Nash equilibrium for a noncoop-
erative game [18]. Since then, it is widely studied by using some kinds of fixed
point theorems, see for example [6], [9], [10], [12], [13], [16], [17], [20]–[23], and
references therein. The remaining part of this section deals with preliminaries.
In Section 2, we establish a coincidence theorem under the noncompact setting.
Then we derive some fixed point theorems for a family of functions which gen-
eralize earlier results of Lan and Webb [14]. In Section 3, we study nonempty
intersection problems for sets with convex sections. A social equilibrium exis-
tence theorem which is applied to results on saddle points, minimax theorems
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and Nash equilibria, is obtained in Section 4. In the last section, we introduce
a concept of a system of quasi-variational inequalities which includes the system
of variational inequalities studied in [1], [3], [5], [19], as a special case. We also
derive existence results for such a system of quasi-variational inequalities.

We shall use the following notation and definitions. Let A be a nonempty
set. We shall denote by 2A the family of all subsets of A. If A and B are two
nonempty subsets of a topological vector space X such that B ⊆ A, we shall
denote by intAB the interior of B in A. If A is a subset of a vector space, coA
denotes the convex hull of A.

Let X and Y be two topological vector spaces and ϕ : X → 2Y be a multi-
valued map. Then ϕ is said to have a local intersection property [24] if for each
x ∈ X with ϕ(x) �= ∅, there exists an open neighbourhood N(x) of x such that⋂

z∈N(x) ϕ(z) �= ∅.
A multivalued map ϕ is said to be transfer open-valued [4] if for any x ∈ X ,

y ∈ ϕ(x) there exists a z ∈ X such that y ∈ intY ϕ(z).
A graph of ϕ, denoted by grϕ, is

{(x, z) ∈ X × Y : x ∈ X, z ∈ ϕ(x)}.

An inverse of ϕ, denoted by ϕ−1, is the multivalued map from the range of
ϕ to X defined by

x ∈ ϕ−1(z) if and only if z ∈ ϕ(x).

We mention recent results of Ding [8] and Lin [15], Yu [25] and the well
known Berge’s theorem [2] which will be used in the sequel.

Lemma 1.1 ([8], [15]). Let X and Y be two topological vector spaces and
ϕ : X → 2Y be a multivalued map with nonempty values. Then the following
statements are equivalent:

(i) ϕ−1 is transfer open-valued,
(ii) ϕ has the local intersection property,
(iii) X =

⋃
y∈Y intXϕ

−1(y).

Lemma 1.2 ([25]). Let X and Y be two Hausdorff topological vector spaces
and Y be compact. Let f : X × Y → R be a function such that

(i) f is upper semicontinuous on X × Y , and
(ii) for each fixed y ∈ Y , x �→ f(x, y) is lower semicontinuous on X.

Then the function Φ : X → R defined by

Φ(x) = max
u∈Y

f(x, y) for all x ∈ X

is continuous on X.
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Lemma 1.3 ([2]). Let X and Y be topological vector spaces, f : X × Y → R

an extended real-valued function, ϕ : X → 2Y a multivalued map, and

f̂(x) = sup
y∈ϕ(x)

f(x, y) for all x ∈ X.

(i) If f is upper semicontinuous and ϕ is upper semicontinuous with com-
pact values, then f̂ is upper semicontinuous.

(ii) If f is lower semicontinuous and ϕ is lower semicontinuous, then f̂ is
lower semicontinuous.

2. Coincidence and fixed point theorems

Let I be an index set and for each i ∈ I, let Ei be a Hausdorff topological
vector space. Let {Ki}i∈I be a family of nonempty convex subsets with each Ki

in Ei. Let K =
∏

i∈I Ki and Ki =
∏

j∈I, j �=i Kj and, we write K = Ki × Ki.
For each x ∈ K, xi ∈ Ki denotes the ith coordinate and xi ∈ Xi the projection
of x on Xi and we also write x = (xi, xi). We use this denotation throughout
our paper.

Theorem 2.1. For each i ∈ I, let ϕi : Ki → 2Ki and ψi : Ki → 2Ki be two
multivalued maps. Assume that the following conditions hold:

(i) For each i ∈ I and each xi ∈ Ki, ϕ−1
i (ψi(xi)) is nonempty and convex.

(ii) For each i ∈ I, Ki =
⋃

{intKiψ−1
i (ϕi(xi)) : xi ∈ Ki}.

(iii) If Ki is not compact, assume that there exist a nonempty compact con-
vex subset Bi of Ki and a nonempty compact subset Di of Ki such that
for each xi ∈ Ki\Di there exists ỹi ∈ Bi such that xi ∈ intKiψ−1

i (ϕi(ỹi)).

Then there exists x ∈ K such that ψi(xi) ∩ ϕi(xi) �= ∅, for each i ∈ I.

Proof. Although it is based on one given in [1] for the fixed points of the
family of functions, we include it for the sake of completeness of the paper. For
each i ∈ I, we define a multivalued map φi : Ki → 2Ki

by

φi(xi) = {xi ∈ Ki : xi �∈ intKiψ−1
i (ϕi(xi))} = Ki \ intKiψ−1

i (ϕi(xi)).

Then φi satisfies the following conditions:

(a) For each xi ∈ Ki, φi(xi) is closed in Ki.
(b) For each i ∈ I, then

⋂
xi∈Bi

φi(xi) is compact in Ki.
Indeed, if Ki is compact,

⋂
xi∈Bi

φi(xi) is compact since
⋂

xi∈Bi
φi(xi)

is closed in Ki by (a). If Ki is not compact,⋂
xi∈Bi

φi(xi) =
⋂

xi∈Bi

{xi ∈ Ki : xi �∈ intKiψ−1
i (ϕi(xi))} ⊂ Di

by (iii) and thus is compact.
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(c) Since for each i ∈ I, Ki =
⋃

{intKiψ−1
i (ϕi(xi)) : xi ∈ Ki}, we have⋂

xi∈Ki
φi(xi) =

⋂
xi∈Ki

{Ki \ intKiψ−1
i (ϕi(xi))} = ∅, for each i ∈ I.

Now, we will show that there exist ai1, . . . , aili ∈ Ki such that

(2.1)
( ⋂

xi∈Bi

φi(xi)
)

∩
( li⋂

k=1

φi(aik)
)

= ∅.

Suppose that (2.1) is not true, then for every finite set {y1, . . . , yn} ⊂ Ki, we
have ( ⋂

xi∈Bi

φi(xi)
)

∩
( n⋂

j=1

φi(yj)
)

�= ∅.

Let χ(y) =
( ⋂

xi∈Bi
φi(xi)

)
∩

(
φi(y)

)
for y ∈ Ki. Then the family {χ(y) : y ∈ Ki}

has the finite intersection property. Note that χ(y) is compact in K for each
y ∈ Ki because

⋂
xi∈Bi

φi(xi) is compact and φi(y) is closed in Ki. It follows
that

⋂
y∈Ki

χ(y) �= ∅ and thus
⋂

y∈Ki
φi(y) �= ∅ which is a contradiction with (c).

By (2.1), we have

(2.2)
( ⋃

xi∈Bi

intKiψ−1
i (ϕi(xi))

)
∪

( li⋃
k=1

intKiψ−1
i (ϕi(aik))

)
= Ki.

Let Fi = co(Bi

⋃
{ai1, . . ., aili }). Then Fi is compact inKi. Let F i =

∏
j∈I,j �=i Fj ,

then F i is a compact subset of Ki. By (2.2), we have

F i ⊂
( ⋃

xi∈Bi

intKiψ−1
i (ϕi(xi))

)
∪

( li⋃
k=1

intKiψ−1
i (ϕi(aik))

)
.

Since F i is compact, there exist bi1, . . . , biti ∈ Bi such that

(2.3) F i ⊂
( ti⋃

j=1

intKiψ−1
i (ϕi(bij))

)
∪

( li⋃
k=1

intKiψ−1
i (ϕi(aik))

)
.

Let {ci1, . . . , cini } = {ai1, . . . , aili , bi1, . . . , biti }. We rewrite (2.3) as follows

F i ⊂
ni⋃

k=1

intKiψ−1
i (ϕi(cik)).

Let Xi = co {ci1, . . . , cini} and Xi =
∏

j∈I,j �=i Xj . We denote by ∆i the
vector subspace of Ei generated by Xi. Then ∆i is a finite dimensional sub-
space. We note that Xi is a compact set in

∏
j∈I,j �=i ∆j , and Xi ⊂ F i ⊂⋃ni

k=1 intKiψ−1
i (ϕi(cik)). Therefore

Xi ⊂
( ni⋃

k=1

intKiψ−1
i (ϕi(cik))

)
∩Xi ⊆

ni⋃
k=1

intXiψ−1
i (ϕi(cik)) ⊂ Xi

and hence Xi =
⋃ni

k=1 intXiψ−1
i (ϕi(cik)).
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Since Xi is compact, there exists a partition of unity {gi1, . . . , gini} subor-
dinated to this finite subcovering such that:

(a) for each k = 1, . . . , ni, gik : Xi → [0, 1] is continuous,
(b) for each k = 1, . . . , ni, gik(xi) = 0, for xi �∈ intXiψ−1

i (ϕi(cik)),
(a) for each xi ∈ Xi,

∑ni

k=1 gik(xi) = 1.

For each i ∈ I, we define a map fi : Xi → Xi by fi(xi) =
∑ni

k=1 gik(xi)cik, for
all xi ∈ Xi. Obviously, for each i ∈ I, fi is continuous. For each xi ∈ Xi and
each k with gik(xi) �= 0, we have xi ∈ intXiψ−1

i (ϕi(cik)) ⊂ ψ−1
i (ϕi(cik)) and so

that cik ∈ ϕ−1
i (ψi(xi)) for each i ∈ I. Because fi(xi) is a convex combination

of ci1, . . . , ciki and because ϕ−1
i (ψi(xi)) is convex by (i), we have for each i ∈ I,

fi(xi) ∈ ϕ−1
i (ψi(xi)), for all xi ∈ Xi.

Define a map h : X → X by h(x) = (fi(xi))i∈I . Since for each x ∈ X , we
have xi ∈ Xi and fi(xi) ∈ Xi, it follows that h is well-defined and continuous.
By Tychonoff’s fixed point theorem, h has a fixed point x = (fi(xi))i∈I ∈ X .
This implies that xi = fi(xi) for each i ∈ I. Hence xi = fi(xi) ∈ ϕ−1

i (ψi(xi))
and therefore ψi(xi) ∩ ϕi(xi) �= ∅, for each i ∈ I. �

When ϕ(xi) = {xi}, we have the following result on fixed points for a family
of multivalued maps.

Theorem 2.2. For each i ∈ I, let ψi : Ki → 2Ki be a multivalued map.
Assume that the following conditions hold:

(i) For each i ∈ I and each xi ∈ Ki, ψi(xi) is nonempty and convex.
(ii) For each i ∈ I, Ki =

⋃
{intKiψ−1

i (xi) : xi ∈ Ki}.
(iii) If Ki is not compact, assume that there exist a nonempty compact con-

vex subset Bi of Ki and a nonempty compact subset Di of Ki such that
for each xi ∈ Ki \Di there exists ỹi ∈ Bi such that xi ∈ intKiψ−1

i (ỹi).

Then there exists x ∈ K such that xi ∈ ψi(xi), for each i ∈ I.

Remark 2.3.

(a) Theorems 2.1 and 2.2 are non-compact version of Theorems 3 and 4
in [10], respectively.

(b) If for each xi ∈ Ki, ψ
−1
i (xi) is open in Ki, then by assumption (i)

in Theorem 2.2, Ki =
⋃

{intKiψ−1
i (xi) : xi ∈ Ki}. Hence Theorem 2.2

contains Theorem 2.1 in [14].
(c) In view of Lemma 1.1, assumption (ii) in Theorem 2.2 can be replaced

by any one of the following conditions:
(ii)’ for each i ∈ I, ψ−1

i is transfer open-valued,
(ii)” for each i ∈ I, ψi has the local intersection property.

The following result is a consequence of Theorem 2.2 and generalizes Theo-
rem 2.2 in [14].
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Theorem 2.4. For each i ∈ I, let φi : Ki → 2Ki be a multivalued map.
Assume that the following conditions hold:

(i) For each i ∈ I and each xi ∈ Ki, φi(xi) is nonempty.
(ii) For each i ∈ I, Ki =

⋃
{intKiφ−1

i (xi) : xi ∈ Ki}.
(iii) If Ki is not compact, assume that there exist a nonempty compact con-

vex subset Bi of Ki and a nonempty compact subset Di of Ki such that
for each xi ∈ Ki\Di there exists ỹi ∈ Bi such that xi ∈ intKicoφ−1

i (ỹi).

Then there exists x ∈ K such that xi ∈ coφi(xi), for each i ∈ I.

Proof. For each i ∈ I, we define a multivalued map ψi : Ki → 2Ki by
ψi(xi) = coφi(xi). Then it is easy to verify that for each i ∈ I, ψi satisfies all
the conditions of Theorem 2.2. �

3. Intersection theorems for sets with convex sections

Let Y be a topological space. A family {Ai}i∈I of subsets in Y is said
to be open transfer complete (respectively, closed transfer complete) if y ∈ Ai

(respectively, y /∈ Ai), there exists j ∈ I such that y ∈ intY Aj (respectively,
y /∈ clY Aj), where clY A denotes the closure of A in Y for any subset A of Y .

For A ⊂ K, xi ∈ Ki and xi ∈ Ki, we define A[xi] = {xi ∈ Ki : (xi, xi) ∈ A}
and A[xi] = {xi ∈ Ki : (xi, xi) ∈ A}.

Now we extend Lemma 2.1 in [4] as follows:

Lemma 3.1. Let {Ai}i∈I be a family of subsets of K. Then the following
conditions hold:

(i) for each i ∈ I, the family {Ai[xi] : xi ∈ Ki} is closed transfer complete
if and only if ⋂

xi∈Ki

Ai[xi] =
⋂

xi∈Ki

clKiAi[xi],

(ii) for each i ∈ I, the family {Ai[xi] : xi ∈ Ki} is open transfer complete
if and only if ⋃

xi∈Ki

Ai[xi] =
⋃

xi∈Ki

intKiAi[xi],

(iii) if for each i ∈ I, Ai[xi] is nonempty and the family {Ai[xi] : xi ∈ Ki}
is open transfer complete, then Ki =

⋃
xi∈Ki

intKiAi[xi].

Since the proof of this lemma is similar to the proof of Lemma 2.1 in [4], we
omit it.

From Theorem 2.4, we obtain the following results on sets with convex sec-
tions:
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Theorem 3.2. Let {Ai}i∈I be a family of subsets of K. Assume that the
following conditions hold:

(i) for each i ∈ I and each xi ∈ Ki, Ai[xi] is nonempty,
(ii) for each i ∈ I, Ki =

⋃
xi∈Ki

intKiAi[xi],
(iii) if Ki is not compact, assume that there exist a nonempty compact convex

subset Bi of Ki and a nonempty compact subset Di of Ki such that for
each xi ∈ Ki \Di there exists ỹi ∈ Bi such that xi ∈ intKicoAi[ỹi].

Then there exists x ∈ K such that xi ∈ coAi[xi], for each i ∈ I.

Proof. For each i ∈ I, we define a multivalued map φi : Ki → 2Ki by

φi(xi) = Ai[xi], for all xi ∈ Ki.

It is easy to verify that for each i ∈ I, φi satisfies all the conditions of Theo-
rem 2.4. Hence there exists x ∈ K such that xi ∈ coAi[xi], for each i ∈ I. �

Theorem 3.3. Let {Ai}i∈I and {Ãi}i∈I be two families of subsets of K.
Assume that the following conditions hold:

(i) for each i ∈ I and each xi ∈ Ki, Ai[xi] is nonempty,
(ii) for each x ∈ K, there exists a subset I(x) ⊂ I such that for i ∈ I(x),

coAi[xi] ⊂ Ãi[xi],
(iii) for each i ∈ I, Ki =

⋃
xi∈Ki

intKiAi[xi],
(iv) if Ki is not compact, assume that there exist a nonempty compact convex

subset Bi of Ki and a nonempty compact subset Di of Ki such that for
each xi ∈ Ki \Di there exists ỹi ∈ Bi such that xi ∈ intKicoAi[ỹi].

Then there exists x ∈ K such that
⋂

i∈I(x) Ãi �= ∅.

Proof. By Theorem 3.2, there exists x ∈ K such that xi ∈ coAi[xi], for
each i ∈ I. From assumption (ii), we have xi ∈ Ãi[xi] for i ∈ I(x). This implies
that x ∈ Ãi, for each i ∈ I(x). �

Remark 3.4. Theorems 3.2 and 3.3 generalize Theorems 2.3 and 2.4, re-
spectively, in [14].

In view of Lemma 3.1, we have the following

Remark 3.5. The assumption (ii) in Theorem 3.2 and the assumption (iii)
in Theorem 3.3 can be replaced by the following condition:

(0) For each i ∈ I, the family {Ai[xi] : xi ∈ Ki} is open transfer complete.

4. Equilibrium existence theorems

For S ⊂ K, xi ∈ Ki and xi ∈ Ki, let S(xi) = {yi ∈ Ki : (xi, yi) ∈ S}.
From Theorem 2.2, we obtain the following social equilibrium existence the-

orem (cf. [7]):
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Theorem 4.1. Let {Ki}i∈I be a family of nonempty compact convex subsets
with each Ki in Ei. For each i ∈ I, let Si : Ki → 2Ki be an upper semicontinuous
multivalued map with nonempty compact convex values such that S−1

i (xi) is open
in Ki, for all xi ∈ Ki. For each i ∈ I, let fi : K → R satisfy the following
conditions:

(i) for each i ∈ I, fi is upper semicontinuous on grSi,
(ii) for each i ∈ I, f̂i(xi) = maxz∈Si(xi) fi(xi, z) is a lower semicontinuous

function,
(iii) for each i ∈ I and for each fixed yi ∈ Ki, xi �→ fi(xi, yi) is lower

semicontinuous on Ki,
(iv) for each i ∈ I and for each fixed xi ∈ Ki, yi �→ fi(xi, yi) is quasi-concave

on Ki.

Then there exists an equilibrium point x ∈ grSi for each i ∈ I; that is, xi ∈ Si(xi)
and fi(x) = maxxi∈Si(xi) fi(xi, xi), for each i ∈ I.

Proof. For each i ∈ I and each n = 1, 2, . . . , we define a multivalued map
ψ(i,n) : Ki → 2Ki by

ψ(i,n)(x
i) = {xi ∈ Si(xi) : fi(xi, xi) > max

z∈Si(xi)
fi(xi, z) − 1/n}, for all xi ∈ Ki.

Since Si(xi) is compact and fi is upper semicontinuous, we have ψ(i,n)(xi) is
nonempty for each i ∈ I and xi ∈ Ki. By the assumption (iv), for each i ∈ I

and xi ∈ Ki, ψ(i,n)(xi) is convex.
Now for each i ∈ I and xi ∈ Si(xi), we have

ψ−1
(i,n)(xi) = {xi ∈ Ki : xi ∈ Si(xi) and fi(xi, xi) > max

z∈Si(xi)
fi(xi, z) − 1/n}

= S−1
i (xi) ∩ {xi ∈ Ki : fi(xi, xi) > max

z∈Si(xi)
fi(xi, z) − 1/n}.

By our assumptions and Lemma 1.3, the set

{xi ∈ Ki : fi(xi, xi) > max
z∈Si(xi)

fi(xi, z) − 1/n}

is open in Ki. Since S−1
i (xi) is open in Ki for any xi ∈ Ki, ψ−1

(i,n)(xi) is open in

Ki, for all xi ∈ Ki. Since for each i ∈ I, ψ(i,n)(xi) is nonempty and ψ−1
(i,n)(xi) is

open in Ki, we have

Ki =
⋃

xi∈Ki

ψ−1
(i,n)(xi) =

⋃
xi∈Ki

intKiψ−1
(i,n)(xi).

By Theorem 2.2, there exists x̂n = (x̂(i,n), x̂(i,n)) ∈ K such that x̂(i,n) ∈
ψ(i,n)(x̂(i,n)), for each i ∈ I and, for each n = 1, 2, . . . , that is,

x̂(i,n) ∈ Si(x̂(i,n)) : fi(x̂(i,n), x̂(i,n)) > max
z∈Si(x̂(i,n))

fi(x̂(i,n), z) − 1/n,
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for each n = 1, 2, . . . . Since Ki is compact, without loss of generality, we may
assume that x̂n → x ∈ K, that is, x̂(i,n) → xi ∈ Ki and x̂(i,n) → xi ∈ Ki. Since
for each i ∈ I, Si is compact-valued and upper semicontinuous, the graph of Si

is closed and therefore xi ∈ Si(xi). By assumptions (i) and (ii), we have

fi(xi, xi) ≥ lim
n→∞

fi(x̂(i,n), x̂(i,n)) ≥ lim
n→∞

[ max
z∈Si(x̂(i,n))

fi(x̂(i,n), z) − 1/n]

≥ lim
n→∞

[ max
z∈Si(x̂(i,n))

fi(x̂(i,n), z) − 1/n] ≥ max
z∈Si(xi)

fi(xi, z).

Hence fi(xi, xi) = maxz∈Si(xi) fi(xi, z). �
Remark 4.2.

(a) In the proof of Theorem 4.1 we used in fact the nets (the sets Ki need
not be metrizable).

(b) We notice that Theorem 5.2 in [16] is not correct in the present form.
We need one more assumption that for each i = 1, . . . , n, G−1

i (z) is
open in K, where Gi is defined as in Theorem 5.2 in [16]. Theorem 4.1
corrects and generalizes this theorem in the sense that the index set
need not be finite.

(c) Similar results to Theorem 4.1 were obtained by Idzik [10] (see Theo-
rem 7) and Idzik and Park [12] (see Theorem 3.2) with the inequalities
for equilibrium points instead the equalities.

From Theorem 4.1, we have the following saddle point and minimax theo-
rems:

Theorem 4.3. Let X and Y be two compact convex subset of a Hausdorff
topological vector space E. Let f : X × Y → R be an upper semicontinuous
function on X × Y such that

(i) for each fixed y ∈ Y , x �→ f(x, y) is lower semicontinuous and quasi-
convex on X, and

(ii) for each fixed x ∈ X, y �→ f(x, y) is quasi-concave on Y .

Then f has a saddle point (x, y) ∈ X × Y , that is

min
y∈Y

f(x, y) = f(x, y) = max
x∈X

f(x, y).

Proof. It is similar to the proof of Theorem 3.3 in [12]. �

Theorem 4.4. Under the hypothesis of Theorem 4.3, we have the following
minimax inequality

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

Proof. It is similar to the proof of Theorem 3.4 in [12]. �
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Remark 4.5. In Theorems 4.3 and 4.4, we have neither assumed that X
and Y are convexly totally bounded (see [11] for the definition) nor f is con-
tinuous on X × Y as it is assumed in Theorems 3.3 and 3.4 in [12] and hence
Theorems 4.3 and 4.4 generalize Theorems 3.3 and 3.4, respectively, in [12].

When Si(xi) = Ki for each xi ∈ Ki, we obtain the following generalization
of the Nash equilibrium theorem (the condition (ii) of Theorem 4.1 is fulfilled by
Lemma 1.2:

Theorem 4.6. Let {Ki}i∈I be a family of nonempty compact convex subset
with each Ki in Ei. For each i ∈ I, let fi : K → R satisfy the following
conditions:

(i) for each i ∈ I, fi is upper semicontinuous,
(ii) for each i ∈ I and for each fixed yi ∈ Ki, xi �→ fi(xi, yi) is lower

semicontinuous on Ki,
(iii) for each i ∈ I and for each fixed xi ∈ Ki, yi �→ fi(xi, yi) is quasi-concave

on Ki.

Then there exists a point x ∈ K such that, for each i ∈ I,

fi(x) = max
yi∈Ki

fi(xi, yi).

Remark 4.7. Theorem 4.6 is an infinite version of Theorem 3.2 in [25] and
it generalizes Theorem 5 in [21] in the following ways:

(a) K need not be convexly totally bounded [11],
(b) for each i ∈ I, fi need not be continuous.

5. The system of quasi-variational inequalities

For each i ∈ I, let Ei be a locally convex Hausdorff topological vector space
with its dual E∗

i . For each i ∈ I, let θi : Ki → E∗
i be an operator and σi :

Ki → 2Ki be a multivalued map. We consider the system of quasi-variational
inequalities (in short, SQVI) which is to find x ∈ K such that for each i ∈ I,

xi ∈ σi(xi) : 〈θi(xi), xi − yi〉 ≤ 0 for all yi ∈ σi(xi),

where 〈 · , · 〉 denotes the pairing between E∗
i and Ei.

In the case each i ∈ I and xi ∈ Ki, σi(xi) = Ki, we have the system of
variational inequalities (SVI), that is, to find x ∈ K such that for each i ∈ I,

〈θi(xi), xi − yi〉 ≤ 0 for all yi ∈ Ki.

SVI was considered by Pang [19] with applications in equilibrium problems.
Later, it has also been studied by Ansari and Yao [1], Bianchi [3] and Cohen and
Chaplais [5].

Now from Theorem 4.1, we derive the following existence result for the SQVI:



Coincidence and Fixed Point Theorems 201

Theorem 11. Let {Ki}i∈I be a family of nonempty compact convex subsets
with each Ki in Ei. For each i ∈ I, let σi : Ki → 2Ki be an upper semicontinuous
multivalued map with nonempty compact convex values such that σ−1

i (xi) is open
in Ki, for all xi ∈ Ki. Let θi : Ki → E∗

i be a continuous operator on Ki. Then
there exists a solution to the SQVI.

Proof. Taking fi(xi, yi) = 〈θi(xi), xi − yi〉 in Theorem 4.1, we obtain the
result. �
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