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MULTIPLICITY OF POSITIVE SOLUTIONS
FOR SEMILNEAR ELLIPTIC PROBLEMS
WITH ANTIPODAL SYMMETRY

NORIMICHI HIRANO

ABSTRACT. In this paper, we show the multiple existence of positive solu-
tions of semilinear elliptic problems of the form

—Au=u> 2u+f, we H ),

where Q C RV is a bounded domain, 2* is the Sobolev critical exponent
and f € L2(9).

1. Introduction

Let N >3, 2* = 2N/(N —2), Q C R¥ be a bounded domain with a smooth
boundary ), and f € L?(2) with f > 0. The existence and multiplicity of
solutions of problem

—Au=|u* 2u+f onQ,
(Py) u>0 on {2,
u=20 on 01},

has been studied by many authors. It is known that problem (Pg) has no nontriv-
ial solution when domain §? is star-shaped (cf. [7]). In [6], Kazdon and Warner
proved the existence of a nontrivial solution of (Pg) in the case that € is annulus.

2000 Mathematics Subject Classification. 35J60.
Key words and phrases. Critical exponent, multiple existence, semilinear elliptic problem.

(©2005 Juliusz Schauder Center for Nonlinear Studies

155
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In [1], Bahri and Coron established the existence of a nontrivial solution of (Py)
when {2 has nontrivial topology. On the other hand, for the nonhomogeneous
problem f # 0, Tarantello [10] proved the existence of two solutions of (Py)
when || f||z2(q) is small. In the case that € has non trivial topology, Rey [8]
proved that problem (P) has cat(2) + 1 solutions when f is sufficiently small.

Our purpose in this paper is to consider the multiple existence of solutions
of problem (P) for domain Q@ C RY and f € L?(Q) having antipodal symmetry.

To state our main results, we need some notations. Throughout this paper,
) is a bounded domain with a smooth boundary Q. We denote by B,.(0) c RY
the open ball centered at 0 with radius . We put

p(Q) =sup{r > 0: B,.(z) C Q for some x € O},

0(?) = sup {r > 0 : there exists A C RV \ Q such that RV \ Q = U BT(m)}
€A

and

) - 29

Q)
We impose the following condition on €2

(Q) Q= —Q and there exists rg > 0 such that B,,(0) NQ = ¢.

For two topological spaces X, Y, we write X 2 Y when X and Y are of
the same homotopy type. For each topological space X, H,(X) stands for the
singular homology groups with coefficients Zy (cf. [3], [9]). We denote by € the
set () identified the antipodal points, and denote by pqg:Q — Q the covering
projection defined by pq(x) = (—z,z) for x € Q. For each p > 1, we denote by
| - |p the norm of LP(£2). We put

L={veLl*9):v(r)=uv(-z)for z € Q}
and H = H}(Q2) N L. We can now state our main results.

THEOREM 1.1. There exists ko > 0 and 69 > 0 such that if k(Q) < ko, then
for each f € L with f >0 and 0 < |f|a < do, problem (Py) possesses at least
two solutions in H.

THEOREM 1.2. There exists k1 > 0, 1 > 0 such that if k(Q) < ki, then
there exists a residual subset D of {f € L : f > 0 and |fla < 01} satisfying

that for each f € D, problem (Py) possesses at least 3_ ° (rank H,(Q) solutions
m H.

COROLLARY 1.3. Suppose that Q = SN=1. Then there exists k > 0, § >
0 such that if k() < k, then there exists a residual subset D of {f € L :

f >0, |fla <6} satisfying that for each f € D, problem (Py) possesses at least
N solutions in H.
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REMARK 1.4. The solutions obtained in [10] as well as in [8] are solutions
with critical levels smaller than the critical level ¢ of the grand state solution of
problem (Pg) with Q = RY. On the other hand, the solutions obtained in our
results have critical levels close to 2c. Then for instance under the assumption
of Theorem 1.1, we have at least four solutions of problem (P) in Hj(£2) by the
result in [10] and Theorem 1.1.

2. Preliminaries

For given R > 0, we denote by Ag the set of bounded domains {2 with
smooth boundary 92 such that diam(Q2) < R. For each measurable set A C RY,
we denote by |A| the measure of A. For u,v € Hg(Q2), we put (u,v) = [, uvda.
The norm || - || of HE(Q) is defined by |[v| = |[Vuv|z for v € HE(Q). For each
d € R, Q4 denotes the set defined by

{x e RN :d(z,Q) <d} ifd>0,
| {zeQid(z,00) > —d} ifd<O0.

For each a € R, and a functional F: H}(Q) — R, we denote by F° the level set
F*={vec Hj(Q): F(v) <a}.

For f € L*(Q2), we define a functional I; on H}(Q) by

1 1 x
If(u):/ﬂ(2|Vu|2—2*|u+|2 —fu> dx for u € Hy(Q).

Here u™ (z) = max{u(x), 0} for x € Q. Then the solutions of (Py) correspond to
critical points of functional Iy. Let

DYRM) = {v e L¥ (RN) : |Vu|, € L (RM)}.
For each (z,g) € RN x(0, 00), we put

e

1/2 (N—-2)/2
] , zeRN

e le) =m|

where m = (N (N — 2))V=2)/%_ Tt is known that each u(, .) is a critical point of
Iy with the domain H} () replaced by D(RY). By the invariance of the norm
of DY(R¥) under translation and scaling

(2.1) u— ug(z) = R~V u(z/R), R>0,

we have that each u(. ) have the same critical value of Iy. We put ¢ = Ip(u(..c))
for (z,6) € RV x (0,00), and ¢y = 2 - 2%¢/(2* — 2). We also set

%: + <f’ U>’ I(U) = sup I(tv)},
teR+

Sp(Q) = {v e Hy(Q) : [lo]* = |
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for f € L. Tt is easy to see that there exists € > 0 such that if f > 0, |f]2 < Z and
v € H\ {0} with v # 0, there exists a unique positive number ¢y, such that
tyov € Sp(Q) (cf. [5], [10]). Throughout the rest of this paper, we assume that
f>0and |f|z <& Foreach v e H\ {0} with vt # 0, we define Nyv € S¢(Q)
by Njv =ty ,v. We have from the definition of S;(f2) that

(2.2) (VIf(v),v) =0 forall ve Sp(Q).

We will seek for solutions of Iy in Sy N H. For simplicity of notation, we put
I}l = IJ‘? NSr(Q) N H for each d > 0. Let o:RY — [0,1] be a smooth function
such that ¢(z) =1 for @ € By/2(0) and ¢(z) =0 on RN \ B1(0). We put

Vir,z,e)(T) = o((z — 2) /T)u(z0(2) for (r,z,€) € RT x RY x RT and = € RY.

We also fix a mapping n € C'*°([0,00); [0, 1]) such that n(t) = 0 for ¢ € [0,1/2]
and 7(t) = 1 for t > 1. For each x € RV \ {0}, we define a mapping 7,: RV —
[0,1] by

7o(2) = n(d(z, {z}1)) for z € RV,
To prove theorems, it is sufficient to prove the assertions for each R > 0 and
each Q € Agr. Then, in the rest of this paper, we fix R > 0 and assume that
Q€ Ag.

The following lemma is a simple consequence from the definition of 7.
LEMMA 2.1. Let {QM}, {z,} € RV \ {0} and {u,} be sequences such that
Q) € Ag, p(QM) =1 for each n > 1, u, € HY(Q™) forn > 1, and

lim [Vun|? = lim lun|?>” =0,
n—oo F(zn) n—oo F(mn)

where F(x,) = {z € RN : d(z,{z,}*) < 1}. Then

lim |V (T, un)? = lim [T, un|> = 0.
n—oo F(an) n—oo F(an)

Proor. Let {QM™}, {z,} and {u,} satisfy the assumption. From the def-
inition of 7., we have that there exists, C' > 0 such that |V7,|o < C for all
x € RY. On the other hand, since Q") € Ay for n > 1, we have that

2/2*
[l < 1P name-r: ( / unz)
F(zn) F(zn)
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for each n > 1. Then from the assumption, we have

lim |V (T, un)|? = lim T, Vg, + V7, U |2
n—ee F(In) n—ee F(xn)
<2 lim (/ |vun\2+02/ |un|2) =0.
n—ee F(mn) F(zn)
It is also easy to see that lim,, . fF(wn) ‘Tznun|2* = 0 holds. d

LEMMA 2.2. There exist positive numbers 6 and ko such that if k() < ko,
then there exists r > 0 satisfying that the following conditions:
(a) Q =~ QgT, B
(b) for eachu € fchﬁSo(Q), there is x € Q. such that By, (x)NByr(—x) =

¢ and
. 4
/ |u\2 dx > —cp.
By (z)UB,(~2) 3

PRrOOF. We first note that if {u,} C So(RY) satisfies lim, oo Io(un) = ¢,
then there exists a sequence {(z,,en)} C RY x R* such that lim, o |[t, —
Uz, eyl = 0 and limy, oo [Uun — Uz, e |2+ = 0 (cf. [1], [10]).

Now suppose contrary that there exists a sequence {Q(™} ¢ RN and {u,} C
H} () such that Q™) € A for each n > 1, lim,, o0 k(™) = 0, u,, € Sp(Q™)N
H with lim,, o Io(u,) = 2¢ and

. 4
/ lun|* dx < —co
B, (x)UB,(z) 3

for any (r,z) € RT x Q, with By,(2) N By, (—2) = ¢ and QM) = (Q))3, for all
n > 1. By the invariance of the norms || - || and | - [« under the scaling (2.1), we
may assume that p(Q(™) = 1 for all n > 1. Since lim,, o, k(Q™) = 0, we find
that

(2.3) T =sup{r > 0: B,(0) c RN\ Q"W} = o0, asn — oo.

Then it is easy to see that there exists a sequence {z,,} C RY \ {0} such that
lim |Vu,|? = lim lun|?” =0,
=0 JF(z,) n=0 JF ()

Put u), = 7, u, for n > 1. Then we have by Lemma 2.1 that

(2.4) lim |V, |* = lim |u!

n

2 :O,

holds. Therefore we have that

(2.5) lim |Vu,|3 = lim </ |Vun\2+/ |Vu;12) = lim |Vu,l|3.
n— o0 n— oo QU F(zn) F(an) n— oo
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Similarly, we have

(2.6) lim o) = lim |u, 2.

n—oo * n— o0

From the definition of u/,, we have that

ul, =vl +02,  where v}, 02 € H}(Q™),

Supp v, Nsupp v, = ¢,
vl(z) = v3(2)
for each n > 1. It then follows from (2.5) and (2.6) that
(2.7) Tim [ — (o} 4 02)]) = Tim_ fu, — (0} + v2)]2- = 0.

It then follows that there exists {(z,,£,)} C RY x R* such that

(28) lim Hvrlz - u(zn,sn)H = 7111_{%0 |’U711 - u(zn,sn) 2% = 0.

n—oo

One can see that sup,, €, < oco. In fact, noting that lim, . 8(Q,) = oo, we
have

(2.9) lim [QM™|/|B,. (z,)] =0,
n—oo

where 7, = inf{r > 0: Q,, C B.(2,)} for each n > 1. Then if sup,, &, = 00, we
have from (2.9) that

Co = nlingo iz = nlggo [w:? = lim inf/ ‘“(zn,sn)|2* =0.
Qn) n— 00 (n)

This is a contradiction. Thus we have ¢ = sup,, €, < 00. Now we fix 7 > 0 such
that

« 3
(3.10) [ sl =5e
1 (0)

Since lim,, _, o H(Q(”)) = 00, we have that there exists ng > 1 such that Q") =~
(Q("))grl. We can choose ny > ng such that 7, > 5ry for all n > n;. Now
suppose that liminf, . |2,| < 4r;. Then noting that B, (z,) € RY \ Q™ in
case that |z,| < 4r1, we have

. + 3
0 =lim inf / [vt|?" =lim inf Uz, e) 2> Zep.
Brl (Zn) n— 00 ’ 4

n—oo

This is a contradiction. Thus we find that liminf, . |2,| > 471. This implies
that Bay, (zn) N Bar, (—2,) = ¢. We also have that z, € Q%) for n > 1. In fact
if 2, ¢ Q" then IB, (=) |vt|?" = 0. Then again we reaches to a contradiction.
Now we have by (2.7)17 (2.8) and (2.10) that

« 4
/ lun|? do > —co
By, (22)UBy, (—2n) 3
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for n sufficiently large. This contradicts to the assumption. Then the assertion
follows. O

LEMMA 2.3. Let f € L such that f > 0 and 0 < |f|a < E. Let r' > 0 such
that Q_,.» = Q and

/ Pz > |f3/2
Q

—r

Then there exists eg > 0 and a positive function w(, ) € H for each (z,¢) €
Q_, x (0,&9) such that

(2.11) sup{Iy(Np(v( 2.0) F V(0 —2e) TWe)) 1 2 € Q_pr} < 2¢ fore € (0,&p).

PrOOF. The argument is standard. For completeness, we give a proof. Let
f € L and r’ > 0 satisfy the assumption. We choose dy > 0 so small that

(2.12) \f|?dz > |f|5/3 for all z € Q.

/Q_r,\(Bdo (2)UBag (—2))

Let ¢:Q — [0,1] be a mapping such that ¢ € C?(Q), ¥(z) = ¥(—z) on Q,
P(z) =1 o0n Q_, and Y(z) =0 on IN. We fix d € (0, min{dy/2,7'}) and put

Wiz (T) = Y4 (x) — o((z — 2)/2d) — p((x + 2)/2d)]  for z,z € Q and & > 0.

By (£2), we have that |z| > 7’ for each x € Q_,,. That is B,/ (z) N By (—z) = ¢.
Fix z € Q. Then, for £ > 0 sufficiently small, we have

( 3) ‘V’U(d,Z,s) ‘% =co + O(E(N_Q)/z)v

(2.14) [0 3 = o+ OE?),

(cf. [2]). On the other hand, we have by the definition of w(; . and (2.12) that
( 2% — O( N/2(N= 2)) <f7 (2 6)> 0(51/4)

2. 15) |vw(z s)|2 = ( 1/2)7 | W(z,e)

for e sufficiently small. We put y(..)(2) = vgz.e) + V(d,—ze) + Wee). Let
t=tfy. ., Then ¢ satisfies

%I + t(fa y(z,5)>'

t2|vy(z,s) ‘g = tZ* |y(z,s)
Then noting that
IVY(z0) 3 = VO 203 + VUG 205 + Vw03

and

|y(z,5) g* = ‘U(r’,z,s)@* + |U(T’,7Z,E) %* + |w(z,5)|g*a
we find from (2.13)(2.15) that t = 1 — O(¢'/*). Then we have

(2F — 2)t* ot 1/4
I(ny(z,s)) = W'y(z,s) 2% T §<f7 y(z,s)> < 2(1 - O(E ))C

Thus we find that the assertion holds by taking ¢ sufficiently small. g
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Throughout the rest of this paper, we assume that k(Q2) < ko holds. We
fix 7 > 0 and 6 > 0 satisfying the assertion of Lemma 2.2. From the definition
of §¢(Q), we have that Ny(u) — Np(u) and Ip(Nju) — Io(Nou), as f — 0,
uniformly on I}i N S;(Q) for each d > 0. That is we have

LEMMA 2.4. Let d >0 and 6 > 0. Then there exists € € (0,2) such that for
each f € H with |f|2 < ¢,

Io(Now) < If(u)+6  forallue I}i NSr().

The assertion of Lemma 2.4 is a direct consequence of the definition of Ny.
Then we omit the proof. We now put § = 6 and d = ¢ in Lemma 2.4. Then by
Lemma 2.4, we can choose € € (0,2) such that for f € H with |f|]o <&

(2.17) Io(Nou) < 2c+38 for u e I7.

We may assume that § < c¢/4. Then again by Lemma 2.4 and Lemma 2.2 that
13
(2.17) If(u) > 3¢ for all u € Sy () N H.

Here we note that Palais—-Smale (PS) condition holds in the interval (c,2c) for
Iy (cf. [10], [5]). That is if {u,} C H{(2) with lim, oo I(u,) = d € (c,2¢)
and lim,, . VIf(u,) = 0, then there exists a convergent sequence {u,, } C {un}
with u,, — u, If(u) = d and VIf(u) = 0. Therefore from (2.17), we find that
(PS) condition holds on f?cf". In the following, we assume that f € H satisfies
|fl2 < € Then there exists r > 0 satisfying the assertion of Lemma 2.2. Here
we fix a continuous function &: [0, 00) — [0, 1] such that £(¢) = 1 for ¢ > 2/3 and
&(t) =0 for t < 1/2. For each u € H}(Q) \ {0}, we define a continuous function
B:RY = [0,1] by

Ji oy [ do
Jul3:

Bula) = 5(

In the following we assume that f € L with |f|o < & Then we have

) for z € RV,

LEMMA 2.5. Let u € TJ%C N S;(Q). Then there exists z € RN such that
|z] > 4r, Q' ={z € Q: Bu.(z) > 0} C Ba(2) U By (—2), and

fBT(z)ﬁQ’ Pu(x)z

(2.18) m € 3y,

PROOF. Let u € TJ%C Then by Lemma 2.2, there exists z € €),. such that

. 4
/ INou|?” dx > ~cp.
B, (2)UB,.(—2) 3

From the inequality above, it is obvious that

Bu(x) = Briyu(x) =0 for x € RN\ (B (2) U Ba,(—2)).
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Then
Q' ={xeQ:B.(x) >0} C Ba(z) UBy(—2).
Since z € ., we have that Q' C Qg,.. Then (2.18) holds. O

From lemma above, we can define a mapping 7: f 2 ﬁgr by

[ B, (z)m/ﬂu fB (— z)nﬂfﬂu( )
where z € R¥ is the point obtained in Lemma 2.5. One can see, from the
fact Q' C Ba,(2) U Ba,(—%), that ¥(u) does not depend on the choice of z, and
~: IJ%C — ﬁgr is continuous. Then we have

LEMMA 2.6. For each p > 1, ranka(fj%c_”) > ranka(ﬁ) for o >0 suffi-
ciently small.

PrOOF. By Lemma 2.3, there exists positive numbers r1, g, such that ) =
Q_,, and that for each (z,¢) € Q_,., x (0,&9),

(2.19) Sup{ Iy (N5 (V(ry 20) + V(ry,—2,0) T Wiae)) 1 2 € Qp } < 2¢,

where © W(z,e) € € H the function defined in the proof of Lemma 2.3. Then we have
that (g, = () = Q,,«17 and H, (Qd,«) & Hp(ﬁ) & Hp(Q ,) for each p > 0. We
denote by 0 the retraction from Q3, to Q_,,. We put

Wi = NV 26) V01, —2.6) T W(ze)) 12 € Qo }
Let j: (Al_(;l — Wi be the mapping defined by
iz, =2)] = N (V(ry 20) + Vg, —20) T W) foreachz € Q.
From the definition of w(; ), we have that w(, ) — 0 as ¢ — 0. Then
YNF Oy 2,0) FV(r1,=2,0) F Wz ) = VNGV 2,0) + V(r1,—2,0)) = (2, —2),

ase — 0. Thatis@oyoj — i, as e — 0, where i:Q2_,, — _,, is the identity
mapping. Therefore we have by choosing ¢; € (0,20) sufficiently small that
ovyoj(Q_y) = Q_,,. By Lemma 2.3, we have that there exists ¢ > 0 such
that

(2.20) SUP{ L (N5 (V(ry 200) F Viry,—2e0) T Wzer)) 12 € Dy } < 2¢— 0.
We now consider the following sequence:
G, I G, Ya,,

Then noting that 6, o+, o j, is the identity mapping on Hp(ﬁ,rl), we have from
the sequence

Hy(@-r,) 25 H,(1277) 5 Hy(Qsr) 2 Hy(@,),
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that

rank Hp(f?c_a) > rank Hp(ﬁ_,.l) = rank Hp(ﬁ) for each p > 1. O

PROOF OF THEOREM 1.1. From the assumption (2), we have that Hyo(Q2) #
{0} and Hy(2) # {0} for some p > 1. By the Thom-Gysin exact sequence

s Hy () 25 Hy(Q) 5 H, 1 (Q) — Hya(Q) — -+

where ¢ € H(Q) (cf. [9, Chapter 5.3, Theorem 11], we find that Do H, () >2
holds. We choose ¢ > 0 sufficiently small that the assertion of Lemma 2.6 holds.
We may assume that 2c—o is a regular value of Iy. Since (PS) condition holds on
the interval [13¢/12,2c—o] for Iy on H, we have that m = inf{I;(v) : v € f?c_“}
is attained by an element in S;(£2). That is there exists a subset K C H of critical
points of Iy such that

If(u) =min{l;(v) :v € ffcc_”} for each u € K.

If K contains more than two points, the assertion holds. Then we assume that
K consists of single point u;. Then we have that there exists § > 0 such that
m+ 08 < 2 — o, H(I]""°) = Z and H,(I]**°) = {0} for p > 1. Then since
Z;O:o Hp(I?C_”) > 2, we find that there exists a critical point us € Sf(Q2) with
uy 7é usg. O

PrOOF OF THEOREM 1.2. As in the proof of Theorem 1.1, we choose o > 0
so small that the assertion of Lemma 2.6. Since {g € C*°(Q2) : ¢ > 0 on Q} is
dense {g € L?(Q) : g > 0}, we may assume that f € C°°(Q) and f > 0 on Q. We
suppose that n > 0 and there exist critical points uy, ... ,u, € H of Iy such that
each of them is nondegenerate. If 3 - rank Hp(ﬁ) < n, the assertion holds.
Suppose that > - rank Hp(ﬁ) > n. Then since -, rank Hp(ffpc_”) > n, we
have by the Morse inequality that there exists a critical point u, 41 € I JZCC_” of Iy
such that w11 # u; for 1 <4 < n. We define a mapping F: H2(Q) N H (Q) —
L*(Q) by

F(u) = —(Au+ [u|* ~2u) for u e H*(Q) N HL(Q).
We denote by 37("2), Bfnh) and Bfnoo) the balls centered at 0 with radius r in
L2(Q), H(2) N H?(Q) and C§° (), respectively. Since each critical point u; is
nondegenerate for 1 < i < n, we can choose r; > 0 such Ker I/ (u) = {0} for each

U € u; + B,(f) and the mapping F:u; + Bgl) — Flu; + Bq(n?)) is an isomorphism,
for each 1 < i < n, where IJ’/ denotes the Hessian of Iy. Recall that v €Ker
I"(up41) if and only if

—Av— (2 = D]upa > 20 =0



MULTIPLE SOLUTIONS FOR SEMILINEAR ELLIPTIC PROBLEMS 165

and that there exists m > 0 such that for each
(=Av — (2" = D)|tnsr|* ~20,0)| > mlv|?, for v e (Ker Il’l(un+1))J‘

Then we can choose 7’ € (0, r) such that

Flupsr +BY) € () Flui + BY),
=1

and that for each u € u,41 + B

(2.21)  |[(=Av — (2* = D)|ul* ~20,0)| > (m/2)|v|> for v € (Ker I"” (upy1))*t
We can also choose 7> 0 such that B;OO) - 37(.7) and for each u € upy1 + Béh).
F(u)=—Au—|u* 2u>0 onQ.

Then since Ker I”(u,+1) is a finite dimensional space, one can see that there
exists v’ € upy1 + BT(A,OO) such that

—Av— (2 =D [¥ 20 £0 for veKerI"(upsi)\ {0}

and that

fr=—Au —|[u|* 2 >0 onQ.
Then v’ is nondegenerate critical point of problem (Py/). Since f' = F(u') €
Moy Flu; + Bg)), there exist critical points uf,... ,u}, of Iy such that u €
u; + B,E?). From the definition of r;, each u/ is a nondegenerate critical point
of (Py/). Thus we find that problem (P /) has n+1 nondegenerate critical points.
Repeating this procedure, we reaches to the conclusion. O

REFERENCES

[1] A. BaHRI AND M. CORON, On a nonlinear elliptic equation involving the critical Sobolev
exponent. The effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988),
253-294.

[2] H. Brezis AND L. NIRENBERG, Positive solutions of nonlinear elliptic equations involv-
ing critical Sobolev exonents, Comm. Pure Appl. Math. 36 (1983), 437-477.

[3] K. C. CHANG, Infinite Dimensional Morse Theory and Multiple Solution Problems,
Birkhauser, 1993.

[4] A. DoLp, Lectures in Algebraic Topology, Springer—Verlag, 1972.

[6] N. HIraNO, Multiplicity of solutions for nonhomogeneous nonlinear elliptic equations
with critical exponent, Topol. Mathods Nonlinear Anal. 18 (2001), 269-281.

[6] J. KazDAN AND F. WARNER, Remarks on some quasilinear elliptic equations, Comm.
Pure Appl. Math. 28 (1975), 567-597.

[7] S. 1. PHOZAEV, Eigenfunctions fo the equations —Au + Af(u) = 0, Sov. Math. Dokl. 6
(1965), 1408-1411.

[8] O. REY, Concentration of solutions to elliptic equations with ciritcal nonlinearity, Ann.
Inst. H. Poincaré Anal. Non Linéaire 9 (1990), 201-218.



166 N. HirANO

[9] E. SPANIER, Algebraic Topology, McGraw—Hill, New York, 1966.

[10] G. TARANTELLO, On nonhomogeneous elliptic equations involving critical Sobolev expo-
nent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 281-304.

Manuscript received January 30, 2004

NoriMmICcHI HIRANO

Graduate School of Environment
and Information Sciences
Yokohama National University
Tokiwadai, Hodogayaku
Yokohama, JAPAN

E-mail address: hirano@mth.sci.ynu.ac.jp

TMNA : VOLUME 25 — 2005 — N° 1



