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THE PASCAL THEOREM AND SOME ITS GENERALIZATIONS

Maciej Borodzik — Henryk Żołądek

Dedicated to Professor Andrzej Granas

Abstract. We present two generalizations of the famous Pascal theorem
to the case of algebraic curves of degree 3.

1. Introduction

The 350 years old theorem of B. Pascal [9] says, that if a hexagon is inscribed
in a conic, then the opposite sides of the hexagon meet in three colinear points.
The dual version of this result is called the Brianchon theorem and says that if
a conic is inscribed in a hexagon, then the diagonals of the hexagon intersect
at one point. These theorems remain true in some degenerate cases, e.g. when
the hexagon degenerates to a pentagon. There exist essentially two proofs of
the Pascal theorem, one uses projective geometry methods and the cross-ratio
invariant (see Section 2), while the other one relies on the Cayley–Bacharach
theorem (see Section 3). It seems that such a beautiful results should have
generalizations. For example, the projective proof of the Pascal theorem uses
the fact that a conic is a (projective) rational curve. There exist rational curves
of higher degrees, e.g. a cubic with one point of self-intersection. There are,
however, only few works in this direction. Probably the most interesting is the
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paper [4] by D. Eisenbud, M. Green and J. Harris devoted to generalization of
the Cayley–Bacharach theorem to higher dimensions.
In this paper we prove two generalizations of the Pascal theorem (Theo-

rem 4.4 and 5.1 below) which are in the same style as Pascal’s result, i.e. that
some points, obtained as results of intersections of algebraic curves lie on a
straight line. Theorem 4.4 deals with a general cubic intersected by three lines
in nine points. One constructs a conic through five of them and two lines through
the remaining four. One obtains three additional points that turn out to lie on
straight line. The proof of this result is a standard application of the Cayley–
Bacharach theorem. Theorem 5.1 is more subtle. It deals with a rational cubic
(i.e. a cubic with a double point) with 8 generic points. One constructs two pairs
of conics, each of them through four of these points and the double point. The
two quartics defined in this way (each is a sum of two conics) define 4 additional
points in their intersection. It turns out that these 4 points lie on a straight line.
The proof is analytic and uses the notion of multi-dimensional residuum, applied
in a non-trivial case. (In fact, we did not expected such result; it has surprised
us a little). We prove also a generalization of the Brianchon theorem (Theorem
5.3), the dual version of Theorem 5.1. It is restricted to simply connected cu-
bics, with cusp singularity and one inflection point. For a configuration of 8 lines
tangent to such cubic one constructs two pairs of conics, each tangent to 4 of the
lines and to the line tangent at the inflection point. One obtains 4 additional
lines tangent to the both corresponding quartics. These lines turn out intersect
at one point.
Now we know, how to generalize Theorem 4.4 to curves of higher degrees.

Probably there exists also a generalization of Theorem 5.1 to rational curves of
higher degrees. It seems that, using Theorem 5.1 or some kind of its inverse, one
could provide a geometrical construction of 12 different rational cubics through
8 points in CP 2 in general position (see [7]). The subject seems to be highly
interesting. We intend to continue investigations in future papers.
The plan of the article is following: in Section 2 we present the classical

Pascal’s proof of Pascal theorem. In Section 3 we introduce the notion of multi-
dimensional residuum and prove the Cayley–Bacharach theorem. In Section 4 we
present the analytic proof of Pascal theorem, of its inverse and of Theorem 4.4.
Section 5 contains the proof of Theorems 5.1 and 5.3.

2. The cross-ratio and conics

The cross-ratio of a quadruple of different points a1, . . . , a4 ∈ CP 1 is defined
as

(2.1) cr(a1, . . . , a4) =
(a1 − a2)(a3 − a4)
(a1 − a4)(a2 − a3) ,
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if all points lie on the affine part C = CP 1 \ {∞}, and

(2.2) cr(a1, a2, a3,∞) = a1 − a2
a2 − a3 .

It is, of course, the limit of (2.1).

Lemma 2.1. The cross-ratio is invariant under the action of PSL(2,C) –
the group of automorphisms of CP 1.

Proof. If σ: z → (αz + β)/(γz + δ), αδ − βγ = 1 is an automorphism of
CP 1, then

(2.3) σ(a) − σ(b) = a− b
(γa+ δ)(γb+ δ)

. �

The following proposition will be used in the geometrical proof of the Pascal
theorem.

Let A and B be two different projective lines on a projective plane CP 2, let
us denote by o their unique intersection point. Choose points a1, a2, a3 on A,
and b1, b2, b3 on B. Define the lines A1, A2 and A3, where Aj passes through aj
and bj (see Figure 1).

�a3 b3

a2 b2

a1
b1

o
A1

A2

A3

Figure 1

Proposition 2.2. The lines A1, A2 and A3 intersect at one point if and
only if the cross-ratios cr(a1, a2, a3, o) and cr(b1, b2, b3, o) are equal.

Proof. We choose a projective chart such that the line passing through
o and A1 ∩ A2 is the line at infinity. The the affine lines A0 = A ∩ C2 and
B0 = B∩C2 are parallel, similarly parallel are the lines A01 and A

0
2. The property

that the projective lines A1, A2 and A3 intersect at one point is equivalent to
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the property that the affine lines A01, A
0
2, A

0
3 are parallel . This is true iff the

following condition is fulfilled:

a1 − a2
a2 − a3 =

b1 − b2
b2 − b3 ,

which exactly means that the cross-ratios cr(a1, a2, a3, o) and cr(b1, b2, b3, o) are
equal. (Here o =∞, see (2.2)). �

The geometrical proof of the Pascal theorem uses also the following result
about 4 points in a projective conic.
Let C ⊂ CP 2 be a smooth conic, i.e. an algebraic curve of degree two, which

is not a sum of two lines. Any point m ∈ C defines a pencil m∗ of projective
lines through m. The pencil m∗ � CP 1 is a projective line in the dual projective
space (CP 2)∗ � CP 2.
We are given a map

(2.4) πm:C → m∗,
which associates with a point c ∈ C the line πm(c) passing through m and c.
πm(m) is the line tangent to C at m. The map (2.4) defines a biholomorphism
between the conic C and CP 1 ≡ m∗. Thus, any smooth conic is a rational curve.
Given a map πm we are able to define a cross-ratio of a quadruple of points

a1, a2, a3, a4 on C. We define it to be the cross-ratio of the points πm(a1), . . . ,
πm(a4) in m∗. In fact,

(2.5) cr(a1, . . . , a4) = cr(b1, . . . , b4),

where bj = πm(cj) ∩ L, for some fixed line L in CP 2.

Proposition 2.3. The number cr(a1, a2, a3, a4) is well defined. It does not
depend neither on m ∈ C nor on the line L.

Proof. A change of the point m or the line L results as an automorphism
of CP 1. The thesis follows from Lemma 2.1. �

Let us recall Pascal’s result. Let C ⊂ CP 2 be a smooth conic. Let a1, . . . , a6
be different points on C. We define the lines A1 = a1a2, i.e. the line that passes
through a1 and a2, A2 = a5a6, A3 = a3a4 B1 = a4a5, B2 = a2a3, B3 = a6a1.
The curves A = A1+A2+A3

def=A1∪A2∪A3, and B = B1+B2+B3 intersect at
all 6 points a1, . . . , a6, and, besides, at the points d1 = A1 ∩ B1, d2 = A2 ∩ B2,
d3 = A3 ∩B3 laying outside C (see Figure 2).

Tyheorem 2.4 (Pascal theorem). The points d1, d2 and d3 lie on a straight
line.

First Proof. (We are following [2]). Let x = B1 ∩ B2, y = A2 ∩ A3 (see
Figure 2) The points d1, x, a4, a5 lie on the line B1. The map πa2 associates
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with each of them a line in a∗2, namely lines A1, B2, a2a4 and a2a5. These lines
intersect the conic C in the points a1, a3, a4 and a5, respectively.

On the other hand, the points d3, a3, a4, y lie on the line A3. They define
four lines in a∗6. These intersect C at a1, a3, a4 and a5. By Proposition 2.3 we
have

cr(d1, x, a4, a5) = cr(a1, a3, a4, a5) = cr(d3, a3, a4, y).

Now we apply Proposition 2.2 to the lines A = A3, and B = B1, intersecting
at a4 = o. Thus the lines d3d1, a3x = B2 and ya5 = A2 intersect at a single
point d2. �

�
C a1

a6

a5
a4

a3

a2

B3
A3 y x

B1 A1

d3 B2
d2 A2

d1

Figure 2

Remark 2.5. The above proof can be repeated in case when the conic C =
C′ + C′′ is a union of two lines. It is then called the Pappus theorem:
Let C′, C′′ be two different lines and a1, a2, a3 ∈ C′, whereas b1, b2, b3 ∈ C′′.

Let us define the lines A1 = a1b1, A2 = a2b3, A3 = a3b2, B1 = b3a3, B2 = b2a1,
B3 = b1a2 and the cubics A = A1 + A2 + A3, B = B1 + B2 + B3. The cubics
provide us then with three additional, i.e. laying outside C, intersection points
d1, d2 and d3. Then these points are colinear.

There exists also another proof of the Pappus theorem. We can assume the
lines A2 and A3 to be parallel, as well as lines A3 and B3. Let us also assume
that C′∩C′′ = o is a finite point. By the Tales theorem there exist homotheties f
and g with centre at o such that B2 = f(A2) and B3 = g(A3). The homotheties
commute and their composition is again a homothety, that sends the line A1 to
B1. Therefore the latter lines are parallel. In case o lies on the line at infinity,
we use translations instead of homotheties.
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3. Local residuum and the Cayley–Bacharach theorem

Let us begin with recalling the Cauchy integral formula:

(3.1)
1
2πi

∫
|z−a|=ε

g(z) dz = c−1
df= resag(z),

where g(z) is a meromorphic function, that expands in a Laurent series
∑
j>j0
cj

(z − a)j at a and ε is sufficiently small. However, in higher dimensions there is
no similar formula.

Example 3.1 ([10]). Consider a rational function

g(z, w) =
h(z, w)
zw(z − w) ,

where h is a polynomial. The three lines z = 0, w = 0 and z = w correspond
to the point a in one-dimensional case. Let us integrate g over the following
two-dimensional cycles:

Γ1 = {|z| = ε1, |w| = ε2 > ε1}, Γ2 = {|z| = ε1, |w| = ε2 < ε1}.

We expand g at the cycles Γ1,2 in the Laurent series:

g|Γ1 =
−h
zw2

∑
k≥0

(
z

w

)k
, g|Γ2 =

h

z2w

∑
k≥0

(
w

z

)k
.

Both series are uniformly convergent on the cycles. After integrating them, we
obtain:

1
(2πi)2

∫
Γ1

g dz ∧ dw = − ∂h
∂w
(0, 0),

1
(2πi)2

∫
Γ2

g dz ∧ dw = ∂h
∂z
(0, 0).

The difference, we have just observed, results from a fact that the cycles Γ1 and
Γ2 are not homologous in C2 \ {zw(z − w) = 0}.
The higher dimensional approach to residues consists on the notion of local

residuum at a point a of a meromorphic form of type:

(3.2) ω =
h(z)

f1(z) . . . fn(z)
dz1 ∧ · · · ∧ dzn,

where h and fi’s are holomorphic functions.

The definition given below agrees with one given by A. Grothendieck as
Res
[
h dz

f1...fn

]
(cf. [6], [8]).
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Definition 3.2. Let a ∈ Cn be an isolated zero of the holomorphic map
(f1, . . . , fn). The local residue of the n-form (3.2) is the integral:

(3.3) resaω =
1

(2πi)n

∫
Γ(ε)

ω,

where Γ(ε) = {z: |fj(z)| = εj} and εj > 0 are small numbers such that Γ(ε) ⊂
{|z| < ε0} is a compact non-singular cycle oriented in such a way that d arg f1 ∧
· · · ∧ d arg fn > 0.

In general, it is not easy to compute the local residue of a given non-trivial
form. Below some calculations to be used in the sequel are presented.

Example 3.3. If

(3.4) J (a) = det
{
∂fi
∂zj

}
(a) 
= 0,

i.e. the hypersurfaces {fi = 0} intersect transversely at a, then

(3.5) resaω =
h(a)
J (a) .

This follows directly from the Cauchy formula (3.1), after changing coordinates
from (x1, . . . , xn) to (f1, . . . , fn).

Example 3.4. Let f1 = P (z, w) + . . . , f2 = Q(z, w) + . . . , h(z, w) =
R(z, w) + . . . , where P , Q, R are homogeneous polynomials of degrees p, q,
r respectively, and the dots denote higher order terms. Assume also that

(3.6) P =
p∏
i=1

(z − aiw), Q =
q∏
i=1

(z − biw), R =
r∏
i=1

(z − ciw),

where

ai 
= aj (i 
= j), bi 
= bj (i 
= j), ai 
= bj ,(3.7)

r + 2 = p+ q.(3.8)

Then we have

(3.9) res0
h dz ∧ dw
f1f2

=
p∑
i=1

resai
R̃(u)

P̃ (u)Q̃(u)
= −

q∑
j=1

resbj
R̃(u)

P̃ (u)Q̃(u)
,

where P̃ (u) =
∏
(u− ai), Q̃(u) =

∏
(u− bi), R̃(u) =

∏
(u− ci).

Proof. By the assumptions (3.7) and (3.8) it suffices to consider the integral

1
(2πi)2

∫∫
|P |=ε1
|Q|=ε2

Rdz dw

PQ
.
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Putting z = uw, which corresponds to the blow-up at 0, we obtain the integral

(3.10)
1
(2πi)2

∫∫
R̃(u) du dw

P̃ (u)Q̃(u)w
.

along the 2-cycle

Γ̃(ε) = {|w|p · |P̃ (u)| = ε1, |w|q · |Q̃(u)| = ε2}.
The projection of the Γ̃(ε) onto the u-plane gives the curve (1-cycle)

(3.11) ∆(δ) = {|P̃ �q(u)Q̃−�p(u)| = δ},
where δ = ε�q1ε

−�p
2 = const, and p̃ = p/gcd(p, q), q̃ = q/gcd(p, q). It is then clear

that (3.10) equals

± 1
2πi

∫
∆(δ)

R̃ du

P̃ Q̃
.

Here the sign and the orientation of ∆(δ) should be properly chosen. We take
δ positive and small, such that ∆(δ) is an union of small cycles around ai, i.e.
∆i(δ) ≈ {|u − ai| = const}. The 2-cycle Γ̃(ε) becomes sum of cycles Γ̃i(ε)
that are approximate tori ∆i(δ) × {|w| = const}. The orientation is given by
d argP ∧ d argQ = d argu∧ d argw, provided that ∆i(δ) and{|w| = const} are
oriented in the standard way; (it is because Q ≈ const · wq). Therefore

1
(2πi)2

∫∫
�Γi(ε)
ω = resai

R̃

P̃ Q̃
=

R̃(ai)

Q̃(ai) ·
∏
j �=i
(ai − aj)

.

Note, that when we choose δ → ∞ in (3.11), we obtain Γ(ε) as a union of tori
around the points (bi, 0), but with reversed orientation. This agrees with the
formula

∑
resR̃/(P̃ Q̃) = 0.

The formula (3.9) holds also in case when some of the points ai coincide, as
well as when some of bj’s do. However, it becomes (in general) false, when some
ai equals bj . �

The next result is fundamental in our paper. Its proof is rather long and can
be found in [6] and [10].

Theorem 3.5 (Residue theorem). Let M be an analytic complex manifold
without boundary and X1, . . . , Xn be a system of effective divisors on M with a
discrete intersection Y = X1 ∩ . . . ∩Xn. Then, for any meromorphic n-form ω
with poles along X1, . . . , Xn we have∑

a∈Y
resaω = 0.

In this theorem we have used a notion of divisor, i.e. a finite formal sum∑
nαVα, nα ∈ Z, of hypersurfaces Vα, and of effective divisor, i.e. a divisor with



Pascal Theorem 85

all nα ≥ 0. In fact, in some charts (e.g. near infinity) we can have fi =
∏
gniαα ,

where gα are reduced functions defining Vα.
The following theorem is a very important application of the residue theorem.

Thorem 3.6 (Cayley [3], Bacharach [1]). Let A and B be two algebraic
curves in CP 2 of degrees p and q which intersect at p · q different points. Let
E ⊂ CP 2 be a curve of degree r ≤ p + q − 3 passing through pq − 1 points of
A ∩B. Then E passes also through the last point of intersection.

Proof. Let A = {f1 = 0}, B = {f2 = 0}, E = {h = 0}. Let us consider
the form ω = h dx ∧ dy/f1f2. The condition imposed on the degrees guarantees
that ω has no poles on the line at infinity. In fact, near infinity we have x = 1/z,
y = u/z and dx ∧ dy ∼ z−3, h ∼ z−r, f1 ∼ z−p, f2 ∼ z−q; so ω ∼ zp+q−r−3.
Therefore all the possible residual points are finite, and the formula (3.5) holds.
For any aj ∈ A∩B we have resajω = h(aj)/J (ai), and J (ai) 
= 0. Thus if aj ∈ E
then resajω = 0; and conversely, if resajω = 0 then aj ∈ E. By assumption,
a1, . . . , apq−1 ∈ E. Since 0 =

∑
aj
resajω = resapqω, we obtain that apq ∈ E. �

4. Three applications of the Cayley–Bacharach theorem

4.1. Second proof of the Pascal theorem. Let A = A1 + A2 + A3
and B = B1 + B2 + B3 be the unions of three lines from the Pascal theorem,
D = d1d2 be the line through d1 and d2 and let E be C + D. We know that
degE = 3 = degA + degB − 3 and A ∩ B = {a1, . . . , a6, d1, d2, d3}, where
ai ∈ C. The curve E passes through all points of A ∩ B possibly but one, d3.
By the Cayley–Bacharach theorem E must pass also through d3. But the point
d3 cannot lie on the conic C, in which case A3 would intersect C at three points.
Therefore d3 ∈ D. �

Remark 4.2. The reader can observe that in the above proof one could
choose A and B as arbitrary cubics passing through 6 points a1, . . . , a6. They
do not have to be unions of three lines. In this approach the uniqueness of A
and B is lost, as well as the simple geometrical meaning.

Theorem 4.3 (Inverse Pascal theorem). If a hexagon has the property that
its opposite sides intersect at three colinear points d1, d2 and d3, then its vertices
lie on a conic.

Proof. Let H = A1A2A3B1B2B3 be the hexagon, where Ai, Bj ’s are the
lines containing sides of H . Denote a1 = A1 ∩B3, a2 = A1 ∩A2, a3 = A2 ∩A3,
a4 = A3 ∩B1, a5 = B1 ∩B2, a6 = B2 ∩B3. Let C be the (unique) conic through
5 points a1, . . . , a5, and D – the line through d1, d2 and d3.
As before, we put A = A1 + A2 + A3, B = B1 + B2 + B3 and E = C +D.

Theorem 3.5 implies then that E contains a6. Hence a6 ∈ C. �
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The first new result in our work is the following theorem.

Theorem 4.4. Let C ⊂ CP 2 be a general cubic. Take three general lines A1,
A2, A3 intersecting C at points a1, a2, a3, b1, b2, b3 and c1, c2, c3, respectively.
Let B1 be a conic through a1, a2, b1, c1, c2, B2 – a line through a3 and b2 and
B3 a line through b3 and c3. Define A = A1+A2+A3, B = B1+B2+B3. Then
the additional 3 points of the intersection A with B (i.e. d1 = A2 ∩ B1 \ {b1},
d2 = A3 ∩B2, d3 = A1 ∩B3) are colinear.

Proof. Denote by D the line through d1 and d2 and define the quartic
E = C + D. Then the assumption of Theorem 3.5 are satisfied, degE = 4 =
3 + 4 − 3 = degA + degB − 3. Hence d3 ∈ E. Since d3 
∈ C, we conclude that
d3 ∈ D, i.e. d1, d2, d3 are colinear. �

Remark 4.5. As we have already mentioned in Introduction, it is possible
to formulate other theorems similar to the Theorem 4.4. Since at the moment we
do not have a complete classification of the cases, where the Cayley–Bacharach
theorem can be directly applied, we postpone presentation of those results to
further publication.

Remark 4.6. In the proofs of Theorems 2.4, 4.3 and 4.4 three properties of
constructed curves were important:

(i) the curves A and B have regular intersections,
(ii) there is only one line passing through 2 different points,
(iii) there is only one conic passing through 5 points in general position.

In fact, the condition (i) can be weakened. The case when A and B have
tangency point is the limit of regular cases. One of the additional points di tends
to a point aj ∈ C. In the residuum integral the order of pole increases, but the
line D passes through di = aj . So the residuum still remains zero.
The property (ii) does not hold when the two points coincide. In that case

either the line is fixed by the tangency (e.g. to C at ai = aj) or, when choosing
D = didj one has a possibility to fix the pair (di, dj).
The condition (iii) does not hold only when 4 points (e.g. e1, . . . , e4 of

e1, . . . , e5) lie on one line L. If the latter point e5 does not belong to L, we
have a pencil of conics with the base set L ∪ {e5}. If all e1, . . . , e5 ∈ L, then we
are given a net of conics with the base L. In the above application we have not
encountered such degeneracies. But in the next section this phenomenon will
play a crucial role.

5. Eight points on a rational cubic

A rational algebraic curve C is a curve which admits a parametrization
CP 1 → C, which doesn’t have to be one-to-one. It means that the normalization
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of C is diffeomorphic to the projective line. A rational cubic, for instance, must
have a singular points (otherwise it would be an elliptic curve of genus 1). It is
isomorphic either to the quasi-homogeneous curve

(5.1) y2 = x3,

or to the curve

(5.2) y2 = x3 + x2,

that has one simple double point. In the latter case the parametrization is given
by x = −1+ t2, y = t(t2− 1)2. The curves (5.1) and (5.2) have only one singular
point, namely o = (0, 0).
Let C be a rational cubic with a singular point o. Take 8 points a1, . . . , a8 on

C in general position. Let A1 be the unique conic through o, a1, . . . , a4 and let
A2 be the conic through o, a5, . . . , a8. We shall denote by A the sum A1 + A2.
We define a curve B = B1 +B2 in two ways. Either

(a) B1 is the conic through o, a1, a2, a5, a6 and B2 the conic through o,
a3, a4, a7, a8,

or

(b) B1 is the conic that passes through o, a1, a2, a3, a5 and B2 the conic
through o, a4, a6, a7, a8.

Other possibilities are provided by permutations of the set {a1, . . . , a8}. We
shall not threat them as different.
The curves A and B intersect in the points a1, . . . , a8 with multiplicity 1, in

o with multiplicity 4 and in 4 additional points d1, d2, d3, d4.
The following result is the just generalization of the Pascal theorem to the

case of rational cubic curves.

Theorem 5.1. The points d1, d2, d3, d4 lie on one line.

Proof. The cases (a) and (b) are particular cases of the following situation:
A is a quartic passing through a1, . . . , a8 with a double point at o, while B is
another quartic with the same properties. We prove the theorem first in that
situation. The proof of Theorem 5.1 follows, since the property that 4 points are
colinear is closed.
From now on we shall assume that both A and B are generic in the linear

system L of quartic passing through a1, . . . , a8 that have double point at o. The
following lemma will be proved later.

Lemma 5.2. If the points a1, . . . , a8 ∈ C are in general position and the
quartics A,B ∈ L are typical, then:
(i) the intersections of A and B at a1, . . . , a8, d1, d2, d3, d4 are non-
degenerate,
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(ii) the 4 tangent directions of A ∪B at o are different.

Consider the 2-form

ω =
gh dx ∧ dy
f1f2

,

where f1(x, y), and f2(x, y) define respectively quartics A and B, whereas g(x, y)
defines the cubic C and h(x, y) is a quadratic polynomial. Lemma 5.2 implies
that the local residua of ω can be calculated using the formulae (3.5) and (3.9)
(from Examples 3.3 and 3.4). In particular, if h(di) = 0 then resaiω = 0.
Analogously, if h(o) = 0 then resoω = 0. Let us denote also by ω0 the form
g dx ∧ dy/f1f2. We have two possibilities:
(α) resoω0 
= 0,
(β) resoω0 = 0.

We claim that there may hold only (β). Suppose conversely, i.e. resoω0 
= 0. We
assume in (5.3) h to vanish at d1, . . . d4. We have then resaiω = 0, resdiω = 0
and resoω = h(o) · resoω0. By virtue of the residue Theorem 3.4 the equality
h(o) = 0 must hold for any quadratic polynomial vanishing at d1, . . . , d4. This
implies that three of the points d1, . . . , d4 lie on one line L passing through o.
Let us suppose that these are d1, d2, d3. Choose now h to be a linear polynomial
vanishing at d1, d2, d3, o. Applying the residue theorem, we obtain that h
vanishes also at d4. It would mean that all five points d1, d2, d3, d4, o lie on L.
But than L would intersect the quartic A at five points, what contradicts the
genericity. So the case (α) has been excluded. In particular, resoω = 0, whatever
h is.
Let us now take h quadratic and vanishing at three points of d1, d2, d3, d4.

By residue theorem h has to be zero also at the fourth one. The only outcome
from this seemingly tangible situation is the fact that all four points d1, d2, d3,
d4 lie on one line D; it, of course, does not pass through o. The geometrical
picture is presented at Figure 3.

(It is worth to mention that Figure 3 was made using the computer pro-
gramm PASCAL, which uses the inverse Pascal theorem in construction of a
conic through 5 points.)

The proof of Theorem 5.1 has been completed. �

Proof of the Lemma 5.2. It is enough to find two quartics A and B that
satisfy (i) and (ii), without specifying a priori the 8–ple a1, . . . , a8. Take A =
A1 +A2, where A1 and A2 are two conics through o that intersect transversely
C \ {o} at 8 different points, and with different tangent directions at o and not
tangent to any branch of C at o. As B we shall take C +M , where M is some
line avoiding o, a1, . . . , a8. Since the conditions (i) and (ii) are (Zariski) open,
they hold for generic 8-ple (a1, . . . , a8) and generic quartics A,B ∈ L.
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Figure 3

Note that in the latter example the points d1, . . . , d4 lie on M . �

We finish this section by proving a theorem dual to Theorem 5.1. Since the
dual curve to a generic cubic curve is a curve of higher degree, we restrict our
considerations to the case of the quasi-homogeneous cubic (5.1). This curve is
simply connected, has exactly one singular point and exactly one inflection point
∞ (at infinity). We denote by L∞ the line tangent to C at ∞.

Theorem 5.3. Let C ⊂ CP 2 be a simply connected cubic with the inflection
point ∞. Let a1, . . . , a8 ∈ C \ ∞ and let L1, . . . , L8 be the lines tangent to C
at ai. Define A1 as the conic tangent to L∞, L1, L2, L3, L4, A2 – the conic
tangent to L∞, L5, L6, L7, L8, B1 – the conic tangent to L∞, L1, L2, L5, L6
and B2 – the conic tangent to L∞, L3, L4, L7, L8. Denote A = A1 + A2 and
B = B1+B2. There exist 4 additional lines M1, M2, M3, M4 which are tangent
to A and to B. Then the lines Mj intersect at one point. The same statement
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holds when we replace B1 by the conic tangent to L∞, L1, L2, L3, L5 and B2
by the conic tangent to L∞, L4, L6, L7, L8.

Proof. The dual curve to the quasi-homogeneous curve y2 = x3 is the cubic
27q + 4p3 = 0; (where y = px + q is the equation for lines tangent to C). The
cusp point x = y = 0 corresponds to the inflection point ∞ : p = q = 0.
The dual to a conic is a conic. The dual to a point is a line (of lines through

it). In particular, the point of intersection of two curves corresponds to a line
tangent to the two dual curves.
Finally, the dual to a line (e.g. the line D from the proof of Theorem 5.1) is

a point (i.e. the common point of the lines Mj). �

References
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