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Abstract. We prove two Hardy–Sobolev type inequalities in D1,2(RN ),

resp. in H1
0 (Ω), where Ω is a bounded domain in RN , N ≥ 3. The frame-

work involves the singular potential |x|−a, with a ∈ (0, 1). Our paper
extends previous results established by Bianchi and Egnell ([2]), resp. by

Brezis and Lieb ([3]), corresponding to the case a = 0.

1. Introduction

Let D1,2(RN ) be the completion of D(RN ) with respect to the norm ‖∇u‖2.
Consider the Hardy–Sobolev inequality on D1,2(RN ):

‖∇u‖22 − Sa‖ |x|−au‖2p ≥ 0,

where N ≥ 3, 0 < a < 1 and p = 2N/(N − 2 + 2a).
The minimizers of

Sa = inf
{ ∫

RN

|∇u|2
( ∫

RN

|u|p

|x|ap
dx

)−2/p

: u ∈ D1,2(RN ), u 6= 0
}

are given by
CUλ(x) = Cλ(N−2)/2U(λx),
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where C ∈ R, λ > 0 and

(1) U(x) = k0(1 + |x|α)−β , α =
2(N − 2)(1− a)

N − 2 + 2a
, β =

N − 2 + 2a

2(1− a)
.

We choose k0 such that ‖∇u‖2 = Sa (see [4]). Hence the minimizers of Sa consist
of a 2 dimensional manifoldM⊂ D1,2(RN ). The distance between u ∈ D1,2(RN )
and M is defined by

d(u,M) = inf{‖∇(u− cUλ)‖2 : c ∈ R, λ > 0}.

We prove the following result.

Theorem 1.1. For N ≥ 3 and 0 < a < 1, there exists A = A(N, a) such
that, for every u ∈ D1,2(RN ),

‖∇u‖22 − Sa‖ |x|−au‖2p ≥ A d(u,M)2.

A similar result was proved by Bianchi and Egnell when a = 0 (see [2]).
The weak Lp norm is defined by

‖u‖p,w = sup
S
|S|−1/p′

∫
S

|u(x)| dx,

with S being a set of finite measure |S|. Let us recall that the conjugate exponent
p′ of p is defined by 1/p + 1/p′ = 1.

We deduce from Theorem 1.1 the following result.

Theorem 1.2. Let Ω be a bounded domain of RN , N ≥ 3. For 0 < a < 1,
there exists B = B(Ω, a) such that, for every u ∈ H1

0 (Ω),

‖∇u‖22 − Sa‖ |x|−au‖2p ≥ B‖u‖2N/(N−2),w.

A similar result was proved by Brezis and Lieb when a = 0 (see [3]).
In Theorem 1.2 it is not possible to replace ‖u‖N/(N−2),w by ‖u‖N/(N−2). It

suffices to use the function U of (1) and a truncation argument.
It is interesting to compare Theorem 1.2 and the improved Hardy–Poincaré

inequality due to Vazquez and Zuazua ([7]).

Theorem. Let Ω be a bounded domain of RN , N ≥ 3. For 1 ≤ q < 2, there
exists C = C(Ω, q) such that, for every u ∈ H1

0 (Ω),

‖∇u‖22 − S1‖ |x|−1u‖22 ≥ C‖u‖2W 1,q(Ω).

Let us recall that S1 = ((N − 2)/2)2 is not attained on D1,2(RN ).
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2. Proof of Theorem 1.1

We follow the argument of [1]. Consider the eigenvalue problem

(2)

{
−∆v = λ|x|−apUp−2v,

v ∈ D1,2(RN ).

Lemma 2.1. The first two eigenvalues of (2) are given by λ1 = Sa and
λ2 = Sa(p− 1). The eigenspaces are spanned by U and d

dλ |λ=1Uλ, respectively.

Proof. See [6]. �

Lemma 2.2. For any sequence (un) ⊂ D1,2(RN ) \M such that infn ‖∇un‖2
> 0 and d(un,M) → 0 we have

(3) lim inf
n→∞

‖∇un‖22 − Sa‖ |x|−aun‖2p
d(un,M)2

≥ 1− λ2

λ3
.

Proof. We first assume that, for any n ∈ N, d(un,M) = ‖∇(un − U)‖2.
Since M is a smooth manifold, vn = un − U is orthogonal to the tangent space

TUM = span
{

U,
d

dλ

∣∣∣∣
λ=1

Uλ

}
.

Therefore Lemma 2.1 yields

λ3

∫
Up−2v2

n

dx

|x|ap
≤ ‖∇vn‖2 = d2(un,M).

Moreover, we have that∫
Up−1vn

dx

|x|ap
= −S−1

a

∫
∆Uvn dx = 0.

Setting dn = d(un,M), we obtain∫
|un|p

dx

|x|ap
=

∫
Up dx

|x|ap
+ p

∫
Up−1vn

dx

|x|ap

+
p(p− 1)

2

∫
Up−2v2

n

dx

|x|ap
+ o(d2

n)

≤ 1 + p(p− 1)d2
n + o(d2

n) = 1 +
p

2
λ2

λ3

d2
n

Sa
+ o(d2

n)

and

‖ |x|−aun‖p ≤ 1 +
λ2

λ3

d2
n

Sa
+ o(d2

n).

Since ‖∇un‖22 = Sa + d2
n, we obtain

‖∇un‖22 − Sa‖ |x|−aun‖2p ≥
(

1− λ2

λ3

)
d2

n + o(d2
n)

and (3) follows immediately.
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In the general case, for every n, there exist cn ∈ R and λn > 0 such that
d(un,M) = ‖∇(un − cnUλn)‖2. Setting wn(x) = c−1

n λ
(2−N)/2
n un(x/λn), we

obtain ‖∇(un − cnUλn
)‖2 = |cn| ‖∇(vn − U)‖2 = |cn| d(vn,M). By assumption,

|cn| is bounded away from 0 and

‖∇(vn − U)‖2 = d(vn,M) = |cn|−1d(un,M) → 0.

Using the first part of the proof and the invariance of the quotient in (3), it is
easy to conclude. �

Proof of Theorem 1.1. If the theorem is false, there exists a sequence
(un) ⊂ D1,2(RN ) \M such that

‖∇un‖22 − Sa‖ |x|−aun‖2p
d(un,M)2

→ 0.

We can assume that ‖∇un‖2 = 1 and d(un,M) → L ∈ [0, 1]. It follows that
‖ |x|−aun‖2p → S−1

a . By Theorem 2.4 in [5], going if necessary to a subsequence,

we can assume the existence of λn > 0 such that λ
(N−2)/2
n un(λnx) → V ∈M in

D1,2(RN ). This implies that L = 0. By Lemma 2.2, we have a contradiction. �

3. Proof of Theorem 1.2

We deduce theorem 1.2 from Theorem 1.1 by adapting the argument of [2].
It suffices to prove the theorem when Ω = B(0, 1) and u = u∗, where u∗

denotes the Schwartz symmetrization of u. Indeed, we have that

‖∇u‖2 ≥ ‖∇u∗‖2, ‖ |x|−au‖p = ‖ |x|−au∗‖p, ‖u‖N/(N−2),w = ‖u∗‖N/(N−2),w.

If Theorem 1.2 is false, there exists a sequence (un) ⊂ H1
0 (Ω) such that un = u∗n

and

(4)
‖∇un‖22 − Sa‖ |x|−aun‖2p

‖un‖2N/(N−2),w

→ 0.

We can assume that ‖∇un‖2 = 1. Since ‖un‖2N/(N−2),w is bounded by Sobolev’s
inequality, we must have ‖ |x|−aun‖2p → S−1

a .
By Theorem 1.1, there exists a sequence (cn, λn) → (1,∞) such that

d(un,M) = ‖∇(un − cnUλn)‖2 → 0, as n →∞.

It is clear that

d(un,M)2 ≥ c2
n

∫
|x|>1

|∇Uλn |2 dx

= k2
0c

2
nλN−2+2α

n α2β2

∫ ∞

1

(1 + λα
nrα)−2β−2r2α+N−3 dr

= C1c
2
n

∫ ∞

λn

(1 + sα)−2β−2s2α+N−3 ds ≥ C2c
2
nλ2−N

n .
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Hence we obtain

(5) ‖un‖N/(N−2),w ≤ ‖un − cnUλn

∣∣
Ω
‖N/(N−2),w + ‖cnUλn

‖N/(N−2),w

≤ C3‖un − cnUλn‖2N/(N−2) + cnλ(2−N)/2
n ‖U‖N/(N−2),w

≤ C4d(un,M).

But (4) and (5) contradict Theorem 1.2.
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